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We describe a nonlinear electromagnetic phenomenon in layered superconducting slabs irradiated
from one side by an electromagnetic plane wave. We show that the surface reactance of the slab
of the layered superconductor, as well as the reflectance of the incident wave, has the hysteretic
behavior with jumps when changing the incident wave amplitude. This interesting nonlinear effect
can be observed even at small amplitudes, when the wave frequency ω is close to the Josephson
plasma frequency ωJ .
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I. INTRODUCTION.

The unusual electrodynamic properties of layered su-
perconductors (see, e.g., review Ref. 1 and references
therein) attracted considerable attention due to their
possible applications, including terahertz imaging, as-
tronomy, spectroscopy, chemical and biological identifi-
cation. A model in which the very thin superconduct-
ing CuO2 layers are coupled by the intrinsic Joseph-
son effect through the thicker dielectric layers was jus-
tified by the experiments for the c-axis conductivity
in high-Tc Bi2Sr2CaCu2O8+δ single crystals1–5. Within
the model, a very specific type of plasma, the so-called
Josephson plasma, is formed in layered superconductors.
The current-carrying capability of this plasma is strongly
anisotropic, not only in the absolute values of the cur-
rent density. The physical nature of the currents along
and across layers is quite different: the current along
the layers is the same as in usual bulk superconductors,
whereas the current across the layers originates from the
Josephson effect. This Josephson current flowing along
the c-axis couples with the electromagnetic field inside
the insulating dielectric layers, causing a specific kind
of elementary excitations called Josephson plasma waves
(JPWs) (see, e.g., Ref. 1 and references therein). There-
fore, the layered structure of superconductors favors the
propagation of electromagnetic waves through the layers.

The electrodynamics of layered superconductors is
described by nonlinear coupled sine-Gordon equa-
tions1,6–10. This nonlinearity originates from the nonlin-
ear relation J ∝ sinϕ between the Josephson interlayer
current J and the gauge-invariant interlayer phase differ-
ence ϕ of the order parameter. As a result of the nonlin-
earity, a number of nontrivial nonlinear phenomena11–16

(such as slowing down of light, self-focusing effects, the
pumping of weaker waves by stronger ones, etc.) have
been predicted for layered superconductors. The nonlin-
earity plays a crucial role in the JPWs propagation, even
for small wave amplitudes, |ϕ| � 1, when sinϕ can be
expanded into a series as (ϕ−ϕ3/6), for frequencies close
to the Josephson plasma frequency. In Ref. 16 the trans-

mittance of the layered superconducting slabs is studied.
It is shown that the above mentioned nonlinearity leads
to the sensitivity of the transmittance to the amplitude
of the wave. This results in the hysteretic behavior of
the transmittance when increasing/decreasing the ampli-
tude. The similar nonlinear phenomena were observed in
other media, e.g. in paramagnetic materials17,18. There
the nonlinearity is originated from the nonlinear response
of the media, described by Bloch equations.

In this paper, we continue our investigation of the non-
linear properties of superconducting slabs. Along with
the decrease of the amplitude, the reflected wave experi-
ences the phase shift α. The latter is closely connected
with the surface reactance X,

X = X0 tan
(α

2

)
, X0 =

4π

c
cos θ, (1)

where θ is the incident angle and c is the light speed.
The reactance and reflectivity of the slab are in focus in
this paper. We describe an unusual strongly nonlinear
phenomenon. The surface reactance of a superconduct-
ing slab being exposed to an incident wave from one of
its sides depends not only on the wave frequency and
the incident angle, but also on the wave amplitude. If
the frequency ω of irradiation is close to the Josephson
plasma frequency ωJ , the reactance of the slab can vary
over a wide range. This change is accompanied by the
variation of the reflectance between the reflected and in-
cident waves, from nearly one to zero. Moreover, the
dependences of the reflectance and the surface reactance
shows hysteretic behavior with jumps.

The large sensitivity of the problem parameters to the
wave amplitude can be explained using a very clear phys-
ical consideration. Let us consider a wave frequency ω
which is slightly smaller than the Josephson plasma fre-
quency ωJ . In this case, linear JPWs cannot propagate
in the layered superconductor (see, e.g., Ref. 1). Accord-
ing to Refs. 11–13, the nonlinearity results in an effective
decrease of the Josephson plasma frequency and, thus,
nonlinear JPWs with high-enough amplitudes can prop-
agate in the superconductor. So, the characteristics of
the layered superconductor prove to be very sensitive to
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the amplitude of the incident wave.

