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We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quan-
tized vortices in superfluids, and address the controversy concerning the energy spectrum that is
associated with these excitations. Finding the correct energy spectrum is important because Kelvin
waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temper-
atures. In this paper, we show analytically that the solution proposed in Ref. [1] enjoys existence,
uniqueness and regularity of the pre-factor. Furthermore, we present numerical results of the dy-
namical equation that describes to leading order the non-local regime of the Kelvin wave dynamics.
We compare our findings with the analytical results from the proposed local and non-local theories
for Kelvin wave dynamics and show an agreement with the non-local predictions. Accordingly, the
spectrum proposed in Ref. [1] should be used in future theories of quantum turbulence. Finally,
for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuat-
ing dissipative scale, which we interpreted as a finite-size effect characteristic to mesoscopic wave
turbulence.

PACS numbers: 67.25.dk,47.37.+q,67.10.Fj

I. INTRODUCTION

When sufficiently large waves propagate through a
medium, non-linear interactions cause an energy transfer
between different scales; the energy that is introduced
typically in a narrow band of wavelength is redistributed
to waves of different wavelengths. Starting in the 1960s
with oceanographers and meteorologists, ‘weak wave tur-
bulence’ has now become a standard theory to explain
the dynamical and statistical properties of an ensemble
of weakly nonlinear interacting waves [2]. Thanks to the
generality of its formulation, this theory is an interdis-
ciplinary subject; it has been implemented in situations
ranging from Alfvén waves in solar winds, ocean swells
on a stormy sea, quantum waves in Bose-Einstein con-
densates, Rossby waves in the atmospheres of rotating
planets as well as in the thunder-like sound produced by
vibrating thin elastic sheets, etc. Up-to-date discussions
of the current state of wave turbulence are available for
example in a recent book [3] and in reviews [4, 5]; these
sources also contain extensive lists of references.

Quantum turbulence is the study of turbulent be-
havior in zero temperature superfluids such as helium
II [6, 18, 19]. One of the key properties of quantum tur-
bulence is that it comprises of an inviscid flow which
permits energy to reach scales far smaller than achieved
in classical turbulence. At large scales, quantum turbu-
lence shows a great similarity to classical turbulence -
with the polarization of vortex bundles acting like large
scale eddies. However, at small scales the analogy begins
to break down. In the absence of viscosity in superflu-
ids and at very low temperatures where thermal excita-
tions (mutual friction) can be neglected, there is no clear
dissipation mechanism that cuts off the energy cascade
to very small lengthscales. Therefore, unlike in classical

turbulence where viscous effects dissipate the energy, it
is believed that for superfluids the energy is transferred
to propagating waves on quantized vortex lines that are
forced by vortex reconnections. Note that these so-called
“Kelvin waves” were originally introduced in 1880 in the
context of the classical Rankine vortex model [13]. The
Kelvin waves then interact allowing for energy to be
transferred to higher frequency Kelvin waves until the
wave frequency is sufficient for the excitation of phonons
and thus the degradation of energy into heat [18].

Because of its importance in superfluid turbulence and
the growing experimental capabilities in this field [6–8],
there has recently been a renewed interest in the statisti-
cal physics of waves propagating on a vortex line [9–12].
A complete understanding of the statistical behavior of
Kelvin waves is therefore crucial in order to develop a
theory of superfluid turbulence. Until recently, Kelvin
wave interactions were thought to be a local process -
only Kelvin waves of similar wave numbers interact with
each other thus forming the range of a local energy cas-
cade [11]. The Kelvin wave cascade was described us-
ing wave turbulence theory [2, 3] for weakly interact-
ing waves, resulting in the formation of a kinetic wave
equation describing 3↔ 3 Kelvin wave interactions [11].
However in Ref. [12], the locality assumption used in
Ref. [11] was checked and was shown to be violated for
local 3 ↔ 3 Kelvin wave interactions. This invalidated
the local theory, and a non-local theory was proposed [1]
resulting in 1 ↔ 3 Kelvin wave interactions. This has
prompted a lively debate about the correct spectrum of
Kelvin waves [26, 27, 29, 30, 32].
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A. Physical background

It is now recognized that the typical turbulent state of
a superfluid consists of a complex tangle of quantized vor-
tex lines [14] which can be modelled by the Biot-Savart
equation [18]

dr

dt
=

κ

4π

∫
(s− r)× ds
|r − s|3

. (1)

This equation contains a singularity as s→ r, and hence
the model are postulated by introducing a cut-off in the
integration: a0 < |r − s|, where a0 is interpreted as the
core radius of the vortices [22, 23]. Here, κ = 2π~/M
is the quantum of circulation with M being m4, mass of
4He atom (if the superfluid is 3He then M is the mass of
two atoms, 2m3).

An important step in studying Kelvin wave turbulence
was done by Sonin [22] and later by Svistunov [23] who
found a Hamiltonian form of the Biot-Savart Eq. (1) for
a straight vortex line aligned in the z direction, e.g. line
(x, y) = (00). Perturbing the line by small disturbances
in the (x, y)-plane,

w(z, t) = x(z, t) + iy(z, t), (2a)

one writes:

iκ
∂w

∂t
=

δH

δw∗
, (2b)

where δ(. . . )/δw∗ is the functional derivative of (. . . ) and
the superscript “ ∗ ” denotes complex conjugation. The
Hamiltonian for the Biot-Savart equation H is the energy
of the system [16, 17]:

H =
κ2

4π

∫
1 + <(w′∗(z1)w′(z2))√

(z1 − z2)2 + |w(z1)− w(z2)|2
dz1dz2 . (3)

Here we have used the notation w′(z) = dw/dz.
Like in most of the examples of wave turbulence

mentioned in the introduction, the theory for Kelvin
waves starts by writing down a Hamiltonian equation for
the complex canonical wave amplitudes ak(t) and a∗k(t)
which are classical analogs of the creation and annihila-
tion Bose operators in quantum mechanics [16, 17].

Consider an isolated straight vortex line on a periodic
domain of length L. One can write [2, 3]

i
dak(t)

dt
=

∂H
∂a∗k(t)

, (4)

where w(z, t) = κ−1/2
∑

k ak(t) exp(ik · z). The new
Hamiltonian H{a, a∗} ≡ H{w,w∗}/L is the density of
the old one and is a function of all ak(t) and a∗k(t) taken
at the same time.

For small Kelvin wave amplitudes (inclination angles)
the Hamiltonian can be expanded with respect of ak , a

∗
k.

