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We argue that the physics of interacting Kelvin Waves (KWs) is highly non-trivial and cannot
be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence
in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we
present a detailed calculation and comprehensive analysis of the interaction coefficients for KW
turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a
first application of this analysis, we derive a new Local Nonlinear (partial differential) Equation.
This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart
equation, and in contrast to the completely integrable Local Induction Approximation (in which
the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Secondly,
we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often
been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant,
because it is based upon an erroneous assumption of the locality of the energy transfer through
scales. Moreover, we demonstrate the weak non-locality of the inverse cascade spectrum with a
constant particle-number flux and find resulting logarithmic corrections to this spectrum.

Physical background, methodology and overview of
results

A. Kelvin waves (KWs) in superfluid turbulence

The role of Kelvin Waves (KWs) in the dissipation of
energy in zero temperature quantum turbulence has long
been discussed within the quantum turbulence commu-
nity. It is widely believed that KWs extend the transfer
of a constant energy flux from the fully 3D Kolmogorov-
like turbulence at large scales, through a crossover mech-
anism at scales comparable to the inter-vortex distance,
to smaller scales via a local KW cascade on quantized
vortices. Much theoretical work has been done recently,
including the conjecture of a power-law scaling for the
KW cascade made by Kozik and Svistunov in 2004, the
KS-spectrum [1].

Nevertheless there remain important unanswered ques-
tions in quantum turbulence:
– What are the relative roles of KWs and the other pro-
cesses, e.g. vortex reconnections, in the transfer of energy
to small scales?
– What are the dominant physical mechanisms in the
classical-quantum crossover range? Two alternative sce-
narios were put forward for this range: firstly, one relying
on the idea that the polarization of vortex tangles sup-
press vortex reconnections, which lead to a bottleneck
hump [4, 5], and the second, implies that reconnections
play an active role in removing the bottleneck [6].
– If the KWs do play a key role at small scales, what
kind of interaction processes are important for the trans-
fer of energy towards smaller scales? Is it the resonant
wave-wave interactions, or a linear process of wave num-
ber evolution due to a large-scale curvature and/or slow
time dependence of the underlying vortex line, or any
other possibility?

– If the KW energy transfer is dominated by the six-wave
scattering, can one safely assume, as in [1], that this pro-
cess is local, in the sense that the k-waves (with a given
wave vector k) are mainly affected by k′-waves (with a
given wave vector k′, where k′ = |k′| is of the same order
as k = |k|, with contributions of k′-waves with k′ � k
and k′ � k being vanishingly small?

In this paper we do not address all of these problems,
particularly the ones about the role of reconnections and
about the structure of the crossover range. We restrict
our attention to the nonlinear interactions of weakly non-
linear KWs propagating on a single straight vortex line.
This corresponds to the small-scale range of superfluid
turbulence at near-zero temperature, where, because of
the short wavelengths of KWs, one can ignore the influ-
ence of the neighboring vortex lines within the tangle,
and assume that nonlinearity, being weak, is still strong
enough for the nonlinear evolution to proceed faster than
the large-scale (space and time) changes in the underly-
ing vortex line.

Within this idealized setup, our immediate goal is to
revise and advance the theory of weak-wave turbulence
of KWs. In particular, we have clarified the structure
of the nonlinear KW interactions, corrected the theory
by including previosuly unaccounted leading-order con-
tributions to the effective wave Hamiltonian, and explic-
itly calculated the interaction coefficients. Furthermore,
we have used these results to:
– Firstly, derive a simple local nonlinear equation (8) for
describing KW turbulence.
– Secondly, to check locality of the KS-spectrum assumed
in the previous theory.
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B. Hierarchy of the equations of motion for KWs

A commonly accepted model of superfluid turbulence
comprises a randomly moving tangle of quantized vortex
lines which can be characterized by the mean intervortex
distance ` and the vortex core radius a0 � `. There
are two approaches in dealing with the vortex core. The
first one is a “microscopic” model, in which the core is
resolved: it is based on the Gross-Pitaevski equation,

∂Ψ

∂t
+∇2Ψ−Ψ|Ψ|2 = 0, (1)

where Ψ is the so-called condensate wave function.
This model was systematically derived for the Bose-

Einstein condensate in super-cold atoms, and not for liq-
uid Helium. Nevertheless, it is frequently used for de-
scribing superfluid flows in Helium because it contains
several essential features of such superfluids, i.e. vortex
quantization, acoustic waves (phonons) in the presence
of a condensate, and the description of a gradual (non-
singular) vortex line reconnection.

However, the Gross-Pitaevski equation can be costly to
study, and one often resorts to using the so-called Biot-
Savart formulation of the Euler equations for ideal classi-
cal fluids, exploiting the fact that far away from the vor-
tex cores the Gross-Pitaevski dynamics is isomorphic to
the ideal classical flow via the Madelung transformation.
In the Biot-Savart model, the vortices are postulated by
a cutoff in the equations for the vortex line elements.
Namely, the equations used are [7, 8, 11]:

ṙ =
κ

4π

∫
ds× (r− s)

|r− s|3
, (2)

with a cutoff at the core radius a0, i.e. integration is over
the range |r− s| > a0. Here κ ≡ 2π~/m is the quantum
of velocity circulation, m is the particle mass. In what
follows, we will adopt the Biot-Savart equation (BSE) as
a staring point for our derivation.

To consider the KW system, one has to start with
an equilibrium state corresponding to an infinitely long
straight vortex line and perturb it with small angle dis-
turbances. This corresponds to a setup of weakly nonlin-
ear KWs which are dispersive, and that can be decribed
by weak-wave turbulence theory. For this, one has to
parametrize the transverse displacement vector (x, y) of
the perturbed line by the distance z along the unper-
turbed line (the latter lies along the Cartesian z-axis):

w(z, t) ≡ x(z, t) + i y(z, t). (3)

In terms of w, the BSE can be written in a Hamiltonian
form

iκ
∂w

∂t
=
δH{w,w∗}

δw∗
, (4)

where δ/δw∗ is the functional derivative, the asterisk
stands for the complex conjugation and the Hamiltonian

H = H
BSE

is defined as follows [10],

H
BSE

=
κ

4π

∫∫ [
1 +Re

(
w′∗(z1)w′(z2)

)]
dz1dz2√

(z1 − z2)2 + |w(z1)− w(z2)|2
, (5)

where we have used the notation w′(z) = dw/dz.
Then, one must expand in two small parameters: the

perturbation inclination w′ � 1 and Λ−1
0 � 1, where

Λ0 = ln(`/a0). Such a simultaneous expansion is not
easy. This is because the leading order in 1/Λ0 gives an
integrable model called the Local Induction Approxima-
tion (LIA) [10, 11] with a Hamiltonian

H
LIA

=
κ

2π
Λ0

∫
dz
√

1 + |w′(z)|2. (6)

Because of the integrability, LIA conserves an infinite
number of integrals of motion, and wave resonances are
absent in all orders, which prevents energy exchange be-
tween KWs. Thus, LIA appears to be too simple, and to
describe the KW energy transfer, one has to go to next
order in 1/Λ0.

The second difficulty is that the lowest order process,
the four-wave resonances, are absent for such one dimen-
sional systems with concaved dispersion relations. Thus,
one must also go to the next order in small w′. The com-
bination of these two facts makes finding the effective
interaction Hamiltonian Hint for KWs a hard task.

For numerical analysis purposes, the BSE model (2)
is also quite challenging because of the nonlocal (in the
physical space) integral that has to be computed, espe-
cially when one has to resolve a wide range of turbulent
scales and when the waves are weak, so that the evolution
times are long.

Thus, there is a clear need for a simpler model for non-
linear KWs, which would be local in the physical space
like LIA (i.e. represent a nonlinear partial differential
equation), but unlike LIA would be capable of descript-
ing the energy transfer over turbulent scales. Motivated
by this need, an ad hoc model was introduced in [13]
which has the simplest possible form with all the scal-
ing properties and solutions of the original BSE model
preserved. This model was called the Truncated-LIA (or
TLIA); it has the following Hamiltonian

H
TLIA

=
κ2

4π
Λ0

∫ [
|w′|2 − 1

4
|w′|4

]
dz , (7)

The name TLIA arises from the fact that it can formally
be obtained by expanding the LIA Hamiltonian in |w′|2
and truncating at the fourth order. This truncation leads
to the breaking of the LIA integrability, while preserving
all the important scalings.

The TLIA model turned out to be very efficient and
useful for numerical simulations [13], even though it was
suggested ad hoc , and motivated by the need for greater
simplicity, rather than derived from first principles. In
the present paper, we will obtain a very simple, local in
z, nonlinear partial differential equation which is isomor-
phous to TLIA for weakly nonlinear KWs, and which is
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obtained rigorously from BSE by asymptotic expansions
in 1/Λ0 and w′, and by a subsequent identification of the
dominant type of interaction wave sextets.