The paper is organized as follows. In section II, we for-
mulate the problem and present the main equations for
the electromagnetic fields both in the vacuum and in the
slab of layered superconductor. In section III, we express
the surface reactance X and the reflectance R of the slab
in terms of the amplitude of the incident wave and an-
alyze this dependence in two cases: when the frequency
ω of the incident wave is either larger or smaller than
the Josephson plasma frequency ωJ . In both cases, we
study the hysteretic features of these dependences. The
results of numerical simulations support our theoretical
predictions. In the last section we formulate a rather un-
expected, but deep and useful analogy between the the
propagation of the electromagnetic wave in the layered
superconductor and the mechanical motion of a virtual
particle in the central potential.

II. SPATIAL DISTRIBUTION OF THE
ELECTROMAGNETIC FIELD

A. Geometry of the problem

We study a slab of layered superconductor of thick-
ness D (see Fig. 1). Superconducting layers of thickness
s are interlayed by insulators of much larger thickness d
(s � d). We assume the number of layers to be large,
allowing the use of the continuum limit, and not consid-
ering the spatial distribution of the electromagnetic field
inside each layer. The coordinate system is chosen in
such a way that the crystallographic ab-plane coincides
with the xy-plane, and the c-axis is along the z-axis. The
plane z = 0 corresponds to the lower surface of the slab.

A monochromatic electromagnetic plane wave of fre-
quency ω is incident on the upper surface of the slab,
and it is partly reflected and partly transmitted through
the slab. We consider the incident wave of the transverse
magnetic polarization, with the magnetic field parallel to
the surface of the slab,

~E = {Ex, 0, Ez}, ~H = {0, H, 0}. (2)

The incident angle θ is considered to be not close to zero,
so that both non-zero components of the wave-vector
~ki = {kx, 0,−kz} are of the order of ω/c.

B. Electromagnetic field in the vacuum

The magnetic field H+ in the upper vacuum semispace
(z > D) can be represented as a sum of the incident and
reflected waves with amplitudes Hi and Hr, respectively.
The field H− in the vacuum semispace below the sample
(z < 0) is the transmitted wave with amplitude Ht. The
upper (H+) and lower (H−) fields and can be written in

FIG. 1: (Color online) Geometry of the problem. A slab of
layered superconductor is irradiated from the upper side by a
p-polarized electromagnetic wave.

the following form,

H+ = Hi cos[kxx− ωt− kz(z −D)]

+Hr cos[kxx− ωt+ kz(z −D) + α], (3)

H− = Ht cos(kxx− ωt− kzz + β). (4)

Here

kx =
ω

c
sin θ, kz =

ω

c
cos θ, (5)

are the components of the wave-vector ~ki of the incident
wave, α and β are the phase shifts of the reflected and
transmitted waves. Using Maxwell equations one can
derive the electric field components in the vacuum:

E+
x = −Hi cos θ cos[kxx− ωt− kz(z −D)]

+Hr cos θ cos[kxx− ωt+ kz(z −D) + α], (6)

E+
z = −Hi sin θ cos[kxx− ωt− kz(z −D)]

−Hr sin θ cos[kxx− ωt+ kz(z −D) + α], (7)

E−x = −Ht cos θ cos(kxx− ωt− kzz + β), (8)

E−z = −Ht sin θ cos(kxx− ωt− kzz + β). (9)

C. Electromagnetic field in the layered
superconductor

The electromagnetic field inside a layered superconduc-
tor slab is determined by the distribution of the gauge-
invariant phase difference ϕ(x, z, t) of the order parame-
ter between the layers (see, e.g., Ref. 1),

∂Hs

∂x
=
H0

λc

( 1

ω2
J

∂2ϕ

∂t2
+ sinϕ

)
, (10)

Esx = −λ
2
ab

c

∂2Hs

∂z∂t
, Esz =

H0λc
c

∂ϕ

∂t
.
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Here H0 = Φ0/2πdλc, Φ0 = πc~/e is the magnetic flux
quantum, λab and λc = c/ωJε

1/2 are the London pene-
tration depths across and along the layers, respectively.
The Josephson plasma frequency is defined as

ωJ =

√
8πedJc

~ε
, (11)

where Jc is the critical value of the Josephson current
density, ε is the permittivity of the dielectric layers in
the slab. We omit the relaxation terms because, at low
temperatures, they do not play an essential role in the
phenomena considered here.