The explicit form of H, Eq. (3), dictates an expansion of
H in ak and a∗k with even powers only,

H = H2 +Hint , Hint = H4 +H6 + . . . (5a)

The first term

H2 =
∑
k

ωk ak a
∗
k , (5b)

describes free propagation of Kelvin waves with a fre-
quency ωk. In turn, ωk should be expanded in inverse
powers of the large parameter Λ:

ωk ' Λωk +1 ωk ,
Λωk =

κΛ

4π
k2 , 1ωk = −

κ ln
(
k`
)

4π
k2 ,

Λ = ln(`/a) . (5c)

Here a is the vortex line diameter and ` is the mean inter-
vortex distance at which the description of Kelvin waves
propagating along an individual vortex line fails. In typ-
ical experiments Λ, in both 3He and 4He, is between 12
and 15 [8]. It can be shown [11] that the leading approx-
imation in Λ gives no energy exchange between Kelvin
waves and therefore one has to account in H for sublead-
ing terms, zero order in Λ, denoted by the superscript
“1”.

The higher order expansion terms in Hint, H4 and H6,
describe 2↔ 2 and 3↔ 3 scattering of Kelvin waves:

H4 =
1

4

∑
1+2=3+4

T 3,4
1,2 a1a2a

∗
3a
∗
4 , aj ≡ a(kj , t) , (5d)

H6 =
1

36

∑
1+2+3=4+5+6

W 4,5,6
1,2,3 a1a2a3a

∗
4a
∗
5a
∗
6 , (5e)

Equations for the terms of order Λ1 and Λ0 in the inter-
action amplitudes T 3,4

1,2 ≡ T (k1,k2|k3,k4) and W 4,5,5
1,2,3 ≡

W (k1,k2,k3|k4,k5,k6) (denoted as ΛT 3,4
1,2,

1T 3,4
1,2 and

ΛW 4,5,6
1,2,3,

1W 4,5,6
1,2,3 ) were found in Ref. [11] and later con-

firmed in Ref. [12].
On the face of it, the leading term in Hint (i.e. H4)

describes a (2 ↔ 2) scattering; the subleasing term, H6,
is responsible for the (3 ↔ 3) scattering. It was argued,
however, that the (2↔ 2) scattering cannot redistribute
energy between different scales. Therefore the (3 ↔ 3)
scattering becomes the leading interaction responsible for
the inter-scale energy transfers. This does not mean,
however, that the H4 Hamiltonian can be completely
disregarded. Instead, as explained in Refs. [2, 12], in-
effective Hamiltonian (in our case H4) can be eliminated
from the problem by a proper non-linear canonical trans-
formation {a, a∗} ⇒ {b, b∗}. This comes at a price of the
appearance of “correction terms” in the 6-wave mixing
amplitude (which we have denoted with a calligraphic

vertex W, different from W ) in the Hamiltonian H̃6:

H̃ =
∑
k

ωk bk b
∗
k + H̃6 , (6a)

H̃6 =
1

36

∑
1+2+3=4+5+6

W4,5,6
1,2,3 b1b2b3b

∗
4b
∗
5b
∗
6 . (6b)

Note that the 4-wave mixing Hamiltonian has been
eliminated altogether by the canonical transformation
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{a, a∗} ⇒ {b, b∗}. The remnant of this Hamiltonian ap-
pears as an additional contribution to W. There is an
exact relation between these two vertices which is best
represented by a schematic graphic notation as

= + 72{ }
,

W4,5,6
1,2,3 = W 4,5,6

1,2,3 + 72 { T 2/Ω } . (6c)

The 72 additional contributions are schematically indi-
cated as 72{...} since the exact expression is too long
to be written here (one can handle them with a sym-
bolic computation software such as Mathematica). One
observes that, on the one hand, they are 6-wave mixing
terms, but due to their internal structure they can also be
understood as the pairs of 4-wave mixing amplitudes (me-
diated by a Green’s function 1/Ω). In the graph shown
in (6c), with incoming wave vectors k1, k2, k3 starting
from above and outgoing wave vectors k4, k5, k6, the fre-
quency Ω = ω(k1)+ω(k2)−ω(k4)−ω(k1 +k2−k4). The
72 contributions of the type shown in (6c) differ by the
directions of the arrows and by relabeling in k1, k2, k3

and k4, k5, k6 groups.
This understanding provides us with an effective 6-

wave mixing, allowing one to use standard procedure [2,
3] for the statistical description of weak turbulence of
Kelvin waves. It is based on the assumption that the
turbulent dynamics of waves with small enough ampli-
tude is chaotic and creates its own ergodic measure. The
simplifying nature of weak wave turbulence is that, due
to the existence of a small parameter, the statistical de-
scription closes upon itself in terms of the pair correlation
function

nk(t) ≡ L
2π
〈bk(t)b∗k(t)〉 , (7a)

which is also called the “wave action”. Hereafter the
pointed brackets stand for an average over the ergodic
measure. The aim of the theory is to analyze the solu-
tions of the kinetic equation of motion which is typically
expressed as

dnk(t)

dt
= St(k, {nk′(t)}) , (7b)

where term St(k, {nk′(t)}) is so-called collision integral
with an integrand proportional to the square of the ef-
fective interaction amplitude W. This term is a function
of k and a functional of nk′(t) [2, 5].

The main part of the Kelvin wave energy E in the
regime of weak wave turbulence is given by E2 = 〈H2〉,
where H2 is defined by Eq. (5b). Together with Eq. (7a)
this gives

E =
2π

L
∑
k

ωknk =

∞∫
−∞

ωknkdk (8a)

=

∞∫
0

ωkNkdk ≡
∞∫

0

Ek dk .

Here we introduce the energy density in the k-space,

E(k) ≡ Ek = ωkNk , (8b)

which traditionally is called “energy spectrum” and we
define the “wave action spectrum” as Nk = nk + n−k,
where k = |k|. According to Eq. (5c) in the leading in
Λ approximation the energy spectrum of Kelvin waves is
related to the wave action Nk as follows:

Ek =
Λκ

4π
k2Nk . (8c)

Up to this point these considerations are agreed by one
and all, and are the basis of further developments.