C. The new Local-Nonlinear Equation for Kelvin
waves

Our main goal in the paper is, being based on the BSE,
is to systematically derive an effective motion equation
for KWs, “as simple as possible, but not more”. From
one side, this new equation will include dynamical inter-
action (with energy exchange) of KWs (which are absent
in LIA), and from the other, will contain the leading con-
tribution obtained from local elements (in contrast to the
TLIA model). Moreover, at the same time, being drasti-
cally simplier than the BSE itself. The resulting equation
reads:

i
∂w̃

∂t
+

κ

4π

∂

∂z

[(
Λ− 1

4

∣∣∣∣∂w̃∂z
∣∣∣∣4
)
∂w̃

∂z

]
= 0 . (8)

Local Nonlinear Equation (LNE) for KWs.

The variable w̃(z, t) is related to w(z, t) via a weakly
nonlinear canonical transformation of type

w̃(z, t) = w(z, t) +O(w′
3
) . (9)

The dimensionless parameter

Λ ≡ Λ0 − γ −
3

2
' Λ0 − 2 , (10)

where γ = 0.5772 . . . is the Euler constant. The replace-
ment Λ0 → Λ is equivalent to a replacement of a0 by an
effective vortex core radius a = a0 exp(γ + 3/2) ' 8 a0,
in the equation Λ = ln(`/a).

We entitled the result (8) as the Local Nonlinear Equa-
tion (LNE) to stress its three main features:

Locality (in physical space) of the KW interactions: ac-
cording to Eq. (8), the evolution of the KW ampli-
tude w̃(z, t) depends only on the slope ∂w̃(z, t)/∂z
of KWs and on its curvature (via ∂2w̃(z, t)/∂z2) at
the same point z.

Nonlinearity plays a crucial role in the LNE (8), as it is
responsible for the energy transfer among the KW
modes. Notice that LIA, being formally a nonlin-
ear equation, allows (in the framework of the in-
verse scattering formulation) a linear formulation,
in which the energy exchange between KWs is ex-
plicitly absent.

The word Equation (not an “Approximation”) stresses
the fact that LNE (8) is asymptotically exact in the
triple limit

w ′ � 1 , Λ−1 � 1 , and λ� ` , (11)

where λ is the characteristic wavelength of the the
KWs.

It is instructive to represent LNE (8) in a Hamiltonian
form

i κ
∂w̃

∂t
=

δ

δw̃∗
H

LNE

{w̃, w̃∗} , (12a)

where

H
LNE

=
κ2

4π

∫ [
Λ

∣∣∣∣∂w̃∂z
∣∣∣∣2− 1

12

∣∣∣∣∂w̃∂z
∣∣∣∣6
]
dz , (12b)

LNE Hamiltonian.

In the weakly nonlinear case, the LNE model is isomor-
phic to the TLIA model (7), in which the variable w is
related to w̃ via the canonical transformation mentioned
above and a proper rescaling. We repeat that the TLIA
model was introduced in [13] in an ad-hoc way, requir-
ing that it must have the same basic scaling properties
as the original BSE (2), but be simpler than the latter.
In the present paper, the LNE (8) is derived from the
BSE systematically and, therefore, it is an asymptotically
rigorous equation in the relevant KW turbulence limits.
In spite of the remarkable simplicity of the LNE (8),
its asymptotical derivation is rather cumbersome, which
possibly explains the fact that it has never been obtained
before. To reach our goals we proceeded as follows.

D. Challenges of the KW turbulence. Nonlocality
of the six-wave process.

The first part of the paper is devoted to an explicit cal-
culation of the effective six-wave interaction coefficient in
the limit of small perturbation angles and small values
of 1/Λ that culminate in the derivation of the LNE (8).
As we mentioned above, the respective expansion in two
small parameters is not easy and rather cumbersome. To
keep our presentation reasonably short and transparent,
in Sec. I B we describe only the main steps of the calcu-
lation and move details to the Appendices. In this part,
we fix a set of rather important technical errors made in
Refs. [1, 2], thereby preparing the mathematical problem
for further analysis.

As an important application of the obtained result, we
dedicate Sec. II to an analysis of the cascades of energy
E and particle-number N caused by the 3↔ 3-scattering
of KWs in the context of the KS-conjecture [1]. The KS
theory predicts a power-law energy spectrum with con-
stant E-flux, EKS(k) ∝ k−7/5, and with constant N -flux,
EN(k) ∝ k−1 [3]. These spectra can only be valid if
they are local. We show in Sec. II C that the KS spec-
trum is strongly non-local, so that the KW dynamics
are dominated by interactions of k′-waves with k′ � k.
Therefore, the KS spectrum is physically irrelevant, i.e.



4

it cannot be realized in Nature. In Sec. II C, we also
demonstrate that the N -flux spectrum is weakly nonlocal
in the sense that the dynamics of the k-waves are equally
effected by all the k′-waves with k′ <∼ k. In Sec. II D, we
“fix” locality of this spectrum by a logarithmic correc-
tion, EN(k) ∝ k−3[ln(k`)]−1/5, Eq. (43).

Establishing nonlocality of the six-wave theory is a key
step to the desired effective description. Indeed, it sug-
gests that the dominant wave sextets must involve modes
with widely separated wavelengths. We will show that
in this case, the effective interaction coefficient looks re-
markably simple: it is proportional to the product of the
six wave-numbers of the sextet modes, see (31). This im-
mediately yields the LNE (8). In conclusion, we discuss
prospects of building a theory based upon the LNE (8),
which should lead to an alternative result to the invalid
KS spectrum.

I. HAMILTONIAN DYNAMICS OF KWS

A. Introduction to the problem

To derive an effective KW Hamiltonian leading to the
LNE (8), we first briefly overview the Hamiltonian de-
scription of KWs initiated in [1] and further developed
in [4, 13]. The main goal of Sec. I B is to start with
the so-called “bare” Hamiltonian (5) for the Biot-Savart
description of KWs (2) and obtain expressions for the
frequency Eqs. (21), four- and six-KWs interaction coeffi-
cients Eqs. (22) and (23) and their 1/Λ-expansions, which
will be used in further analysis. Eqs. (21), (22) and (23)
are starting points for further modification of the KW
description, given in Sec. I C, in which we explore the
consequences of the fact that non-trivial four-wave inter-
actions of KWs are prohibited by the conservation laws
of energy and momentum:

ω1 + ω2 = ω3 + ω4 , k1 + k2 = k3 + k4 , (13)

where ωj ≡ ω(kj) is the frequency of the kj-wave. Only
the trivial processes with k1 = k3, k2 = k4, or k1 = k4,
k2 = k3 are allowed.

It is well known (see, e.g. Ref. [14]) that in the case
when nonlinear wave processes of the same kind (e.g.
1 → 2) are forbidden by conservation laws, the terms
corresponding to this kind of processes can be eliminated
from the interaction Hamiltonian by a weakly nonlinear
canonical transformation. A famous example [14] of this
procedure comes from a system of gravity waves on water
surface in which three-wave resonances ω1 = ω2 +ω3 are
forbidden. Then, by a canonical transformation to a new
variable b = a + O(a2), the old Hamiltonian H(a, a∗) is

transformed to a new one, H̃(b, b∗) , where the three-wave

(cubic) interaction coefficient V 2,3
1 is eliminated at the

expanse of appearance of an additional contribution to
the next order term (i.e. four-wave interaction coefficient
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FIG. 1: Examples of contribution of the triple vertices to
the four-wave Hamiltonian when three-wave resonances are
forbidden (left) and contributions of the quartet vertices to
the six-wave Hamiltonian in resonances when four-wave reso-
nances are forbidden (right). Intermediate virtual waves are
shown by dash lines.

T 3,4
1,2 ) of the type

V 3,5
1

(
V 2,5

4

)∗/
[ω5 + ω3 − ω1 ] . (14)

One can consider this contribution as a result of the
second-order perturbation approach in the three-wave
processes k1 → k3 + k5 and k5 + k2 → k4, see Fig. 1,
left. The virtual wave k5 oscillates with a forced fre-
quency ω1−ω3 which is different from its eigenfrequency
ω5. The inequality ω(k1) − ω(k3) 6= ω(|k1 − k3|) is a
consequence of the fact that the three-wave processes
ω(k1)−ω(k3) = ω(|k1−k3|) are forbidden. As the result
the denominator in Eq. (14) is non-zero and the pertur-
bation approach leading to Eq. (14) is applicable when
the waves’ amplitudes are small.

Strictly speaking our problem is different: as we men-
tioned above, not all 2↔ 2 processes (13) are forbidden,
but only the non-trivial ones that lead to energy exchange
between KWs. Therefore, the use of a weakly nonlinear
canonical transformation (9) (as suggested in [1]) should
be done with extra caution. The transformation (9) is
supposed to eliminate the fourth order terms from the
BSE-based interaction Hamiltonian by the price of ap-
pearance of extra contributions to the “full” six-wave in-

teraction amplitude W̃ 4,5,6
1,2,3, (25), of the following type

(see Fig. 1, right):

T 4,7
1,2 T 5,6

3,7

ω7 + ω4 − ω1 − ω2
, ω7 ≡ ω(|k1 + k2 − k4|) . (15)

Here all wave vectors are taken on the six-wave resonant
manifold

ω1 + ω2 + ω3 = ω4 + ω5 + ω6 , (16)

k1 + k2 + k3 = k4 + k5 + k6 .