The phase difference ϕ obeys a set of coupled sine-
Gordon equations, that, in the continuous limit, takes
on the following form (see, e.g., Ref. 1 and references
therein):(

1− λ2
ab

∂2

∂z2

)[
1

ω2
J

∂2ϕ

∂t2
+ sinϕ

]
− λ2

c

∂2ϕ

∂x2
= 0. (12)

In this paper, we study the case of weak nonlinear-
ity, when the Josephson current density Jc sinϕ can be
expanded as a series for small ϕ, up to the third order,
Jc sinϕ ≈ Jc(ϕ−ϕ3/6). We consider frequencies ω close
to ωJ and introduce a dimensionless frequency,

Ω =
ω

ωJ
,

close to one. In this case, in spite of the weakness of the
nonlinearity in Eq. (12), the linear terms nearly cancel
each other, and the term ϕ3 plays a crucial role in this
problem. Moreover, when the frequency ω is close to
the Josephson plasma frequency ωJ , one can neglect the
generation of higher harmonics11,13.

It should be also noted that the nonlinearity provides
an effective decrease of ωJ . Indeed, the expression in the
square brackets in Eq. (12) can be presented in the form
[(ωeff

J )−2∂2ϕ/∂t2 + ϕ], where

ωeff
J ≈ ωJ

(
1− ϕ2

12

)
.

For not very small ϕ, the frequency of the incident
wave can be greater than the effective Josephson plasma
frequency ωeff

J and, therefore, the nonlinear Josephson
plasma waves can propagate across the superconducting
layers.

The z-component of the electric field induces a charge
in the superconducting layers when the charge compress-
ibility is finite. This results in an additional interlayer
coupling (so-called, capacitive coupling). Such a cou-
pling significantly affects the properties of the longitu-
dinal Josephson plasma waves with wave-vectors per-
pendicular to the layers. The dispersion equation for
linear Josephson plasma waves with arbitrary direction
of the wave-vectors, taking into account capacitive cou-
pling, was derived in Ref. 19. According to this disper-
sion equation, the capacitive coupling can be safely ne-
glected in our case, when the wave-vector has a compo-
nent kx ∼ ω/c along the layers, due to the smallness of

the parameter R2
Dε/sd. Here RD is the Debye length for

a charge in a superconductor.
We seek a solution of Eq. (12) in the form of a wave

running along the x-axis,

ϕ(x, z, t) = a(z)|1− Ω2|1/2 sin
[
kxx− ωt+ η(z)

]
, (13)

with the z-dependent amplitude a and phase η. We in-
troduce the dimensionless z-coordinate,

ζ =
κz

λab
, κ =

λckx
|1− Ω2|1/2

, (14)

and the normalized thickness of the sample δ = Dκ/λab.
Substituting the phase difference ϕ given by Eq. (13)

into Eq. (12), one obtains two differential equations for
the functions η(ζ) and a(ζ). The first of them is

η′(ζ) =
L

h2(ζ)
(15)

where L is an integration constant, prime denotes deriva-
tion over ζ, and

h(ζ) = ±a(ζ)− a3(ζ)

8
. (16)

The sign in this equation is plus for Ω < 1 and minus
for Ω > 1, i.e., it is opposite to the sign of the following
important parameter, the

frequency detuning = Ω− 1.

The coupled sine-Gordon equations (12) give also the
differential relation for h(ζ):

h′′ = a+
L2

h3
+

h

κ2
. (17)

Equations (13), (15), (16), and (17) allow one to calcu-
late the distribution of the phase difference ϕ(x, z, t) and
then, using Eq. (10), the electromagnetic field inside the
superconducting slab.