B. The controversy

Recently Kosik and Svistunov [11] derived an energy
spectrum of Kelvin waves turbulence:

E
KS

(k) = C
KS

Λκ7/5 ε1/5

k7/5
, (9a)

where ε is the energy flux over scales and C
KS

is
yet unknown dimensionless constant. Later L’vov and
Nazarenko derived a very different result for the same
spectrum:

ELN(k) = CLN

Λκ ε1/3

Ψ2/3 k5/3
, Ψ ≡ 8π E

Λκ2
. (9b)

Here C
LN

is another dimensionless constant. Both spec-
tra are supposed to be “universal”, (i.e. independent of
details of the energy forcing) in the the scaling range
k > kf , where kf is the forcing wave number.

The disagreement between the spectra (9) resulted in a
heated debate concerning the correct nature of the energy
spectrum. To identify the origin of this controversy we
should clearly state that both results (9) were obtained
within the same formal setup described in the previous
subsection under the same set of assumptions about small
nonlinearity and random phases. Therefore the difference
between the spectra must originate from one or more
mistakes made by either or both derivations. Indeed, we
will argue that the mistake leading to the wrong result
(9a) is in the wrong assumption about the asymptotic

behavior of the effective amplitude W4,5,6
1,2,3 in the region

where one of the wave vectors in the interacting sextet is
much smaller than at least one other wave vector from
the same sextet. The form of this asymptotics crucially
affects the nature of the energy transfer in the Kelvin
wave cascade.

The derivation of the interaction vertex W4,5,6
1,2,3 for

Kelvin wave turbulence is not an easy task. In Ref. [11]

the explicit form of W4,5,6
1,2,3 was not presented. Instead,

the authors “simulated the collision integral by a Monte
Carlo method” with the conclusion that it converges and
the main contribution to the energy evolution of Kelvin
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wave with given k-wave vector originates from the en-
ergy exchange with other Kelvin wave with k′ ∼ k. This
statement of the locality of the energy transfer allowed
the authors to use a dimensional estimate that leads to
the the spectrum (9a).

This result was criticized in [12] where an explicit

expression for the interaction amplitude W4,5,6
1,2,3 (in the

asymptotic region) was derived:

W3,4,5
k,1,2 = −3kk1k2k3k4k5

4πκ
. (10a)

Based on this equation, it was shown analytically in
Ref. [12] that the collision integral diverges. Moreover, as

found in Ref. [12], two important sets of terms in W3,4,5
k,1,2

of the order of unity were overlooked in Ref. [11]. One
was the consequence of a trivial algebraic mistake in the
Taylor expansion in Eq. (10), where the authors forgot
to expand the denominator. In addition, in Ref. [11]
there was a conceptual mistake: in the kinetic equation
(see below) the conservation of energy requires the ex-
act frequency-resonance condition that accounts for the
sub-leading contribution 1ωk, (5c), while cancellation of

linear in Λ terms in W3,4,5
k,1,2 takes place only on the local

induction approximation manifold. Remaining contribu-
tions of the order of unity to W3,4,5

k,1,2 where omitted in

Ref. [11]. It remains unclear, how Ref. [11] succeeded to
state convergence of the collision integral; this must be
either due to a mistakes in the calculation of W3,4,5

k,1,2 or
due to an inaccurate implementation of the Monte Carlo
numerical procedure.

The divergence of the collision integral makes the as-
sumption of locality for the KS spectrum invalid [12].
The non-locality of the spectrum (9a) implies that it is
un-realizable and physically irrelevant. Recognizing the
need for a greater understanding of the correct interac-
tion term, a new non-local theory was promptly put for-
ward, suggesting the alternative energy spectrum (9b) of
Kelvin waves.

This result was immediately attacked in Ref. [28],
based on some näıve symmetry arguments claiming that

W3,4,5
k,1,2 ∝ k

2 (10b)

for small k instead of the linear asymptotics (10a). Note
that in the case of quadratic asymptotics (10b) the colli-
sion integral converges. Then the Kelvin wave energy cas-
cade would be dominated by local interactions and spec-
trum (9a) would be valid. In the case of linear asymp-
totics (10a) the collision integral diverges [12], the Kelvin
wave energy cascade is dominated by different-scale in-
teractions and the spectrum (9b) takes place [1].

To conclude, the controversy regarding the Kelvin
wave energy spectra (9) is a direct consequence of the dis-

agreement regarding the asymptotic behavior of W3,4,5
k,1,2

for small k. This is a fortunate situation, since it can be
easily resolved by a careful calculation. To this aim, an
explicit analytical expression (10a) with its line-by-line

derivation was made publicly available [36]. The sym-
metry arguments of Ref. [28] were analyzed in Ref. [26]
where it was shown that the symmetry argument appeals
to a local reference system in which z-axis follows the vor-
tex line curved by long Kelvin waves, while the Hamilto-
nian and the interaction amplitude must be written in the
global reference system with the z-axis oriented along the
straight (unperturbed) vortex line. In the other words,
the symmetry arguments are irrelevant to the problem
under consideration [26], and see also [33] and [32].

We thus feel confident to proceed further in studying
Kelvin wave turbulence in the framework of the Hamilto-
nian (6) with the interaction amplitude (10a). The con-
troversy can be reopened only when someone will present
a checkable derivation of an alternative expression for
W3,4,5

k,1,2, which would be different from Eq. (10a).

C. Some caveats and warnings

The reader of this paper should not conclude that the
problem of Kelvin waves in superfluids is solved. Rather,
this is a complicated and intriguing phenomenon and
a lot of actual problems in this field are still open or
hardly studied. First, we stress that Kelvin waves in
real superfluid turbulence propagate along dynamically
bent vortex lines in a vortex tangle. Although in the
limit of short Kelvin waves the time dependence of the
basic vortex configuration and their local curvature can
be neglected, longer waves are also important in real ex-
perimental situations. Secondly and more importantly,
even short waves could travel long distances, whereas the
classical wave turbulence theory assumes that the wave
”mean free path” is much less that the system size (the
classical-quantum crossover in our case). How important
such a finite-size is not yet understood. Numerical simu-
lation of the full Biot-Savart equation which could clarify
these issues is still in its infancy [31].