The danger is seen from a particular example when
k1 → k4 , k2 → k5 and k3 → k6, so ω7 → ω2, and the de-
nominator of Eq. (15) goes to zero, while the numerator
remains finite. This means, that the perturbation con-
tribution (15) diverges and this approach becomes ques-
tionable.

However a detailed analysis of all contributions of the
type (15) performed a-posteriori and presented in Sec. I C
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demonstrates cancelations of diverging terms with oppo-
site signs such that the resulting “full” six-wave interac-
tion coefficient remains finite, and the perturbation ap-
proach (15) appears to be eligible. The reason for this
cancelation is hidden deep within the symmetry of the
problem, which will not be discussed here.

Moreover, finding the “full” Hamiltonian is not enough
for formulating the effective model. Such a model must
include all contributions in the same O(1/Λ), namely the
leading order allowing energy transfer in the k-space.
The “full” Hamiltonian still contains un-expanded in
(1/Λ) expressions for the KW frequencies. Leaving only
the leading (LIA) contribution in the KW frequency ω,
as it was done in [1, 2], leads to a serious omission of an
important leading order contribution. Indeed, the first
sub-leading contribution to ω shifts the LIA resonant
manifold, which upsets the integrability. As a result, the

LIA part of W̃ 4,5,6
1,2,3 yields a contribution to the effective

model in the leading order. This (previously overlooked)
contribution will be found and analyzed in Sec. I D.

B. “Bare” Hamiltonian dynamics of KWs

1. Canonical form of the “bare” KW Hamiltonian

Let us postulate that the motion of a tangle of quan-
tized vortex lines can be described by the BSE model (2),
and assume that

Λ0 ≡ ln
(
`/a0

)
� 1, (17)

where a0 is the vortex core radius. The BSE can be writ-
ten in the Hamiltonian form (4) with Hamiltonian (5).

Without the cut-off, the integral in H
BSE

, Eq. (5), would
be logarithmically divergent with the dominant contribu-
tion given by the leading order expansion of the integrand

in small z1 − z2, that corresponds to H
LIA

, Eq. (6).
As we have already mentioned, LIA represents a com-

pletely integrable system and it can be reduced to the
one-dimensional nonlinear Schrödinger (NLS) equation
by the Hasimoto transformation [12]. However, it is the
complete integrability of LIA that makes it insufficient
for describing the energy cascade and which makes it
necessary to consider the next order corrections within
the BSE model.

For small-amplitude KWs when w′(z) � 1, we can

expand the Hamiltonian (5) in powers of w′
2
, see Ap-

pendix A 1:

H = H2 +H4 +H6 + . . . . (18)

Here we omitted the constant term H0 which does not
contribute to the equation of motion Eq. (4). Assuming
that the boundary conditions are periodical on the length
L (the limit kL � 1 to be taken later) we can use the
Fourier representation

w(z, t) = κ−1/2
∑
k

a(k, t) exp(ikz) . (19)

The bold face notation of the one-dimensional wave vec-
tor is used for convenience only. Indeed, such a vector
is just a real number, k ∈ R, in our case for KWs. For
further convenience, we reserve the normal face notation
for the length of the one-dimensional wave vector, i.e.
k = |k| ∈ R+. In Fourier space, the Hamiltonian equa-
tion also takes a canonical form:

i
∂a(k, t)

∂t
=
δH{a, a∗}
δa∗(k, t)

. (20a)

The new Hamiltonian H is the density of the old one:

H{a, a∗} = H{w,w∗}/L = H2 +H4 +H6 + . . . (20b)

The Hamiltonian

H2 =
∑
k

ωk ak a
∗
k , (20c)

describes the free propagation of linear KWs with the dis-
persion law ωk ≡ ω(k), given by Eq. (21), and the canon-
ical amplitude ak ≡ a(k, t). The interaction Hamiltoni-
ans H4 and H6 describe the four-wave processes of 2↔ 2
scattering and the six-wave processes of 3↔ 3 scattering
respectively. Using a short-hand notation aj ≡ a(kj , t),
they can be written as follows:

H4 =
1

4

∑
1+2=3+4

T 3,4
1,2 a1a2a

∗
3a
∗
4 , (20d)

H6 =
1

36

∑
1+2+3=4+5+6

W 4,5,6
1,2,3 a1a2a3a

∗
4a
∗
5a
∗
6 . (20e)

Here T 3,4
1,2 ≡ T (k1,k2|k3,k4) and W 4,5,6

1,2,3 ≡
W (k1,k2,k3|k4,k5,k6) are “bare” four- and six-wave
interaction coefficients, respectively. Summations over
k1 . . .k4 in H4 and over k1 . . .k6 in H6 are constrained
by k1 +k2 = k3 +k4 and by k1 +k2 +k3 = k4 +k5 +k6,
respectively.

2. Λ-expansion of the bare Hamiltonian function

As will be seen below, the leading terms in the Hamil-
tonian functions ωk, T 3,4

1,2 and W 4,5,6
1,2,3, are proportional to

Λ, which correspond to the LIA (6). They will be de-
noted further by a front superscript “ Λ ”, e.g. Λωk, etc.
Because of the complete integrability, there are no dy-
namics in the LIA. Therefore, the most important terms
for us will be the ones of zeroth order in Λ, i.e. the ones
proportional to Λ0 = O(1). These will be denoted by a
front superscript “ 1 ” , e.g. 1ωk, etc.

Explicit calculations of the Hamiltonian coefficients
must be done very carefully, because even a minor mis-
take in the numerical prefactor can destroy various can-
celations of large terms in the Hamiltonian coefficients.
This could change the order of magnitude of the answers
and the character of their dependence on the wave vectors
in the asymptotical regimes. Details of these calculations
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are presented in Appendix A 1, whereas the results are
given below.

Together with Eq. (10), the Kelvin wave frequency is:

ωk = Λωk + 1ωk +O(Λ−1) , where (21a)
Λωk = κΛ k2

/
4π , (21b)

1ωk = −κ k2 ln
(
k`
)/

4π . (21c)

The “bare” 4-wave interaction coefficient is:

T 3,4
1,2 = ΛT 3,4

1,2 + 1T 3,4
1,2 +O(Λ−1) , (22a)

ΛT 3,4
1,2 = −Λk1k2k3k4

/
4π , (22b)

1T 3,4
1,2 = −

(
5k1k2k3k4 + F 3,4

1,2

)/
16π . (22c)

The function F 3,4
1,2 is symmetric with respect to k1 ↔ k2,

k3 ↔ k4 and {k1,k2} ↔ {k3,k4}; its definition is given
in Appendix A 2.

The “bare” 6-wave interaction coefficient is

W 4,5,6
1,2,3 = ΛW 4,5,6

1,2,3 + 1W 4,5,6
1,2,3 +O(Λ−1) , (23a)

ΛW 4,5,6
1,2,3 =

9 Λ

8πκ
k1k2k3k4k5k6 , (23b)

1W 4,5,6
1,2,3 =

9

32πκ

(
7k1k2k3k4k5k6 − G 4,5,6

1,2,3

)
.(23c)

The function G 4,5,6
1,2,3 is symmetric with respect to k1 ↔

k2 ↔ k3, k4 ↔ k5 ↔ k6 and {k1,k2,k3} ↔ {k4,k5,k6};
its definition is given in Appendix A 3.

Note that the full expressions for ωk, T 3,4
1,2 and W 4,5,6

1,2,3

do not contain ` but rather ln(1/a0). This is natural be-
cause in the respective expansions ` was introduced as
an auxillary parameter facilitating the calculations, and
it does not necessarily have to coincide with the inter-
vortex distance. More precisely, we should have used
some effective intermediate length-scale, `eff, such that
` � `eff � 2π/k. However, since `eff is artificial and
would have to drop from the full expressions anyway, we
chose to simply write ` omitting subscript “eff”. Cance-
lation of ` is a useful check for verifying the derivations.