III. NONLINEAR RESPONSE OF THE
SUPERCONDUCTING SLAB

A. Main equations

In this section, we analyze the reflectance R and the
surface reactance X of a slab of layered superconductor.
We rewrite the expressions for the magnetic field Hs and
for the x-component Esx of the electric field inside the
slab using Eqs. (10) and Eq. (13),

Hs(x, ζ, t) = −H0
|1− Ω2|

κ
h(ζ) cos(kxx− ωt+ η(ζ)

)
,

(18)

Esx(x, ζ, t) = H0Γ
|1− Ω2| cos θ

κ

[
h(ζ) sin

(
kxx− ωt+ η(ζ)

)]′
.
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Here we introduce the parameter

Γ =
λabκ

λc
√
ε cos θ

,

which is small for the typical layered superconductors,
Γ� 1. This is assumed throughout the paper.

Now we can find the unknown amplitudes of the re-
flected and transmitted waves by matching the magnetic
fields and the x-components of the electric field at both
interfaces (at z = 0 and z = D) between the vacuum
and the layered-superconductor. Using Eqs. (18) for the
fields in the superconductor and Eqs. (3), (4), (6), and
(8) for the fields in the vacuum, we obtain the following
three equations for the amplitudes a(0), a(δ) and their
derivatives on both surfaces of the layered superconduc-
tor: (

h(δ) +
ΓL

h(δ)

)2

+ Γ2
[
h′(δ)

]2
= 4h2

i , (19)

h2(0) = ΓL, (20)

a′(0) = 0. (21)

Here

hi =
Hi

H0

κ

|1− Ω2|
(22)

is the normalized amplitude of the incident wave. These
three equations, together with the coupled sine-Gordon
equations (17), determine the integration constant L and
the spatial distribution of the magnetic field h(ζ) inside
the layered superconductor for each amplitude hi of the
incident wave. It is important to note that the constant L
defines directly the reflectance R of the superconducting
slab. Indeed, according to Eq. (20), we have

R = 1− h2(0)

h2
i

= 1− Γ

h2
i

L. (23)

The reflectance X can be calculated as follows,

X = X0
1−
√

1− S2

S
, S =

Γh(δ)h′(δ)

2
√
Rh2

i

. (24)

The nonlinearity of Eq. (17) leads to the multival-
ued dependences of the surface reactance X and the re-
flectance R on the amplitude hi of the incident wave.
In the following subsections, we analyze these unusual
dependences, for both cases of negative (Ω < 1) and pos-
itive (Ω > 1) frequency detunings.

B. Response of a superconducting slab for ω < ωJ

We start with the case when the frequency of the in-
cident wave is smaller than the Josephson plasma fre-
quency. In this frequency range, the linear Josephson

plasma waves cannot propagate in layered superconduc-
tors. This corresponds to an exponentially small trans-
mittance in the slab, due to the skin effect. However, the
nonlinearity promotes the wave propagation because of
the effective decrease of the Josephson plasma frequency.

Solving Eq. (17) with the boundary condi-
tions (19), (20), and (21) one can find the constant L and
the values of h and h′ on the upper interface of the slab
and then calculate the reflectance R and the reactance
X using Eqs. (23) and (24), respectively. Figure 2
demonstrates the numerically-calculated dependences of
X(hi)/X0 and R(hi).

To analyze these dependences, we consider the spatial
distribution of the gauge-invariant phase difference ϕ of
the order parameter and the phase trajectories a′(a). We
show these curves a′(a) in Fig. 3. An increase of the
spatial coordinate ζ [which is essentially z, as defined in
Eq. (14)] from zero to δ corresponds to the moving along
the phase trajectory a′(a). The point ζ = 0 (i.e., z = 0)
corresponds to the starting point on the trajectory.

According to Eq. (21), all phase trajectories start from
the points where a′(ζ = 0) = 0. Different trajectories in
a′ versus a plane can be characterized by the values of
a(ζ = 0) = a0 in these starting points. According to
Eqs. (16) and (20), the value of a0 defines the constant
L and, consequently, the whole trajectory determined by
Eq. (17). Then, the value of the amplitude hi can be
calculated from Eq. (19). So, dependences X(hi) and
R(hi) are parametric with the parameter a0.