In this paper, our analytical theory will assume that
these limits of short and short-correlated Kelvin waves
are achieved. In addition we will assume that the ampli-
tudes of Kelvin waves are small. Then the Hamiltonian
formulation of the problem (6,10a) is justified. Neverthe-
less it does not mean that spectrum (9b) is the only pos-
sible solution for Kelvin wave turbulence. It known that
approximations of weak wave turbulence leading from the
dynamical Hamiltonian equations to the kinetic equations
in one dimensional media are very delicate. Therefore
in the second part of this paper we will present direct
numerical simulations of Kelvin wave turbulence in the
Hamiltonian formulation (6,10a). This simulation allows
us to clarify another important issue: how long should
the vortex line be in comparison to the Kelvin wave-
length to achieve the limit of unlimited (in the physical
space) medium used in the theoretical analysis below.
Also, it allows to study the case when this limit is not
achieved and the finite-size effects are important - this is
the case of so-called mesoscopic wave turbulence.
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In Ref. [1] it was assumed that the kinetic equation in
its continuous-media limit is applicable. The analysis of
its collision integral [1, 12] revealed that on the spectrum
(9a) the leading contribution appears from those terms in
which two wave-vectors are much smaller that the other
four and a conjecture was made (not a proof!) that the
same kind of nonlocality should hold generally for most
other Kelvin wave spectra, in both steady and evolving
turbulent states. This allowed for the development of an
effective collision integral dominated by four wave mix-
ing of the (1 ↔ 3) type resulting in a new four-wave
kinetic equation. The remaining two small wave-vectors
describe the chaotic bending of the vortex lines with a
characteristic curvature radius of the order of the inter-
vortex distance. We should note however that even in
the framework of the effective four-wave kinetic equa-
tions [1] some questions have remained open. Indeed,
the spectrum (9b) was proven to be a valid solution of
this equation but its uniqueness in the class of scale in-
variant solutions and its stability have remained unclear
and the pre-factor C

LN
has not been found. In Section II

we will demonstrate that the scale invariant energy spec-
trum (9b) exists, it is unique with a regular pre-factor,
C

LN
≈ 0.304. Moreover, our numerics of the dynamical

equation show that the (9b) is indeed an attracting so-
lution for the Kelvin wave systems. Not only we observe
the correct value of the exponent for this spectrum, but

also a relatively good agreement for the pre-factor. This
is remarkable because this is probably the first example
in wave turbulence where such agreement for the pre-
factor value has been reported in numerical simulations.
Moreover, these numerical results demonstrate that the
type of nonlocality conjectured for the Kelvin waves (two
small wave vectors in a typical interacting sextet) is ro-
bust and maintained in the attracting steady state.

In the next section we will prove that the non-local
theory is correct and is the one that should be used in
future theories of quantum turbulence. After this we will
present numerical simulations that are based on the in-
teraction term (10a) and which not only confirm our an-
alytical calculations but also validate the applicability of
the kinetic equation. These numerics also allow to study
the regimes which are hard to treat analytically when
the kinetic equation description breaks down due to the
finite-size effects - so-called mesoscopic wave turbulence.

II. ENERGY SPECTRUM OF KELVIN-WAVE
WEAK TURBULENCE

In this section we calculate an exact solution to the
new effective kinetic equation. In [1] it was shown that
the collision integral takes the form

St(k, {nk′(t)})=
π

12

∫∫∫
dk1dk2dk3

(
W1,2,3

k

)2

nkn1n2n3

[(
1

nk
− 1

n1
− 1

n2
− 1

n3

)
δ (k − k1 − k2 − k3) δ (ωk − ω1 − ω2 − ω3)

− 3

(
1

n1
− 1

nk
− 1

n2
− 1

n3

)
δ (k1−k−k2−k3) δ (ω1 − ωk − ω2 − ω3)

]
, nj ≡ nkj , (11)

where the effective (1↔ 3) interaction amplitude is

W1,2,3
k ≡ −3Ψ

4π
√

2
kk1k2k3 . (12)

The dimensionless parameter Ψ was defined in Eq. (9b).
One obvious steady-state solution of Eq. (7b) is nk ∝

(ωk)−1 which corresponds to the equilibrium Rayleigh-
Jeans equipartition of the energy. A second, non-
equilibrium solution, can be obtained by analyzing the
equation of energy conservation,

∂Ek
∂t

+
∂εk
∂k

= 0 , (13)

the energy flux εk is given by [42]

εk = −
∫
k′<k

Stk′ ωk′dk
′ . (14)

In Ref. [1] it was found that the kinetic equation has a
scale-invariant solution

Nk = Ak−x . (15)

The scaling exponent x = 11/3 was found by power
counting in the second Eq. (14) under the assumption
that all the integral in the collision term converge. Sub-
stituting this solution into the collision integral it was
demonstrated in Ref. [1] that the integral indeed con-
verges. Finally the suggested solution has the form [1]

Nk = C
LN

4πε1/3

Ψ2/3 k11/3
, (16)

where the dimensionless coefficient C
LN

remained unde-
termined.

Let us now demonstrate analytically that Eq. (16) is
indeed a solution of the kinetic equation. Moreover, we
demonstrate numerically that this solution is the unique
scale-invariant solution with a constant energy flux, and
finally we compute the numerical value of the universal
constant C

LN
. The first task can be achieved by con-

sidering the second term in Eq. (11) as a sum of three
equivalent terms. In the first we make the Zakharov-
Kraichnan conformal transformation [2, 3] from k1, k2, k3
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to k′1, k
′
2, k
′
3 where

k′1 =
k2

k1
, k′2 =

kk2

k1
, k′3 =

kk3

k1
. (17)

Relabeling then the dummy variable k′j → kj we find

that this term, up to a factor (k1/k)ξ with ξ = 3x − 9,
coincides with the first term in Eq. (11). In the second
of the three terms, we perform the same transformation
replacing k1 ↔ k2, and in the third term we do the same
but replacing k1 ↔ k3. Therefore, the entire collision
term in Eq. (11) can be represented as the first term
multiplied by

[1− (k1/k)ξ − (k2/k)ξ − (k3/k)ξ] . (18)

Note that the region of integration becomes the same
for all the terms too. Due to the existence of the delta-
function of frequencies we conclude that the integrand in
the collision term vanishes if ξ = 2. This condition is
equivalent to x = x0 = 11/3.

Next we demonstrate the uniqueness of this solu-
tion. To do so numerically it is advantageous to non-
dimensionalize the collision integral for arbitrary values
of x as follows,

Stk =
3Ψ2A3

128πα
I(x) k8−3x , (19)

where α = κΛ/4π. Using qj ≡ kj/k we obtain

I(x) =

∫∫∫
dq1dq2dq3

(
1− qξ1 − q

ξ
2 − q

ξ
3

)
(1− qx1 − qx2 − qx3 ) (q1q2q3)

2−x
δ (1− q1 − q2 − q3) δ

(
1− q2

1 − q2
2 − q2

3

)
.