C. Full “six-KW” Hamiltonian dynamics

1. Full six-wave interaction Hamiltonian H̃6

Importantly, the four-wave dynamics in one-
dimensional media with concaved dispersion laws
ω(k) are absent because the conservation laws of en-
ergy and momentum allow only trivial processes with
k1 = k3, k2 = k4, or k1 = k4, k2 = k3. This means
that by a proper nonlinear canonical transformation
{a, a∗} ⇒ {b, b∗}, H4 can be eliminated from the Hamil-
tonian description. This comes at a price of appearance
of additional terms in the full interaction Hamiltonian

H̃6:

H{a, a∗} ⇒ H̃{b, b∗} = H̃2 + H̃4 + H̃6 + . . . , (24a)

H̃2 =
∑
k

ωk bk b
∗
k , H̃4 ≡ 0 , (24b)

H̃6 =
1

36

∑
1+2+3=4+5+6̃

W 4,5,6
1,2,3 b1b2b3b

∗
4b
∗
5b
∗
6 , (24c)

W̃ 4,5,6
1,2,3 = W 4,5,6

1,2,3 +Q4,5,6
1,2,3 , (24d)

Q4,5,6
1,2,3 =

1

8

3∑
i,j,m= 1
i6=j 6=m

6∑
p,q,r= 4
p 6=q 6=r

q p,q,ri,j,m , (24e)

q p,q,ri,j,m ≡
T j,mr, j+m−r T

q, p
i, p+q−i

Ω r, j+m−r
j,m

+
T q, rm, q+r−m T

i, j
p, i+j−p

Ωm, q+r−m
q, r

,

Ω3,4
1,2 ≡ ω1 + ω2 − ω3 − ω4 (24f)

= ΛΩ
3,4

1,2 + 1Ω
3,4
1,2 +O(Λ−1) .

The Q-terms in the full six-wave interaction coefficient

W̃ 4,5,6
1,2,3 can be understood as contributions of two four-

wave scatterings into resulting six-wave process via a vir-
tual KW with k = kj + km − kr in the first term in Q
and via a KW with k = kq+kr−km in the second term;
see Fig. 1, right.

2. 1/Λ-expansion of the full interaction coefficient W̃ 4,5,6
1,2,3

Similarly to Eq. (23a), we can present W̃ 4,5,6
1,2,3 in the

1/Λ-expanded form:

W̃ 4,5,6
1,2,3 = ΛW̃ 4,5,6

1,2,3 + 1W̃ 4,5,6
1,2,3 +O(Λ−1) , (25)

Due to the complete integrability of the KW system in
the LIA, even the six-wave dynamics must be absent in

the interaction coefficient ΛW̃ 4,5,6
1,2,3. This is true if func-

tion ΛW̃ 4,5,6
1,2,3 vanishes on the LIA resonant manifold:

ΛW̃ 4,5,6
1,2,3 δ

4,5,6
1,2,3 δ

(
ΛΩ̃ 4,5,6

1,2,3

)
≡ 0 , (26a)

where

δ4,5,6
1,2,3 = δ(k1 + k2 + k3 − k4 − k5 − k6) , (26b)

ΛΩ̃ 4,5,6
1,2,3 =

κΛ

4π

[
k2

1 + k2
2 + k2

3 − k2
4 − k2

5 − k2
6

]
. (26c)

Explicit calculation of ΛW̃ 4,5,6
1,2,3 in Appendix B shows that

this is indeed the case: the contributions ΛW 4,5,6
1,2,3 and

ΛQ4,5,6
1,2,3 in Eq. (24d) cancel each other (see section 1 in

Appendix B). (Such cancelation of complicated expres-
sions was one of the tests of consistency and correctness of
our calculations and our Mathematica code). The same
is true for all the higher interaction coefficients: they
must be zero within LIA.
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Thus we need to study the first-order correction to the
LIA, which for the interaction coefficient can be schemat-
ically represented as follows:

1W̃
4,5,6

1,2,3 = 1W
4,5,6
1,2,3

+ 1
1Q

4,5,6

1,2,3 + 1
2Q

4,5,6

1,2,3 + 1
3Q

4,5,6

1,2,3 , (27a)

1
1Q ∼

ΛT ⊗ 1T
ΛΩ

, 1
2Q ∼

1T ⊗ ΛT
ΛΩ

, (27b)

1
3Q ∼ − 1Ω

ΛT ⊗ ΛT

[ ΛΩ ]
2 . (27c)

Here 1W is the Λ0-order contribution in the bare vertex
W , given by Eq. (23c), 1Q is the Λ0-order contribution
in Q which consists of 1

1Q and 1
2Q originating from the

part 1T in the four-wave interaction coefficient T , and
1
3Q originating from the 1Ω corrections to the frequencies

Ω in Eqs. (24e) and (24f). Explicit Eqs. (B3) for 1
1Q

4,5,6
1,2,3,

1
2Q

4,5,6
1,2,3 and 1

3Q
4,5,6
1,2,3 are presented in Appendix B 2. They

are very lengthy and were analyzed using Mathematica,
see Sec. I D 2.

D. Effective six-KW dynamics

1. Effective equation of motion

The LIA cancelation (26a) on the full manifold (16) is
not exact:

ΛW̃ 3,4,5
k,1,2 δ

3,4,5
k,1,2 δ

(
Ω̃ 3,4,5
k,1,2

)
6= 0 ,

Ω̃ 3,4,5
k,1,2 ≡ ωk + ω1 + ω2 − ω3 − ω4 − ω5

= ΛΩ̃
3,4,5

k,1,2 + 1Ω̃
3,4,5

k,1,2 +O(Λ−1) .

The residual contribution due to 1Ω̃ 3,4,5
k,1,2 has to be ac-

counted for – an important fact overlooked in the previ-
ous KW literature, including the formulation of the effec-
tive KW dynamics recently presented by KS in [2]. Now
we are prepared to take another crucial step on the way
to the effective KW model by replacing the frequency
ωk by its leading order (LIA) part (21b) and simultane-
ously compensating for the respective shift in the reso-

nant manifold by correcting the effective vertex H̃. This
corresponds to the following Hamiltonian equation,

i
∂bk
∂t

= Λωk bk (28)

+
1

12

∑
k+1+2=3+4+5

W 3,4,5
k,1,2 b1b2b

∗
3b
∗
4b
∗
5 ,

where the constraint k + k1 + k2 = k3 + k4 + k5 holds.
Here W 3,4,5

k,1,2 is a corrected interaction coefficient, which

is calculated in Appendix B 3:

W 3,4,5
k,1,2 = 1W̃ 3,4,5

k,1,2 + 1S̃ 3,4,5
k,1,2 , (29a)

1S̃4,5,6
1,2,3 =

2π

9κ
1Ω̃4,5,6

1,2,3

∑
i={1,2,3}
j={4,5,6}

(∂j + ∂i)
ΛW̃ 4,5,6

1,2,3

(kj − ki) Λ
, (29b)

where ∂j(·) ≡ ∂(·)/∂kj .
(28) represents a correct effective model and, will serve

as a basis for our future analysis of KW dynamics and
kinetics. However, to make this equation useful we need
to complete the calculation of the effective interaction co-
efficient W 3,4,5

k,1,2 and simplify it to a reasonably tractable
form. The key for achieving this is in a remarkably simple
asymptotical behavior of W 3,4,5

k,1,2 , which will be demon-
strated in the next section. Such asymptotical expres-
sions for W 3,4,5

k,1,2 will allow us to establish nonlocality of
the KS theory, and thereby establish precisely that these
asymptotical ranges with widely separated scales are the
most dynamically active, which would lead us to the re-
markably simple effective model expressed by the LNE
(8).

2. Analysis of the effective interaction coefficient W 3,4,5
k,1,2

Now we will examine the asymptotical properties of
the interaction coefficient which will be important for
our study of locality of the KW spectra and formula-
tion of the LNE (8). The effective six-KW interaction

coefficient W 3,4,5
k,1,2 consists of five contributions given by

Eqs. (27) and (29). The explicit form of W 3,4,5
k,1,2 involves

about 2×104 terms. However its asymptotic expansion in
various regimes, analyzed by Mathematica demonstrates
very clear and physical transparent behavior, which we
will study upon the LIA resonance manifold

k + k1 + k2 = k3 + k4 + k5 , (30a)

k2 + k2
1 + k2

2 = k2
3 + k2

4 + k2
5 . (30b)

If the smallest wavevector (say k5) is much smaller than
the largest wave vector (say k) we have a remarkably
simple expression:

W 3,4,5
k,1,2 → −

3

4πκ
kk1k2k3k4k5 , (31)

as
min{k, k1, k2, k3, k4, k5}
max{k, k1, k2, k3, k4, k5}

→ 0 .

We emphasize that in the expression (31), it is enough
for the minimal wave vector to be much less than the
maximum wave number, and not all of the remaining
five wave numbers in the sextet. This was established
using Mathematica and Taylor expanding W 3,4,5

k,1,2 with

respect to one, two and four wave numbers [? ]. All of
these expansions give the same leading term as in (31),
see Apps. B 4 and B 5.
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The form of expression (31) demonstrates a very sim-
ple physical fact: long KWs (with small k-vectors) can
contribute to the energy of a vortex line only when they
produce curvature. The curvature, in turn, is propor-
tional to wave amplitude bk and, at a fixed amplitude,
is inversely proportional to their wave-length, i.e. ∝ k.
Therefore, in the effective motion equation each bj has
to be accompanied by kj , if kj � k. This statement is
exactly reflected by formula (31).