The low-amplitude (quasi-linear) branch of the R(hi)
dependence ranges within the interval 0 < hi < (8/27)1/2

of the amplitudes of the incident waves. For small am-
plitudes hi � 1, we deal with a linear problem, when the
phase difference ϕ and the electromagnetic field in the
superconductor can be found in the form of linear com-
binations of exponential functions of z. In this case, the
reactance X and the reflectivity R can be found asymp-
totically for sufficiently,

X(hi � 1) = X0

√
1 + 4Γ̃2 tanh−2 δ̃ − 1

2Γ̃ tanh−1 δ̃
, (25)

R(hi � 1) =
(
1 + 4Γ̃2 sinh−2 δ̃

)−1
,

Here δ̃ = δ
√

1 + κ−2 and Γ̃ = Γ
√

1 + κ−2. This reflec-
tivity is very close to one regardless of the frequency de-
tuning (Ω − 1). As we will see below, the “tanh” and
“sinh” above, for ω < ωJ , will become “tan” and “sin”
for ω > ωJ .

The phase trajectories that correspond to the low-
amplitude solutions occupy the region a < (8/3)1/2.
For small hi, these trajectories are close to the point
(a = 0, a′ = 0) (as an example of such trajectory, see
curve 5 in Fig. 3). An increase of the amplitude hi
leads to the growth of the length of the phase trajec-
tory and this length tends to (a =

√
8/3, a′ = ∞) when

hi → (8/27)1/2 (see curve 1 in Fig. 3).
The high-amplitude branches of the X(hi) dependence

correspond to the solutions with a(ζ) > 81/2. The high-
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FIG. 2: (Color online) Dependences of the surface reac-
tance X [main panel], normalized on value X0, and the re-
flectance R [inset], on the normalized amplitude hi of the inci-
dent magnetic field, Eqs. (24), (1), (23) and (22), for different
values of the negative frequency detuning: (Ω−1) = −4·10−3.
The vertical arrows show the hysteretic jumps when changing
hi. The numbers near the points on the curves correspond
to the same numbers of the phase trajectories a′(a) shown in
Fig. 3. The values of the parameters are: N = 200, thickness
of the slab is D = 400 Å, λc = 4 · 10−3 cm, λab = 2000 Å,
ωJ/2π = 0.3 THz, and θ = 45◦.

amplitude solutions describe nonlinear Josephson plasma
waves that can propagate in the layered superconductor
even for negative frequency detuning (for Ω < 1). The
corresponding phase trajectories are closed curves (see
the curve 4 in the lower panel in Fig. 3) or parts of the
closed curves (e.g., curves 2 and 3). Note that the value
of h is negative for a > 81/2.

The oscillating character of the high-amplitude solu-
tions results in smaller values of the reflectance, com-
pared to the case of quasi-linear solutions. As seen in
Fig. 2, the reflectance varies over a wide range, from
nearly one to zero, depending on the amplitude hi of the
incident magnetic field. It is important to note that the
wavelengths of the nonlinear waves in the superconduc-
tor depend strongly on the incident wave amplitude hi.
So, changing hi one can control the relation between the
wavelength and the thickness of the slab. The reflectance
is very sensitive to this relation, and one can attain the
complete absence of the reflected field by choosing the
optimal value hi,min of the amplitude hi.

For high enough amplitudes hi, the sample thickness
D is larger than the half-wavelength. In this case, the
change of the coordinate ζ in the interval 0 < ζ < δ cor-
responds to the movement along a section of the phase
trajectory loop (see the trajectories 2 and 3 in Fig. 3).
When decreasing hi, the wavelength increases, the move-
ment along the phase trajectory approaches the complete
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FIG. 3: (Color online) Phase trajectories a′(a) for the negative
frequency detuning (Ω − 1) = −4 · 10−3. The numbers near
the curves correspond to the same numbers near points in
Fig. 2. Movement along the trajectories from the points with
a′ = 0 to the certain points, corresponds to the growth of
the spatial coordinate ζ (proportional to z), from zero to δ,
inside the slab. The upper panel shows the region near the
point (a = 0, a′ = 0). The bottom panel shows the region
a >
√

8. The other parameters are the same as for Fig. 2.

loop, and the reflectance of the slab decreases. Finally,
for a specific value of hi, the wavelength becomes equal
to the sample thickness, the phase trajectory draws a
complete loop, the reflectivity becomes equal to zero (see
the trajectory 4 in Fig. 3 and point 4 in Fig. 2). When
hi is near hi,min the reactance becomes close to −X0.