2 11�3 9�2

-50

0

50

100

x

IHxL

3.66 11�3 3.675

-0.2

0

0.2

FIG. 1: The collision integral as a function of the scaling
exponent. We observe that it vanishes at x = 11/3 and that
this cancellation is unique within the window of locality. The
insert is just a blow-up of the neighborhood of x = 11/3. One
clearly sees that the solution is unique.

This integral was computed numerically as a function
of x, and plotted in Fig. 1, for 2 < x < 9/2 where this
integral converges. We see that throughout the window
of locality (where the integral converges) there is no other
solution.

Finally, to compute the universal coefficient CB we re-
turn to Eq. (14) with Nk given by Eq. (15) with an
arbitrary value of x. Integrating with respect to k′ leads
to an explicit expression for the dissipation rate

εk =
3Ψ2A3

128π

I(x)

3x− 11
k11−3x . (20)

Using L’Hopital rule to deal with the indeterminate ratio
of zero by zero we can rewrite this expression for x =

11/3,

εk =
Ψ2A3

128π

dI(x)

dx

∣∣∣
x=11/3

. (21)

Computing numerically dI(x)/dx we have an explicit re-
sult for the coefficient A leading to

Nk =
4πC

LN
ε1/3

Ψ2/3 k11/3
; C

LN
≈ 0.304. (22)

Combining this result with the dispersion relation, we
finally obtain the energy spectrum

Ek = CLN

Λκ ε1/3

Ψ2/3 k5/3
. (23)

The calculation of the energy spectrum for non-local
Kelvin wave interactions constitutes the central result of
this section. We point out that the exponent with 5/3 ≈
1.67 is quite close to that of the spectrum (9a) with 7/5 ≈
1.4. This has made it difficult for numerical simulations
to clearly resolve the difference between both theories
and as a result has contributed to adding more fuel to
the controversy [10, 21]. In fact, a recent numerical
simulation using a scale separation scheme for the Biot-
Savart equation produced results consistent with the
spectrum (9a) [30]. However, we believe that the scale
separation scheme - which expands the Biot-Savart equa-
tion in terms of non-local contributions - artificially
damps the essential non-local behavior of the Biot-Savart
equation, thus inducing local Kelvin wave interaction and
the KS spectrum.
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III. DIRECT NUMERICAL SIMULATION OF
THE DYNAMICAL EQUATION FOR THE

KELVIN WAVES

A. Dynamical model: Local Nonlinear Equation

In this section, we present a new simple model that
contains all the necessary physics of the Biot-Savart equa-
tion without its numerical complexity. As mentioned
above, an exact analytical expansion of the Hamilto-
nian (3) was carried out in [12] leading the authors to
the interaction term presented in Eq. (10a). This term is
the leading order asymptotic of the Biot-Savart interac-
tion in the limit when at least one Kelvin wave is much
longer than the shortest wave in each interacting sextet.
Obviously, the dynamically important nonlocal sextets
in which two waves are long are also described by this
asymptotic expression. When expressed in the physical
space, the interaction term (10a) leads to the Local Non-
linear equation (LNE) [12] which is given by

i
∂w

∂t
= − κ

4π

∂

∂z

[(
Λ− 1

4

∣∣∣∣∂w∂z
∣∣∣∣4
)
∂w

∂z

]
. (24)

The LNE can be represented as a Hamiltonian system
of the form (2), with Hamiltonian which in terms of the
physical space amplitude w(z, t) = x(z, t) + iy(z, t) is:

H
LNE

= H2 +H6 =
κ2

4π

∫ (
Λ

∣∣∣∣∂w∂z
∣∣∣∣2 − 1

12

∣∣∣∣∂w∂z
∣∣∣∣6
)
dz .

(25)

B. Nonlinear dissipation and applicability of weak
turbulence

To appreciate the conditions under which we could
expect realization of the weak wave turbulence regime
in our numerics, we should estimate the degree of the
nonlinear dissipation given by the nonlinear resonance
broadening parameter Γk. Indeed, the kinetic equation
for weak wave turbulence could only be valid when the
nonlinear resonance broadening Γk is much less than the
linear frequency ωk. On the other hand, Γk itself could
be estimated from the kinetic equation’s collision term
(11), namely from its part proportional to nk. Impor-
tantly, even though the full collision integral converges
on the LN spectrum, its separate parts diverge [1]. In
particular, the part corresponding to Γk will scale as (see
Eqs.(19) of Ref. [1])) Γknk ∝ nkk giving

Γk ∝ k . (26)

Thus for the nonlinearity parameter we get

Γk
ωk
∝ k−1 . (27)

Eq. (27) states that the nonlinearity parameter decreases
toward large k, i.e. that wave turbulence becomes weaker
as one propagates along the energy cascade to high wave
numbers.

On the other hand, for validity of the the kinetic equa-
tion it is also necessary that the nonlinear resonance
broadening Γk is much greater than the grid spacing be-
tween the wave frequencies ∆ω, i.e. ∆ω � Γk. If the
wave turbulence becomes too weak, we are in danger of
loosing wave resonances due to the sparsity (discreteness)
of the allowed wave numbers and frequencies in bounded
domains. If this happens, we expect regimes of discrete
or mesoscopic wave turbulence [3, 35, 37–41]. Mesoscopic
wave turbulence occurs when the nonlinear resonance
broadening Γk becomes of the order of the grid spacing
between frequencies ∆ω, i.e. Γk ∼ ∆ω. In such a situa-
tion, discreteness effects become apparent and the wave
amplitudes become too weak to sustain a continuous cas-
cade. Instead, we observe sandpile behaviour [35], where
energy accumulates at specific scales until it is reaches
sufficient amplitudes to cascade. This process is then re-
peated at smaller and smaller scales, until energy eventu-
ally reaches the dissipation scale. When Γk � ∆ω, then
we are in a discrete wave turbulence regime, where only
exact wave resonances occur. Resonant waves form clus-
ters, some of which disjoint from the rest of the modes,
and the cascade scenario is even more inhibited.

The frequency grid spacing can be determined via
∆ω = (∂ωk/∂k)∆k = (Λκk/2π)∆k, where ∆k = 2π/L
is the wave number grid spacing. Taking into account
(26), one can see that the ratio of Γk/∆ω is predicted to
be independent of k implying that the wave turbulence
description should break down when the wave modes are
too weak simultaneously and uniformly in the whole of
the inertial range of k.