Furthermore, a numerical evaluation of W 3,4,5
k,1,2 on a

set of 210 randomly chosen wave numbers, different from
each other at most by a factor of two, indicate that in
the majority of cases its values are close to the asymp-
totical expression (31) (within 40%). Therefore, for most
purposes we can approximate the effective six-KW inter-
action coefficient by the simple expression (31). Finally,
our analysis of locality seen later in this paper, indicates
that the most important wave sextets are those which
include modes with widely separating wavelengths, i.e.
precisely those described by the asymptotic formula (31).

This leads us to the conclusion that the effective model
for KW turbulence should use the interaction coefficient
(31). Returning back to the physical space, we thereby
obtain the desired Local Nonlinear Equation (LNE) for
KWs given by (8).

As we mentioned in the beginning of the present paper,
LNA is very close (isomorphous for small amplitudes) to
the TLIA model (7) introduced and simulated in [13]. It
was argued in [13] that the TLIA model is a good al-
ternative to the original Biot-Savart formulation due to
it dramatically greater simplicity. In the present paper
we have found a further support for this model, which
is strengthened by the fact that now it follows from a
detailed asymptotical analysis, rather than being intro-
duced ad hoc.

3. Partial contributions to the 6-wave effective interaction
coefficient

It would be instructive to demonstrate the relative im-
portance of different partial contributions, 1W , 1

1Q, 1
2Q,

1
3Q and 1S̃ [see Eqs. (27) and (29)] to the full effective
six-wave interaction coefficient. For this, we consider
the simplest case, when four wave vectors are small, say
k1, k2, k3, k5 → 0. We have (see Appendix B 5):

1W

W
→ −1 +

3

2
ln(k`) , (32a)

1
1Q

W
→ +

1

2
− 3

2
ln(k`)− 1

6
ln
k3

k
, (32b)

1
2Q

W
→ +

1

2
− 3

2
ln(k`)− 1

6
ln
k3

k
, (32c)

1
3Q

W
→ +1 +

3

2
ln(k`) +

1

6
ln
k3

k
, (32d)

1S̃

W
→ 1

6
ln
k3

k
. (32e)

One sees that Eqs. (32) for the partial contributions
involve the artificial separation scale `, which cancels out

from 1W̃ = 1W + 1
1Q + 1

2Q + 1
3Q. This is not surprising

because the initial expressions Eqs. (23) do not contain `
but rather ln(1/a0). This cancelation serves as one more
independent check of consistency of the entire procedure.

Notice that in the KS paper [1], contributions (32d)
and (32e) were mistakenly not accounted for. Therefore
the resulting KS expression for the six-wave effective in-
teraction coefficient depends on the artificial separation
scale `. This fact was missed in their numerical simula-
tions [1]. In their recent paper [2], the lack of contribu-
tion (32d) in the previous work was acknowledged (also
in [13]), but the contribution (32e) was still missing.

II. KINETIC DESCRIPTION OF KW
TURBULENCE

A. Effective Kinetic Equation for KWs

The statistical description of weakly interacting waves
can be reached [14] in terms of the kinetic equation (KE)
shown below for the continuous limit kL � 1,

∂n(k, t)
/
∂t = St(k, t) , (33a)

for the spectra n(k, t) which are the simultaneous pair
correlation functions, defined by

〈b(k, t)b∗(k′, t)〉 =
2π

L
δ(k − k′)n(k, t) , (33b)

where 〈. . .〉 stands for proper (ensemble, etc.) averaging.
In the classical limit [? ], when the occupation numbers
of Bose particles N(k, t) � 1, n(k, t) = ~N(k, t), the
collision integral St(k, t) can be found in various ways [1,
4, 14], including the Golden Rule of quantum mechanics.
For the 3 ↔ 3 process of KW scattering, described by
the motion Eq. (28):

St3↔3(k) =
π

12

∫∫∫∫∫ ∣∣∣W 3,4,5
k,1,2

∣∣∣2 δ 3,4,5
k,1,2 δ

(
ΛΩ 3,4,5

k,1,2

)
×
(
n−1
k + n−1

1 + n−1
2 − n

−1
3 − n

−1
4 − n

−1
5

)
×nkn1n2n3n4n5 dk1 dk2 dk3 dk4 dk5 . (33c)

KE (33) conserves the total number of (quasi)-particles
N and the total (bare) energy of the system ΛE, defined
respectively as follows:

N ≡
∫
nk dk ,

ΛE ≡
∫

Λωknk dk . (34)

KE (33) has a Rayleigh-Jeans solution,

nT(k) =
T

~ Λωk + µ
, (35)

which corresponds to thermodynamic equilibrium of
KWs with temperature T and chemical potential µ.
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In various wave systems, including the KWs described
by KE (33a), there also exist flux-equilibrium solutions,
nE(k) and nN(k), with constant k-space fluxes of energy
and particles respectively. The corresponding solution for
nE(k) was suggested in the KS-paper [1] under an (unver-
ified) assumption of locality of the E-flux. In Sec. II C,
we will analyze this assumption in the framework of the
derived KE (33), and will prove that it is wrong. The
N -flux solution nN(k) was discussed in [3]. In Sec. II C,
we will show that this spectrum is marginally nonlocal,
which means that it can be “fixed” by a logarithmic cor-
rection.

B. Phenomenology of the E- and N-flux
equilibrium solutions for KW turbulence

Conservation laws (34) for E and N allow one to intro-
duce the continuity equations for nk and ΛEk ≡ Λωknk
and their corresponding fluxes in the k-space, µk and εk:

∂ nk
∂t

+
∂µk
∂k

= 0 , µk ≡ −
∫ k

0

St3↔3(k) dk , (36a)

∂ ΛEk
∂t

+
∂εk
∂k

= 0 , εk ≡ −
∫ k

0

Λωk St3↔3(k) dk . (36b)

In scale-invariant systems, when the frequency and in-
teraction coefficients are homogeneous functions of wave
vectors, Eqs. (36) allow one to guess the scale-invariant
flux equilibrium solutions of KE (33) [14]:

nE(k) = AEk
−xE , nN(k) = ANk

−xN , (37)

Here AE and AN are some dimensional constants. Scaling
exponents xN and xE can be found in the case of local-
ity of the N - and E-fluxes, i.e. when the integrals over
k1, . . .k5 in Eqs. (36) and (33c) converge. In this case,
the leading contribution to these integrals originate from
regions where k1 ∼ k2 ∼ k3 ∼ k4 ∼ k5 ∼ k and thus, the
fluxes (36) can be estimated as follows:

µk ' k5[W(k, k, k|k, k, k)]2n5
N(k)

/
ωk , (38a)

εk ' k5[W(k, k, k|k, k, k)]2n5
N(k). (38b)

Stationarity of solutions of Eqs. (36) require constancy
of their respective fluxes: i.e. µk and εk should be k-
independent. Together with Eqs. (38) this allows one to
find the scaling exponents in Eq. (37).

Our formulation (33) of KW kinetics belongs to the
scale-invariant class [? ]:

Λωk ∝ k 2 , and for ∀ η
W(ηk, ηk1, ηk2 | ηk3, ηk4, ηk5)

= η6W(k,k1,k2 |k3,k4,k5) .

Estimating W(k, k, k|k, k, k) ' k6/κ and Λωk ' κΛk2 in
Eqs. (38), one gets for N -flux spectrum [3]:

nN(k) '
(
µκ
/

Λ
)1/5

k−3 , xN = 3 , (39a)

and for E-flux KS-spectrum [1]:

nE(k) '
(
εκ2
)1/5

k−17/5 , xE = 17/5 . (39b)

C. Non-locality of the N- and E-fluxes by
3↔ 3-scattering

Consider the 3↔ 3 collision term (33c) for KWs with

the interaction amplitude W 4,5,6
1,2,3 . Note that in (33c)∫

dkj are one-dimensional integrals
∫∞
−∞ dkj . Let us ex-

amine the “infrared” (IR) region ( k5 � k, k1, k2, k3, k4 )
in the integral (33c), taking into account the asymp-
totics (31), and observing that the expression

δ 3,4,5
k,1,2 δ

(Λ
Ω̃ 3,4,5
k,1,2

)(
n−1
k + n−1

1 + n−1
2 − n

−1
3 − n

−1
4 − n

−1
5

)
× nk n1 n2 n3 n4 n5

→ δ 3,4
k,1,2δ

(Λ
Ω 3,4
k,1,2

)(
n−1
k + n−1

1 + n−1
2 − n

−1
3 − n

−1
4

)
× nk n1 n2 n3 n4 n5 ∼ n5 ∼ k−x5 .

Thus the integral over k5 in the IR region can be factor-
ized and written as follows:

2

∫
0

k2
5 n(k5) dk5 ∝ 2

∫
1/`

k2−x
5 dk5 . (40)

The factor 2 here originates from the symmetry of the
integration area and evenness of the integrand:

∫∞
−∞ =

2
∫∞

0
. The lower limit 0 in this expression should be

replaced by the smallest wave number where the assumed
scaling behavior (37) holds, and moreover, it depends
on the particular way the wave system is forced. For
example, this cutoff wave number could be 1/`, where ` is
the mean inter-vortex separation `, at which one expects
a cutoff of the wave spectrum. The crucial assumption
of locality, under which both the E-flux (KS) and the
N -flux spectra were obtained, implies that the integral
(40) is independent of this cutoff in the limit ` → 0.
Clearly, integral (40) depends on the IR-cutoff if x ≥ 3,
which is the case for both the E-flux (KS) and the N -flux
spectra (39). Note that all other integrals over k1, k2, k3

and k4 in (33c) diverge exactly in the same manner as
the integral over k5, i.e. each of them leads to expression
(40).