In order to derive an analytical description of the high-
amplitude branches we study two cases: hi ≈ hi,min (and
R � 1) and hi � 1. In the first case the correspond-
ing phase trajectories represent nearly complete loops.
So, the amplitude dependence of the reflectance can be
found asymptotically for not very thick slabs, δ . 1, and
presented in the following form,

R(hi) = 1−
(
hi,min

hi
+

2Γ

δ

√
1−

h2
i,min

h2
i

)2

. (26)
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In the second case, when hi � 1 or a0 � 1, the asymp-
totical expression for reflectance is

R(hi) = 1− 4Γ2

δ2
. (27)

It can be easily seen that the last asymptotics can be
obtained from Eq. (26) by the formally substitution hi →
∞ in it. So, Eq. (26) can be treated as an interpolation
formula for the whole high-amplitude branch of the R(hi)
dependence.

In its turn, to describe the high-amplitude branch of
the dependence X(hi) we return to the cases: hi ≈ hi,min

(and R� 1) and hi � 1. In this two cases it can be write
easily:

X(hi)

X0
= ±

1−
√
R(hi)√

1−R(hi)
. (28)

Here sign “+” is for hi � 1 and sign “−” is for hi ≈
hi,min. In the intermediate region of hi the reactance
changes the sign when the amplitude of the incident wave
arrives at δ2/

√
2. So, for δ & 1 this value appears at the

relatively great amplitudes and we can use Eq. (28) with
sign “−” for almost whole high-amplitude branch of the
X(hi) dependence.

In the case of the absence of the reflected wave (R = 0)
both the electric and magnetic fields take on the same
values on the upper and lower surfaces of the slab. Thus,
the amplitudes of the incident and transmitted waves are
equal. For not very thick slabs, δ . 1, it happens for the
amplitude hi,min ' 21/2Γδ. The corresponding spatial
distribution of the magnetic field is shown by the solid
curve in Fig. 4.

The nontrivial feature ofX(hi) dependence can be seen
from its hysteretic behavior with jumps. Let the ampli-
tude hi of the incident wave increase from zero. In this
case, the reactance is close to zero, and the X(hi) depen-
dence follows the low-amplitude branch (see Fig. 2) and
the reactance increases slowly near zero with hi. When
the amplitude reaches the critical value (8/27)1/2 (point
1), further movement along this branch is impossible,
and a jump to point 2, on the high-amplitude branch,
occurs. A further increase in the amplitude hi results in
a monotonic increase of the surface reactance X.

Afterwards, if the amplitude hi starts to decrease, then
the X(hi) dependence does not follow the same track.
Indeed, when the point 2 is passed, the reactance con-
tinues to follow the high-amplitude branch. Decreasing
the amplitude hi results in a further decrease of the sur-
face reactance. When X becomes equal to −X0 (point
5), it is not possible to continue the movement along
the high-amplitude branch, and a return jump to the
low-amplitude branch occurs. The analogous behavior is
observed for the R(hi) dependence (see Fig. 2).

It should be noted that the jump from the low-
amplitude branch (where the almost total reflection ob-
served, R ∼ 1) to the high-amplitude one (with smaller
reflectivity) can be observed when changing the wave fre-
quency ω for the constant amplitude Hi of the incident
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FIG. 4: (Color online) Spatial distribution of the amplitude
h of the magnetic field inside the superconducting plate. The
numbers near the curves correspond to the same numbers
near points in Fig. 2. Inset shows curves 5 and 1 on a large
scale. Point 1 corresponds to the low-amplitude branch of the
R(hi) and X(hi) dependences, when the reflection coefficient
is close to one, and the reactance and the amplitude h of the
magnetic field near the lower interface (z = 0) of the slab
are exponentially small. The reflectance R for the point 4 is
equal to zero, and the amplitudes of the fields near the upper
and lower interfaces of the slab coincide. Here, the frequency
detuning is (Ω−1) = −5 ·10−5, and the other parameters are
the same as for Fig. 2.

wave. This jump occurs when the frequency detuning
(1− Ω) becomes equal to the threshold value

(1− Ωcr) =
3

4

(
λckx

Hi

H0

)2/3

.