C. Numerical setup

We perform numerical simulations of the LNE to verify
the power law scaling and coefficient of the energy spec-
trum for Kelvin wave turbulence in a statistically steady
state corresponding to an energy cascade from long to
short wave scales. To achieve this, we numerically solve
the non-dimensionalized version of Eq. (24) in the pres-
ence of forcing and dissipation:

i
∂w̃

∂t̃
= − ∂

∂z̃

[(
1− 1

4

∣∣∣∣∂w̃∂z̃
∣∣∣∣4
)
∂w̃

∂z̃

]
+ iFk − iDk , (28)

with additive forcing, +iFk, and dissipation −iDk. The
non-dimensionalization we use is

w = Λ1/4w̃, t =
4π

κΛ
t̃, z = z̃, w̃ =

∑
k

w̃k(t) exp(ik̃z̃) .

(29)
We implement a pseudo-spectral method with 214 spa-

tial points, where the nonlinear term is fully de-aliased
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Sim A Sim B Sim C

Af 610 488 0.6103

Ã 3.2 2.0 0.23

ε̃k 4.6 4.8 0.55

Ψ̃ 0.35 0.25 0.13

|H̃6|/H̃2 0.25 0.20 0.003− 0.15

CLN 0.3477 0.2024 0.031

TABLE I: We present the non-dimensional values of the am-
plitude of the wave action spectrum B̃, energy flux ε̃k, Ψ̃, the
ratio of the nonlinear and linear energies |H6|/H2 and the
coefficient CLN for all three simulations.

with respect to its quintic nonlinearity. We utilize
a fourth order Runge-Kutta time stepping method to
progress in time. The forcing profile we use is defined
in wave number space, as is given by

Fk =

{
Af exp(iθk) if 8 ≤ k < 16

0 otherwise ,
(30)

where Af is a constant forcing amplitude and θk is a
random variable sampled from a uniform distribution on
[0, 2π) for each k and at each time step. We add dissi-
pation at both ends of the wave number space to enable
the formation of a statistically steady state and to avoid
any bottleneck effects. We use a hyper-viscosity term
that dissipates mainly at high wave numbers and a low
wavenumber friction on the first six wave modes. The
dissipation profile Dk is defined as

Dk = νfric H(6− |k|) w̃k + νhyper k
4 w̃k , (31)

where, νfric = 2.0 and νhyper = 2 × 10−6 are dissipation
coefficients and H(·) is a Heaviside function.

We perform three simulations, A, B and C, which
have different forcing amplitudes (with the rest of the
parameters being identical). The forcing amplitudes of
the simulations are given in Table I. We allow the sim-
ulation to evolve until we have reached a statistically
steady state, judged by observing stationarity of the to-
tal energy, whereupon we average over a time window to
achieve the desired statistics.

D. Numerical results

For simulation A, we show in Fig. 2 the compensated
(by k11/3) wave action spectrum, and compare against
both the predictions of Eq. (9a) (or, in terms of the wave
action, Nk ∼ k−17/5) and Eq. (9a) (corresponding to
Nk ∼ k−11/3, see (23)). The spectrum has been aver-
aged over a long time window once a statistically steady
state is reached. We observe a remarkable agreement
with spectrum suggested by Lvov and Nazarenko, (16),
for about a decade in wave number space. Moreover,
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FIG. 2: Averaged wave action spectrum Ñk in simulation A,
compensated by k11/3. We overlay the theoretical predictions
of the Kozik-Svistunov and Lvov-Nazarenko spectra.

we clearly observe a deviation from the slope of Kozik-
Svistunov spectrum, Nk ∼ k−11/3.

Also for simulation A, in Fig 3 we plot the averaged
non-dimensionalized flux ε̃2(k) of the quadratic part of

the energy, H̃2. We observe a constant flux over a region
of k-space to the right of the forcing scale in agreement
with the constant flux scale-invariant solutions of wave
turbulence theory. However, this flux falls off to a nega-
tive constant at high wave numbers, which we believe is
down to the fact that numerically we can only measure
the flux of the quadratic energy, which represents the
dominant part of the total energy only for weakly non-
linear waves. Thus, the deviation of ε̃2(k) from constant
at large k can be interpreted as an increase of nonlinear-
ity at these scales. Note, however, that theoretically one
predicts a decrease of nonlinearity at high k, see Eq. (27),
which seems at odds with our numerical results - some-
thing that remains to be understood.

To add to this puzzle, we present a plot of the combined
Fourier transform in both coordinate x and time t on the
(k, ω)-plane in Figure 4. In addition to weakly nonlinear
waves, which are narrowly distributed around the disper-
sion relation ω̃ = k2, we observe a wide distribution cen-
tered at the zero frequency. The relative intensity of such
a “condensate” is higher at large k’s: its peak is about
1/3 of the wave intensity at the lower end of the inertial
interval (k = 50) and it becomes as strong as the wave
intensity peak deeper in the inertial range (k = 100).
Again, we can offer no explanation for such a conden-
sate (in the direct cascade range!) and to the fact why,
in spite of the strong condensate, we perfectly observe
the theoretical scaling of the Lvov-Nazarenko spectrum
in the same range of wave numbers.

From the numerical data of Figs. 2 and 3, and with the
addition of the numerical measurement of Ψ̃ in Eq. (9b)
we can compute the numerical prefactor C

LN
of spec-



9

-10

-5

 0

 5

 10

10
0

10
1

10
2

ε
2

k

ε2

ε2 = 7.6
~

~

~

~

FIG. 3: Averaged non-dimensionalized flux of the quadratic
energy ε̃2(k) in simulation A. We observe a region where the
energy flux is a positive constant, right of the forcing scale.

~

~

FIG. 4: The (k, ω)-plot of simulation A representing a nor-
malized (separately for each k) double Fourier transform of
the wave amplitude w(z, t). The theoretical linear dispersion
relation, ω̃ = k2, is superimposed by the green dashed line.

trum (16), where the formula for C
LN

expressed in terms
of the non-dimensional parametrization is

C
LN

= (4π)−1/3ε̃
−1/3
k Ψ̃2/3Ã . (32)

The results from the simulations and the value of the
numerical estimate of constant C

LN
are given in Table I.

We observe remarkable agreement in the value of C
LN

in Eq. 16 to the numerical data from simulation B; see
Table I. Note that this is probably the first ever ex-
ample of a wave turbulent system where the spectrum
pre-factor obtained in numerics coincides with the one of
the theoretical prediction. Indeed, realizing a pure wave
turbulence state in numerical simulations is notoriously
difficult because, on one hand, the waves must be weakly
nonlinear and, on the other hand, they should not be too
weak to overcome the finite size effects; see Sec. III B.