Even stronger IR divergence occurs when two wave
numbers on the same side of the sextet (e.g. k1 and k2,
or k3 and k4, etc.) are small. In this case, integrations
over both of the small wave numbers will lead to the
same contribution, namely integral (40), i.e. the result
will be the integral (40) squared. This appears to be the
strongest IR singularity, and the resulting behavior of the
collision integral Eq. (33c) is

St
IR

∼

(∫
1/`

k2−x
5 dk5

)2

. (41)

When two wave numbers from the opposite sides of the
sextet (e.g. k2 and k5) tend to zero simultaneously, we
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get an extra small factor in the integrand because in this
case

(
n−1
k + n−1

1 − n−1
3 − n−1

4

)
→ 0. As a result we

get IR convergence in this range. One can also show IR
convergence when two wave numbers from one side and
one on the other side of the sextet are small (the resulting
integral is IR convergent for x < 9/2).

Divergence of integrals in Eq. (33c) means that both
spectra (39) with xN = 3 and xE = 17/5 > 3, obtained
under opposite assumption of the convergence of these
integrals in the limit ` → ∞ are not solutions of the
3↔ 3-KE (33c) and thus cannot be realized in Nature.
One should find another self-consistent solution of this
KE. Note, that the proof of divergence at the IR lim-
its is sufficient for discarding the spectra under the test,
whereas proving convergence would require considering
all the singular limits including the ultra-violet (UV)
ranges. However, we have examined these limits, too.
At the UV end we have obtained convergence for the KS
and for the inverse cascade spectra. Thus the most dan-
gerous singularity appears to be in the IR range, when
two wave numbers from the same side of the wave sextet
are small simultaneously.

D. Logarithmic corrections for the N-flux
spectrum (39a)

Note that for the N -flux spectrum (39a) nN(k) ∝ k−3,
that the integrals (40) and (41) diverge only logarithmi-
cally. The same situation happens, e.g. for the direct en-
strophy cascade in two-dimensional turbulence: dimen-
sional reasoning leads to the Kraichnan-1967 [15] turbu-
lent energy spectrum

E(k) ∝ k−3 (42a)

for which the integral for the enstrophy flux diverges log-
arithmically. Using a simple argument of constancy of
the enstrophy flux, Kraichnan suggested [16] a logarith-
mic correction to the spectra

E(k) ∝ k−3 ln−1/3(kl) , (42b)

that permits the enstrophy flux to be k-independent.
Here l is the enstrophy pumping scale.

Using the same arguments, we can substitute in
Eq. (33c), a logarithmically corrected spectrum nN(k) ∝
k−3 ln−x(k`) and find x by the requirement that the re-
sulting N -flux, µk, Eq. (36a) will be k-independent. Hav-
ing in mind that according to Eq. (38a) µk ∝ n5

N, we can
guess that x = 1/5. Then, the divergent integral (40) will

be ∝ ln4/5(k`), while the remaining convergent integrals

in Eq. (33c) will be∝ ln−4/5(k`). Therefore, the resulting
flux µk will be k-independent as it should be [16]. So, our
prediction is that instead of a non-local spectrum (39a)
we have a slightly steeper log-corrected spectrum

nN(k) '
(
µκ
)1/5

k3 ln1/5(k `)
. (43)

The difference is not large, but the underlying physics
must be correct; as one says on the Odessa market: “We
can argue the price, but the weight must be correct”.

Conclusions

In this paper, we have derived an effective theory of
KW turbulence based on asymptotic expansions of the
Biot-Savart model in powers of small 1/Λ and small non-
linearity, by applying a canonical transformation elim-
inating non-resonant low-order (quadric) interactions,
and by using the standard Wave Turbulence approach
based on random phases [14]. In doing so, we have fixed
errors arising from the previous derivations, particularly
the latest one by KS [2], by taking into account pre-
viously omitted and important contributions to the ef-
fective six-wave interaction coefficient. We have exam-
ined the resulting six-wave interaction coefficient in sev-
eral asymptotic limits when one or several wave numbers
are in the IR range. These limits are summarized in a
remarkably simple expression (31). This allowed us to
achieve three goals:

• To derive a simple effective model for KW turbu-
lence expressed in the Local Nonlinear Equation
(8). In addition to small 1/Λ and the weak nonlin-
earity, this model relies on the fact that our findings
show, for dynamically relevant wave sextets, the in-
teraction coefficient is a simple product of the six
wave numbers, Eq. (31). For weak nonlinearities,
the LNE is isomorphic to the previously suggested
TLIA model [13].

• To examine the locality of the E-flux (KS) and the
N -flux spectra. We found that the KS spectrum is
non-local and therefore cannot be realized in Na-
ture.

• TheN -flux spectrum is found to be marginally non-
local and could be “rescued” by a logarithmic cor-
rection, which we constructed following a qualita-
tive Kraichnan approach. However, it remains to
be seen if such a spectrum can be realized in Quan-
tum Turbulence, because, as it was shown in [17],
the vortex line reconnections can generate only the
forward cascade and not the inverse one (i.e. the re-
connections produce an effectively large-scale wave
forcing).

Finally we will discuss the numerical studies of KW
turbulence. The earliest numerics by KS were reported in
[1]. They claimed that they observed the KS spectrum.
At the same time they gave a value of the E-flux con-
stant ∼ 10−5 which is unusually small. We have already
mentioned that this work failed to take into account sev-
eral important contributions to the effective interaction
coefficient, and thus these numerical results cannot be
trusted. In particular, we showed that their interaction
coefficient must have contained a spurious dependence on
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the scale ` which makes the numerical results arbitrary
and dependent on the choice of such a cutoff. In addi-
tion, even if the interaction coefficient was correct, the
Monte-Carlo method used by KS is a rather dangerous
tool when one deals with slowly divergent integrals (in
this case

∫
0
x−7/5 dx).

On the other hand, recent numerical simulations of
the TLIA model also reported agreement with the KS
scaling (as well as an agreement with the inverse cascade
scaling) [13]. How can one explain this now when we
showed analytically that the KS spectrum is non-local?
It turns out that the correct KW spectrum, which takes
into account the non-local interactions with long KW’s,
has an index which is close (but not equal) to the KS
index, and it is also consistent with the data of [13]. We
will report these results in a separate publication.
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Appendix A: Bare interactions

1. Actual calculation of the bare interaction
coefficients

The geometrical constraint of a small amplitude per-
turbation can be expressed in terms of a parameter

ε(z1, z2) = |w(z1)− w(z2)|/|z1 − z2| � 1. (A1)

This allows one to expand Hamiltonian (5) in powers of
ε and to re-write it in terms consisting of the number of
wave interactions, according to Eq. (18). KS found the
exact expressions for H2, H4 and H6 [1]:

H2 =
κ

8π

∫
dz1dz2

|z1 − z2|

[
2Re

(
w

′∗(z1)w
′
(z2)

)
− ε2

]
,(A2)

H4 =
κ

32π

∫
dz1dz2

|z1 − z2|

[
3ε4 − 4ε2Re

(
w

′∗(z1)w
′
(z2)

)]
,

H6 =
κ

64π

∫
dz1dz2

|z1 − z2|

[
6ε4Re

(
w

′∗(z1)w
′
(z2)

)
− 5ε6

]
.

The explicit calculation of these integrals was ana-
lytically done in [13], by evaluating the terms in (A2)
in Fourier space, and then expressing each integral as
various cosine expressions [1]. Hamiltonian (A2) can
be expressed in terms of a wave representation variable
ak = a(k, t) by applying a Fourier transform (19) in the
variables z1 and z2, (for details see [1, 13]). The result
is given by Eqs. (20), in which the cosine expressions for
ωk, T 34

12 and W 456
123 were done in [1]. In our notations they

are

ωk =
κ

2π
[A−B] , T 34

12 =
1

4π
[6D − E] , W 456

123 =
9

4πκ
[3P − 5Q] , where (A3)

A =

∫ ∞
a0

dz−
z−

k2Ck , B =

∫ ∞
a0

dz−
z3
−

[
1− Ck

]
, D =

∫ ∞
a0

dz−
z5
−

[
1− C1 − C2 − C3 − C4 + C3

2 + C43 + C4
2

]
,

E =

∫ ∞
a0

dz−
z3
−

[
k1k4

(
C4 + C1 − C43 − C4

2

)
+ k1k3

(
C3 + C1 − C43 − C3

2

)
+ k3k2

(
C3 + C2 − C43 − C3

1

)
+ k4k2

(
C4 + C2 − C43 − C3

2

) ]
, (A4)

P =

∫ ∞
a0

dz−
z5
−
k6k2[C2 − C5

2 − C23 + C5
23 − C4

2 + C45
2 + C4

23 − C6
1 + C6 − C56 − C6

3 + C56
3 − C46 + C456 + C46

3 − C12] ,

Q =

∫ ∞
a0

dz−
z7
−

[
1− C4 − C1 + C4

1 − C6 + C46 + C6
1 − C46

1 − C5 + C45 + C5
1 − C45

1 + C65 − C456 − C56
1 + C23

− C3 + C4
3 + C13 − C4

13 + C6
3 − C46

3 − C6
13 + C5

2 + C5
3 − C45

3 − C5
13 + C6

2 − C56
3 + C12 + C4

2 − C2

]
.