C. The reflective characteristic of a
superconducting slab for ω > ωJ

Now we study the surface reactance and reflectivity
of a layered superconducting slab for frequencies higher
than the Josephson-plasma frequency, Ω > 1. Contrary
to the case Ω < 1, even linear Josephson plasma waves
can propagate in the layered superconductor. Therefore,
the slab is not almost opaque and the reflectivity can vary
over a wide range, depending on the relation between the
wavelength and the thickness of the slab. Asimptotically
we have

X(hi � 1) = X0

√
1 + 4Γ̃2 tan−2 δ̃ − 1

2Γ̃ tan−1 δ̃
, (29)

R(hi � 1) =
(
1 + 4Γ̃2 sin−2 δ̃

)−1
.

Note that the “tanh” and “sinh” in Eq. (25), for ω < ωJ ,
has now been replaced by the “tan” and “sin” in Eq. (29),
for ω > ωJ .
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FIG. 5: (Color online) Dependence of the normalized reac-
tance X/X0 [main panels] and the reflectivity R [insets] on the
amplitude hi of the incident wave for different positive values
of the frequency detuning: Ω−1 = 10−2, or δ̃/π = 1.03 (upper

panel and inset); Ω−1 = 1.2·10−2, or δ̃/π = 0.94 (lower panel
and inset). Arrows show the change of the transmittance
when changing hi. The sample thickness is D = 4 · 10−5 cm,
and other parameters are the same as in Fig. 2.

In the nonlinear case, changing the amplitude hi, one
can control the relation between the wavelength of non-
linear wave and the thickness of the slab and, thus, the
reflectivity is tunable by the amplitude of the incident
wave. Figure 5 shows the R(hi) and X(hi) dependences
for different positive frequency detunings.

The analysis based on Eqs. (16) (with choice of the sign
“−”), (17), (19), (20), (21), (23) and (24) shows that the
dependences R(hi) and X(hi) are reversible when the
frequency detuning is larger than some threshold value.
An example of such a reversible R(hi) dependence is pre-
sented by the dotted curve in Fig. 5.

The hysteresis in the R(hi) and X(hi) dependences
appears for frequency smaller than the threshold value:

ω < ωthr ≈ ωJ +

(
D
√
ε sin θ√

2πλab

)2

ωJ . (30)

In this case, the reflectance can reach the zero value when

0 1 2

-3

0

3

 

 

a'
 =

 d
a/

d

Amplitude a 

 

 

2

4 3
1

FIG. 6: (Color online) Phase trajectories a′(a) for the positive
frequency detuning (Ω − 1) = 10−2. The numbers near the
curves correspond to the same numbers of points shown in
the upper panel in Fig. 5. The solid lines show the portions
of the phase trajectories that correspond to 0 < ζ < δ. The
lower and upper surfaces of the slab correspond to the solid
circles on the trajectories. The other parameters are the same
as for Fig. 2.

the incident wave amplitude hi is first increased and then
decreased. Namely, the incident wave amplitude hi is de-
creased after it is increased and a jump of R(hi) occurs
from the low-amplitude branch to the high-amplitude
one (see the solid curve and the inset in Fig. 5). One
can derive the asymptotic equation for the optimal value
hi,min of hi when the superconducting slab becomes to-
tally transparent (R = 0),

hi,min '
3
√

3

4I2
Γδ2, (31)

where

I =

1∫
0

dx√
1− x4/3

=
3

4
B
(1

2
,

3

4

)
≈ 1.7972

and B(x, y) is the Euler integral of the first kind.
It should be noted that the cause of the hysteresis

for the positive frequency detuning differs from one for
Ω < 1. This point is studied in more details in the next
Section.

IV. MECHANICAL ANALOGY

The problem discussed in this paper has a deep and
very interesting mechanical analogy. Indeed, Eqs. (17)
and (15) describe a motion of a virtual particle with unite
mass in a centrally symmetric potential. In this analogy,
the amplitude and phase [for x = 0 and t = 0] of the
magnetic field, and the coordinate ζ across the layers of
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the superconductor play the roles of the radial coordinate
of the particle, its polar angle, and time, respectively. For
example, accordingly to Eq. (10) for 0 < ζ < δ (in the
slab) the radial coordinate is −h(ζ), the polar angle is
η(ζ). Moreover, the constant L in Eqs. (17) and Eq. (15)
can be regarded as the conserved angular momentum of
the particle for 0 < ζ < δ.