These effects become noticeable in our simulation A and
they become very clear in the simulation C correspond-
ing to the lowest forcing out of the three runs.

In simulation B, with the forcing somewhat lower than
in simulation A, the spectrum and the flux are very sim-
ilar to the ones shown in Figs. 2 and 3. The spectrum ex-
hibits a scaling range with −11/3 exponent and is clearly
different from the −17/5 prediction of Kozik and Svis-
tunov. However, the value of the constant CLN is slightly
less than the theoretical one; see Table I. This is probably
due to the finite-size effects which manifest themselves in
losses of wave resonances due to the discreteness of the
k-space when the nonlinear frequency broadening Γk be-
comes of the same order or less than the k-grid spacing.

Such an effect is most prominent in our weak-forcing
simulation C where the observed constant C

LN
is an or-

der of magnitude smaller; see Table I. In this run, we
observed ‘sandpile’ or ‘bursty’ behaviour characterized
by sudden spikes in the energies shown in Fig. 5. We
observe that all energies have become statistically sta-
tionary on the whole, however there is a clear bistable
behaviour in the random changes to the energy that are
intermittent in time. In fact, the ratio of the two energies
fluctuate between |H̃6|/H̃2 ' 0.003− 0.15.

Obviously, the behaviour in simulation C is beyond
the conditions which could be described by the standard
kinetic equation. A qualitative description of this regime
was presented in [3, 35, 37] where the observed sandpile
behaviour was originally conjectured. However, presently
there is no rigorous theory describing this regime.

E. Mesoscopic wave turbulence

The sandpile behavior of simulation C can also be seen
in the evolution of the wave action spectrum Ñk pre-
sented in Fig. 6 which shows two snapshots of the wave
action spectrum at two times corresponding to a peak
(τ = 84) and trough (τ = 100) of the energy. In addition,
in Fig. 6 we include the fully averaged spectrum over the
window 84 < τ < 100 for comparison. In simulation C,
we observe that the wave action spectrum Nk oscillates
between the two extreme states shown in Fig. 6 at the
same periods in which the energy fluctuations of peaks
and troughs are seen in Fig. 5. The spectrum fluctuates
predominately in the high wave number region.

In Fig. 7, we present a numerical (k, ω)-plot for sim-
ulation C, which is similar to the one discussed before
for simulation A, Fig. 4. We see a qualitatively similar
picture as before, but with a more narrow wave distribu-
tion and a weaker condensate around ω = 0 line, which
is natural considering the lower level of nonlinearity in
simulation C.

Using Fig. 7 we can find the frequency resonance
broadening Γk. This gives us a direct check if we
are in a kinetic or mesoscopic wave turbulence regime
[3, 35, 37, 39]. Numerically, we compute Γk by calcu-
lating the width of the interval along ω in which the
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FIG. 6: Two wave action spectra at times τ = 84 and τ =
100, corresponding to a local maximum (red solid line) and a
local minimum (green dashed line) in the energy respectively
from simulation C. Moreover, we compare these wave action
spectra with that of the fully averaged wave action spectrum
of Fig. 2 (blue dotted line).

dispersion relation in Fig. 7 is within half of maximum
wave intensity at each wave number k. We plot the result
in Fig. 8, along with the kinetic wave turbulence thresh-
old ∆ω and the limit of the resolution of the Fourier
transform (= 2π/T , where T is the time window of the
Fourier transform). We observe in Fig. 8 that the fre-
quency resonance broadening in the numerical simula-
tion is larger than the resolution threshold, i.e. that the
presented plot does indeed provide a useful information
about Γk. Further, we see that Γk grows to higher k con-

~

~

FIG. 7: The (k, ω)-plot of simulation C. The random waves
are characterized by the black curve, which is a normalized
double Fourier transform of the wave amplitude w(z, t). The
theoretical linear dispersion relation, ωk = k2, is superim-
posed by the green dashed line.
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FIG. 8: We plot the nonlinear frequency broadening Γk of
the (k, ω)-plot from simulation C in the red solid line. We
overlay the resolution of the fast Fourier transform (green
dashed line) and width of the frequency spacing ∆ω (blue
dotted line). The black dashed line corresponds to a linear fit
to Γk.

sistently with theoretically predicted linear dependence
(26). Finally, we see that the values of Γk are about fac-
tor three above the line corresponding to the threshold
of mesoscopic wave turbulence Γk ∼ ∆ω. Since numer-
ical factor of order unity are not controlled by such a
simple estimate, we can conclude that such values of Γk
are consistent with the condition of the mesoscopic wave
turbulence regime.

Finally, it is also meaningful to ask if any mesoscopic
effects, e.g. the sandpile behaviour, can be seen in the
physical space. We observe an interesting two-scale pic-
ture, which is consistent with the scale separation as-
sumed in the non-local theory. Further, we observe that
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FIG. 9: We plot the physical space intensity I(z̃, t̃) =
|w(z̃, t̃)|2 for simulation C during a time period where the
energy is fluctuating. Here black implies strong intensity and
white implies low intensity. The large scale structures ob-
served correspond to the forcing scale.

intensity of the slow (nearly horizontal) large-scale rolls
suddenly drops at the moments corresponding to the
drop of the total energy in Fig. 5 marking onsets of
the “sandpile tip-overs”. The same large-scale rolls are
the main contributors into the low-frequency condensate
component.

IV. CONCLUSION

In conclusion, we have shown that the spectrum pro-
posed in [1] for Kelvin wave turbulence is the exact and
unique solution of the kinetic equation and therefore is

the one that should be physically realized. All of the
theoretical predictions have been confirmed via numer-
ical simulations of the LNE, including both the scaling
exponent and the spectrum pre-factor. We stress that
the LNE is only applicable for nonlocal Kelvin wave tur-
bulence. Thus, our numerical result that the (theoreti-
cally predicted) nonlocal spectrum is an attracting state
demonstrates that the nonlocal dynamics is self-sustained
and robust and the LNE model is self-consistent.

We also studied a mesoscopic regime of Kelvin wave
turbulence which occurs at low amplitudes. We discov-
ered that the system suffers from intermittent energy
bursts that produce fluctuations in the wave action spec-
trum at high wave numbers. This agrees with the sand-
pile scenario of evolution which was predicted for meso-
scopic wave turbulence in [3, 35, 37, 39].