Here the variable, z− = |z1 − z2| and the expressions C, are cosine functions such that C1 = cos(k1z−), C4
1 =
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cos((k4 − k1)z−), C45
1 = cos((k4 + k5 − k1)z−), C45

12 =
cos((k4 + k5 − k1 − k2)z−) and so on. The lower limit
of integration a0 is the induced cutoff of the vortex core
radius a0 < |z1 − z2|.

The trick used for explicit calculation of the analyt-
ical form of these integrals was suggested and used in
[13]. First one should integrate by parts all the co-
sine integrals, so they can be expressed in the form of∫ ∞
a0

cos(z)

z
dz. Then, one can use a cosine identity for

this integral [19],∫ ∞
a0

cos(z)

z
dz = −γ − ln(a0)−

∫ a0

0

cos(z)− 1

z
dz (A5)

= −γ − ln(a0)−
∞∑
k=1

(
−a2

0

)k
2k (2k)!

= −γ − ln(|a0|) +O(a2
0) ,

where γ = 0.5772 . . . is the Euler Constant. Therefore,
in the limit of a small vortex core radius a0, we can ne-
glect terms of order ∼ a2

0 and higher. For example, let’s
consider the following general cosine expression that can

be found in Eqs. (A4):

∫ ∞
a0

z−3 cos(Kz)dz, where K is

an expression that involves a linear combination of wave
numbers, i.e. K = k1 − k4. Therefore, integration by
parts will yield the following result for this integral:∫ ∞

a0

cos(Kz)
z3

dz =

[
−cos(Kz)

2z2

]∞
a0

+

[
K sin(Kz)

2z

]∞
a0

−K
2

∫ ∞
a0

cos(Kz)
z

dz

=
cos(Ka0)

2a2
0

− K sin(Ka0)

2a0
− K

2

2

∫ ∞
Ka0

cos(y)

y
dy .

We then expand cos(Ka0) and sin(Ka0) in powers of a0,
and apply the cosine formula (A5) for the last integral,
where in the last step we have also changed integration
variables: y = Kz. The final expression is then

∞∫
a0

cos(Kz)
z3

dz =
1

2a2
0

− 3K2

4
+
K2

2
[γ + ln(|Ka0|)] +O(a2

0) .

By applying a similar procedure to the other cosine in-
tegrals, we find that all terms of negative powers of a0,
(that will diverge in the limit a0 → 0) actually cancel in
the final expression for each interaction coefficient. Ap-
plying this strategy to all interaction cofficients, we get
the following analytical evaluation of the Hamiltonian
functions [13]:

Λ0 = ln(`/a0) ,

ωk =
κk2

4π

[
Λ0 − γ −

3

2
− ln(k`)

]
, (A6)

T 34
12 =

1

16π

[
k1k2k3k4(1 + 4γ − 4Λ0)−F 3,4

1,2

]
,

W 456
123 =

9

32πκ

[
k1k2k3k4k5k6(1− 4γ + 4Λ0)− G 4,5,6

1,2,3

]
.

Explicit equations for F34
12 and G456

123 are given below in
Appendices A 2 and A 3. In the main text we introduced
Λ ≡ Λ0 − γ − 3/2. Writing Λ = ln(`/a), we see that
a = a0e

γ+3/2 ' 8a0.

2. Bare 4-wave interaction function F 3,4
1,2

A rather cumbersome calculation, presented above, re-
sults in an explicit equation for the 4-wave interaction
function F 3,4

1,2 in Eqs. (A6) and (22b). Function F 3,4
1,2 is a

symmetrical version of F 3,4
1,2: F 3,4

1,2 ≡
{
F 3,4

1,2

}
S

where the

operator {. . . }S stands for the symmetrization k1 ↔ k2,

k3 ↔ k4 and {k1,k2} ↔ {k3,k4}. In its turn F 3,4
1,2 is

defined as following:

F 3,4
1,2 ≡

∑
K∈K1

K4 ln(|K|`) (A7a)

+2
∑
i,j

∑
K∈Kij

kikj K2 ln(|K|`) .

The
∑
i,j denotes sum of four terms with (i, j) ={

(4, 1), (3, 1), (3, 2), (4, 2)
}

, K is either a single wave vec-
tor or linear combination of wave-vectors that belong to
one of the following sets:

K1 =
{−[1],− [2],− [3],− [4],+ [32],+ [43],+ [42]

}
,

K41 =
{

+[4],+ [1],− [43],− [42]
}
, (A7b)

K31 =
{

+[3],+ [1],− [43],− [32]
}
,

K32 =
{

+[3],+ [2],− [43],− [31]
}
,

K42 =
{

+[4],+ [2],− [43],− [41]
}
.

Here we used the following shorthand notations with
α , β , γ = 1, 2, 3, 4: [α] ≡ kα , [β ] ≡ −kβ , [αβ ] ≡
kα − kβ , [αγ ] ≡ kα + kγ , [βγ ] ≡ −kβ − kγ , and +

or − signs before [. . . ] should be understood as prefac-
tors +1 or −1 in the corresponding term in the sum. For
example:

K4 ln(|K|`) for K ∈ {−[1]} is − k4
1 ln(k1`) ,

K4 ln(|K|`) for K ∈ {+[42]} is + (k4 − k2)4 ln(|k4 − k2|`) ,
kikj K2 ln(|K|`) for i = 4, j = 1,

K ∈ {−[43]} is − k4k1 (k4 + k3)4 ln(|k4 + k3|`) .

3. Bare 6-wave interaction function G 4,5,6
1,2,3

Function G 4,5,6
1,2,3 ≡

{
G 4,5,6

1,2,3

}
S
. The operator {. . . }S

stands for the symmetrization k1 ↔ k2 ↔ k3, k4 ↔
k5 ↔ k6 and {k1,k2,k3} ↔ {k4,k5,k6}, and G 4,5,6

1,2,3 is
defined as following:
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G 4,5,6
1,2,3 ≡

∑
K∈K3

k6k2K4 ln(|K|`)

+
1

18

∑
K∈K4

K 6 ln(|K|`) , (A8a)

where

K3 =
{

+[2],−[52],−[23],+[523],−[42],+[45
2 ],+[423],−[61],+[6],

−[56],−[63],+[56
3 ],−[46],+[456],+[46

3 ],−[12]
}
, (A8b)

K4 =
{
−[4],−[1],+[41],−[6],+[46],+[61],−[46

1 ],−[5],

+[45],+[51],−[45
1 ],+[65],−[456],−[56

1 ],+[23],−[3],
+[43],+[13],−[413],+[63],−[46

3 ],−[613],+[52],+[53],

−[45
3 ],−[513],+[62],−[65

3 ],+[12],+[42],−[2]
}
. (A8c)

Appendix B: Effective six-KW interaction coefficient

1. Absence of 6-wave dynamics in LIA

According to Eqs. (24d) and (24e), the expression for
ΛW̃ 4,5,6

1,2,3 is given by

ΛW̃ 4,5,6
1,2,3 = ΛW 4,5,6

1,2,3 + ΛQ4,5,6
1,2,3 , (B1a)

ΛQ4,5,6
1,2,3 =

1

8

3∑
i,j,m= 1
i 6=j 6=m

6∑
p,q,r= 4
p 6=q 6=r

Λq p,q,ri,j,m , (B1b)

Λq p,q,ri,j,m ≡
ΛT j,mr, j+m−r

ΛT q, pi, p+q−i
ΛΩ r, j+m−r

j,m

+
ΛT q, rm, q+r−m

ΛT i, jp, i+j−p
ΛΩm, q+r−m

q, r

, (B1c)

where ΛΩ
3,4
1,2 ≡ Λω1 + Λω2 − Λω3 − Λω4. We want to

compute this equation on the LIA manifold (30). To do
this we express two wave vectors in terms of the other
four [? ] using the LIA manifold constraint (30):

k1 =
(k3 − k) (k2 − k3)

k + k2 − k3 − k5
+ k5 , (B2a)

k4 =
(k3 − k) (k2 − k3)

k + k2 − k3 − k5
+ k + k2 − k3 . (B2b)

Then ΛW̃ 4,5,6
1,2,3 is easily simplified to zero with the help of

Mathematica. This gives an independent verification of
the validity of our initial Eqs. (24) for full interaction cof-

ficient ΛW̃ 4,5,6
1,2,3 which is needed for the calculations of the

O(1) contribution 1W̃ 4,5,6
1,2,3. Another way to see the can-

celation is to use the Zakharov-Schulman variables [18]
that parameterise the LIA manifold (30).

2. Exact expression for 1W̃

We get expressions for 1
1Q, 1

2Q and 1
3Q, introduced by

Eqs. (27), from Eqs. (24d) and (24e). Namely:

1
1Q

4,5,6
1,2,3 =

1

8

3∑
i,j,m= 1
i 6=j 6=m

6∑
p,q,r= 4
p 6=q 6=r

[
ΛT j,mr, j+m−r

1T q, pi, p+q−i
ΛΩ r, j+m−r

j,m

+
ΛT q, rm, q+r−m

1T i, jp, i+j−p
ΛΩm, q+r−m

q, r

]
, (B3a)

1
2Q

4,5,6
1,2,3 =

1

8

3∑
i,j,m= 1
i 6=j 6=m

6∑
p,q,r= 4
p 6=q 6=r

[
1T j, kr, j+k−r

ΛT q, pi, p+q−i
ΛΩ r, j+m−r

j,m

+
1T q, rm, q+r−m

ΛT i, jp, i+j−p
ΛΩm, q+r−m

q, r

]
, (B3b)

1
3Q

4,5,6
1,2,3 =

1

8

3∑
i,j,m= 1
i6=j 6=m

6∑
p,q,r= 4
p 6=q 6=r

[
ΛT j,mr, j+m−r

ΛT q, pi, p+q−i(
ΛΩ r, j+m−r

j,m

)2 · 1Ω r, j+m−r
j,m +

ΛT q, rm, q+r−m
ΛT i, jp, i+j−p(

ΛΩm, q+r−m
q, r

)2 · 1Ωm, q+r−m
q, r

]
. (B3c)

Again, using Mathematica we substitute Eqs. (B2) into Eqs. (B3a) – (B3c). Clearly, the resulting equations are



14

too cumbersome to be presented here. But we will ana-
lyze them in various limiting cases, see below.

3. Derivation of Eq. (29b) for 1S̃ 3,4,5
k,1,2

First of all, let us find a parametrization for the full
resonant manifold, by calculation of the correction to the
LIA parametrization (B2), namely

k1 = Λk1 + 1k1 , k4 = Λk4 + 1k4 , (B4)

where Λk1 and Λk4 are given by the right-hand sides of
Eqs. (B2) respectively. Corrections 1k1 and 1k4 are found
so that the resonances in k, Eq. (30a), and (full) ω are
satisfied. The resonances in k fixes 1k1 = 1k4. Then the
ω-resonance in the leading order in 1/Λ gives

Ω̃4,5,6
1,2,3 = 1k1

∂Λω1

∂k1
− 1k4

∂Λω4

∂k4

+ 1Ω̃4,5,6
1,2,3 +O(Λ−1) = 0 . (B5)

Thus

1k1 = 1k4 ≈
2π

Λκ

1Ω̃4,5,6
1,2,3

(k4 − k1)
. (B6)

This allows us to write down the contribution of ΛW̃ from
the deviation of the LIA resonant surface:

1S̃4,5,6
1,2,3 = 1k1

∂ ΛW̃ 4,5,6
1,2,3

∂k1
+ 1k4

∂ ΛW̃ 4,5,6
1,2,3

∂k1
+O(Λ−1)

≈ 2π

Λκ
1Ω̃4,5,6

1,2,3

(∂4 + ∂1) ΛW̃ 4,5,6
1,2,3

(k4 − k1)
, (B7)

with ∂j(·) = ∂j(·)/∂kj . It is obvious that instead of k1

and k4 we could use parametrizations in terms of other
pairs ki and kj with i = 1, 2 or 3 and j = 4, 5 or 6. This
enables us to write a fully symmetric expression for 1S:

1S̃4,5,6
1,2,3 =

2π

9Λκ
1Ω̃4,5,6

1,2,3

∑
i={1,2,3}
j={4,5,6}

(∂j + ∂i)
ΛW̃ 4,5,6

1,2,3

(kj − ki)
. (B8)

This is the required expression Eq. (29b).

4. Analytical expression for W on the LIA
manifold when two wave numbers are small

Let us put together the coefficients to the interaction
coefficient W 3,4,5

k,1,2 given in (27a), (27b), (27c), (23c) and

(29), and use in these expressions the formulae obtained
in the previous appendices and the parametrization of
the LIA surface (B2). Using Mathematica, and Taylor

expanding W 3,4,5
k,1,2 with respect to one wave number, e.g.

k5, we obtain a remarkably simple result, - expression
(31).

Now we will consider the asymptotical limit when two
of the wave numbers, say k2 and k5 (let them be on
the opposite sides of the resonance conditions), are much
less than the other wave numbers in the sextet. Using
Mathematica and Taylor expanding W 3,4,5

k,1,2 with respect
to two wave numbers k2 and k5, we have

lim
k2 → 0
k5 → 0

W 3,4,5
k,1,2 = − 3

4πκ
k2k2k

2
3k5 , (B9)

Simultaneously, see Eq. (B2):

lim
k2 → 0
k5 → 0

k1 → k3 , lim
k2 → 0
k5 → 0

k4 → k . (B10)

Therefore, (B9) coincides with (31). Note that this was
not obvious a priori, because formally (31) was obtained
when k5 is much less than the rest of the wave numbers,
including k2.

For reference, we provide expressions for the different
contributions to the interaction coefficient W 3,4,5

k,1,2 given

in Eqs. (27) and (29). For k2,k5 → 0:
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1W → − 3

4πκ
k2k2k

2
3k5

[
+

3

2
ln(k`)− 1

24

(
49− (1− x)2(7 + 10x+ 7x2)

x2
ln |1− x|

+ 2x(12 + 7x) ln |x| − 7
(1 + x)4

x2
ln |1 + x|

)]
, (B11a)

1
1Q = 1

2Q → − 3

4πκ
k2k2k

2
3k5

[
− 3

2
ln(k`) +

1

48

(
59− (1− x)2(9 + 10x+ 9x2)

x2
ln |1− x|

+ 2
(
9x2 + 14x− 6 +

2

1− x
)

ln |x| − 9
(1 + x)4

x2
ln |1 + x|

)]
, (B11b)

1
3Q → − 3

4πκ
k2k2k

2
3k5

[
+

3

2
ln(k`) +

1

48

(
7 +

(1− x)2
(
1 + x2

)
x2

ln |1− x|

+ 2
1− 5x+ x3

1− x
ln |x|+ (1 + x)4

x2
ln |1 + x|

)]
, (B11c)

1S → − 3

4πκ
k2k2k

2
3k5

[
1

6

1 + x

1− x
ln |x|

]
, (B11d)

1W̃ → − 3

4πκ
k2k2k

2
3k5

[
1− 1

6

1 + x

1− x
ln |x|

]
, x ≡ k3/k . (B11e)

Another possibility is for two small wave numbers to be
on the same side of the sextet. We have checked that on
the resonant manifold, this also leads to (31).

5. Analytical expression for W on the LIA
manifold when four wave numbers are small

Now let us, using Mathematica, calculate the asymp-
totic behavior of W when four wave vectors are smaller
than the other two; on the LIA manifold this automat-
ically simplifies to k1, k2, k3, k5 � k, k4 (remember that
on the LIA manifold k1 and k4 are expressed in terms of
the other wave numbers using Eq. (B2), thus from (B10))
we have

lim
k 1,2,3,5→ 0

W 3,4,5
k,1,2 = − 3

4πκ
k2k2k

2
3k5. (B12)

Again, we have got an expression which coincides with
(31). We emphasize that this was not obvious a priori,
because formally (31) was obtained when k5 is much less
than the rest of the wave numbers, including k1, k2, k3.

Therefore we conclude that the expression (31) is valid
when k5 is much less than just one other wave number in

the sextet, say k, and not only when it is much less than
all of the remaining wave numbers.

For a reference, we give the term by term results for
the limit k1, k2, k3, k5 � k, k4:

1W → − 3

4πκ
k2k2k

2
3k5

[
−1 +

3

2
ln(k`) + 0

]
,

1
1Q → − 3

4πκ
k2k2k

2
3k5

[
+

1

2
− 3

2
ln(k`)− 1

6
ln
k3

k

]
,

1
2Q → − 3

4πκ
k2k2k

2
3k5

[
+

1

2
− 3

2
ln(k`)− 1

6
ln
k3

k

]
,

1
3Q → − 3

4πκ
k2k2k

2
3k5

[
+1 +

3

2
ln(k`) +

1

6
ln
k3

k

]
,

1S → − 3

4πκ
k2k2k

2
3k5

[
0 + 0 +

1

6
ln
k3

k

]
.

The sum of this contributions is very simple:

1W̃ → − 3

4πκ
k2k2k

2
3k5 [ +1 + 0 + 0 ] .
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