Finally, numerically we observed some effects which
we cannot presently explain. Namely, in addition to
the weak dispersive waves we have found a strong low-
frequency condensate component over a large range of
scales covering the direct cascade range. In the small-
scale part of the inertial range the condensate is of a
similar strength to the wave component, and yet, some-
how, it does not alter the theoretical (non-local) weak
turbulence scaling.

Acknowledgments

We thank Reuven Zeitak for his help and encourag-
ing discussions during this work. We acknowledge the
support of the U.S.-Israel Binational Scientific Founda-
tion administrated by the Israeli Academy of Science,
the Minerva Foundation, Munich, Germany, through the
Minerva Center for Nonlinear Physics at WIS and of the
ANR program STATOCEAN (ANR-09-SYSC-014).

[1] V. Lvov and S. Nazarenko, JETP Letters 91, 428 (2010).
[2] V. E. Zakharov, V. Lvov, and G. Falkovich, Kolmogorov

Spectra of Turbulence I (Verlag, Berlin, 1992).
[3] S.V. Nazarenko, Wave Turbulence, Springer, LNP series

vol. 825 (2011).
[4] E. Falcon, Discrete and Continuous Dynamical Systems

- Series B 13, 819 (2010).
[5] A. C. Newell and B. Rumpf, Annual Review of Fluid

Mechanics 43, 59 (2011).
[6] W.F. Vinen and J.J. Niemela, J. Low Temp. Phys. 128,

167 (2002)
[7] J. J. Niemela, Physics 1, 26 (2008)
[8] M. Tsubota and W.P. Halperin, eds., Prog. Low Temp

Phys: Quantum Turbulence, Volume XVI, (Elsevier,
Amsterdam 2009).

[9] D. Kivotides, J. C. Vassilicos, D. C. Samuels, and C. F.
Barenghi, Phys. Rev. Lett. 86, 3080 (2001).

[10] W. F. Vinen, M. Tsubota, and A. Mitani, Phys. Rev.
Lett. 91, 135301 (2003).

[11] E. Kozik and B. Svistunov, Phys. Rev. Lett., 92 035301

(2004).
[12] J. Laurie, V.S. L’vov, S. Nazarenko, O. Rudenko, Phys.

Rev. B 81, 104526 (2010).
[13] W. Thomson, Philos. Mag. 10, 155 (1880).
[14] R. J. Donnelly, Annual Review of Fluid Mechanics 25,

325 (1993).
[15] [11] M. Tsubota, International Journal of Emerging Mul-

tidisciplinary Fluid Sciences 1, 229 (2009).
[16] E. Sonin, Rev. Mod. Phys. 59, 87 (1987).
[17] V. Svistunov, Phys. Rev. B 52, 3647 (1995).
[18] R.J. Donnelly, Quantized Vortices in He II, Cambridge

University Press, Cambridge, (1991).
[19] E. Kozik and B. Svistunov, J. Low. Temp. Phys. 156

215, (2009).
[20] G. Boffetta, A. Celani, D. Dezzani, J. Laurie and S.

Nazarenko, J. Low Temp. Phys. 156, 193, (2009).
[21] E. Kozik and B. Svistunov, Phys. Rev. Lett. 94, 025301,

(2005).
[22] K.W. Schwarz, Phys. Rev. B. 31, 5782, (1985).
[23] K.W. Schwarz, Phys. Rev. B. 38, 2398, (1988)



12

[24] S. Nazarenko and M. Onorato, Physica D, 219, 1-12
(2006).

[25] D. Proment, S. Nazarenko and M. Onorato, Phys. Rev.
A, 80, 5, 051603, (2009).

[26] V. Lebedev and V.S. L’vov, J. Low Temp. Phys. 161,
548-554 (2010).

[27] E. Kozik and B. Svistunov, Comment on Symme-
tries and Interaction Coefficients of Kelvin Waves,
arXiv:1006.1789v1 [cond-mat.other].

[28] E. Kozik and B. Svistunov, J Low Temp Phys. 161, 603-
605 (2010).

[29] E. Kozik and B. Svistunov, Geometric Symmetries in
Superfluid Vortex Dynamics, arXiv:1006.0506v2 [cond-
mat.other].

[30] E. Kozik and B. Svistunov, The 17/5 spectrum
of the Kelvin-wave cascade, arXiv:1007.4927v1 [cond-
mat.other].

[31] A.W. Baggaley and C.F. Barenghi, Spectrum of turbu-
lent Kelvin-waves cascade in superfluid helium, Phys.
Rev. B. 83, 134509 (2011).

[32] V. Lebedev, V.S. L’vov and S. Nazarenko, On role of
symmetries in Kelvin wave turbulence, J Low Temp
Phys. 161: 606-610 (2010).

[33] V.E. Zakharov, private communicaltion, (2010).
[34] Workshop on “Quantum and Classical Turbulence” Abu

Dhabi, May 1-5, 2011

[35] S. Nazarenko, Sandpile behaviour in discrete water-wave
turbulence, J. Stat. Mech. L02002, (2006).

[36] Mathematica file with line-by-line derivation of Eq. (10a)
is available at ULR http://lvov.weizmann.ac.il/Texts-
Online/218-PRB-Nonlocality.nb

[37] V.S. L’vov, S.V. Nazarenko, Discrete and mesoscopic
regimes of finite-size wave turbulence, PHYSICAL RE-
VIEW E, Volume: 82, Issue: 5, Article Number: 056322,
Part 2, NOV 19 (2010)

[38] Y. Lvov, S. Nazarenko and B. Pokorni, Discreteness and
its effect on water-wave turbulence , Physica D , Volume
218, Issue 1, 1 June 2006, Pages 24-35 (2006) (arXiv:
math-ph/0507054).

[39] V.E. Zakharov, A.O. Korotkevich, A.N. Pushkarev and
A.I. Dyachenko, JETP Lett. 82, 8, 487-491, (2005).

[40] P. Denissenko, S. Lukaschuk and S. Nazarenko, Gravity
surface wave turbulence in a laboratory flume, Phys. Rev.
Lett. 99, 014501 (2007)

[41] S. Nazarenko, 2D enslaving of MHD turbulence, New J.
Phys. 9 307 doi:10.1088/1367-2630/9/8/307 (2007).

[42] εk denotes the full energy flux, which in the weakly non-
linear limit is well approximated by the energy flux of the
quadratic part of the energy, defined by the right-hand
side of Eq. (14). When considering the kinetic equation
this definition will be assumed to be the same.