Integrating Eq. (17) for the radial motion of the parti-
cle, we obtain the particle energy conservation law,

(h′)2

2
+ Ueff(h) = E , (32)

with the effective potential

Ueff(h) =
L2

2h2
+
h2

2κ
−
∫ h

a(h̃) dh̃. (33)

The first term in Eq. (32) describes the kinetic energy of
the radial motion of the particle, E is the total energy of
the particle. The first term in Eq. (33) is the centrifugal
energy and the last two terms represent the potential of
the central field.

The plot of the dependence Ueff(h) is shown in Fig. 7
for the case of negative detuning (Ω < 1). This de-
pendence is three-valued and corresponds to the three
branches of the function a(h) (see Eq. (16)). Thus, the
multivaluedness of the dependence a(h) results in the
multivaluedness of the effective potential Ueff(h) and,
therefore, there exist several possibilities for the parti-
cle motion. In terms of our electrodynamical problem,
this means that several field distributions in the super-
conductor can be realized for the same amplitude hi of
the incident wave.

Curve I in Fig. 7 shows the potential that corresponds
to the low-amplitude solutions of our electrodynamical
problem. The motion of the particle in this potential is
monotonic that corresponds to the monotonic decrease
of the field deep into the superconductor. According to
Eq. (21), the stop-point (???) of the particle (h′ = 0)
corresponds to the lower boundary of the superconduc-
tor.

Since curve I is terminated in the point h = (32/27)1/2,
it cannot define the particle motion for high enough h.
In this case, the particle moves in the potential described
by curve II in Fig. 7. This motion is finite and period-
ical. It corresponds to the high-amplitude solutions of
our electrodynamical problem. Curve III in Fig. 7 repre-
sents a branch of the Ueff(h) dependence which cannot be
realized when changing the amplitude hi of the incident
wave.

Figure 8 shows a trajectory of the particle. This tra-
jectory consists of three parts: the dotted circle with ra-
dius ht = hi

√
1−R for ζ < 0 (the lower vacuum semis-

pace); the peculiar solid curve for 0 < ζ < δ (the layered
superconducting slab); the dashed ellipse with semiaxes

hi
√

1 +R and hi
√

1 +R
(
1−
√
R
)2
/(1−R) for ζ > δ (the

upper vacuum semispace).
It is important to note that the trajectory is continu-

ous, but it has turn points. Equations (19), (20), and (21)
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FIG. 7: (Color online) Dependence of the effective potential
Ueff defined by Eq. (33) on the radial coordinate h. The move-
ment of the particle in this potential represents the mechanical
analog for the spatial distribution of the amplitude h of the
magnetic field in the superconductor. The main panel shows
curves I, II, and III that correspond to the three branches of
the a(h) dependence for the case of negative frequency detun-
ing, Ω < 1. The inset shows the Ueff(h) curve for the opposite
case, Ω > 1, when only one branch of the a(h) dependence
exists. The value of constant L is 0.1.

mean continuity of the magnetic field H, thus, the con-
tinuity of the particle coordinate. However, these equa-
tions do not imply the continuity of the particle velocity.
Indeed, since the tangential component of the electrical
field Ex, it can be calculated that on the surfaces of the
layered superconducting slab (ζ = 0 and ζ = δ) the direc-
tion of the velocity changes to opposite and its magnitude
experiences a jump:

v(ζ → −0)

v(ζ → +0)
=
v(ζ → δ + 0)

v(ζ → δ − 0)
= kJkλ

2
ab, (34)

where k = ω/c and kJ = ωJ/c. As mentioned, the angu-
lar momentum is conserved for 0 < ζ < δ and equal to L.
In the vacuum semispaces near the surfaces of the super-
conductor (ζ = 0 and ζ = δ), it is equal to −LkJkλ2

ab, so
the angular momentum experiences jumps at ζ = 0 and
ζ = δ.

Now, we discuss the case of positive-frequency detun-
ing. As seen in the inset in Fig. 7, the dependence of the
potential Ueff on the radial coordinate h of the particle
is single-valued. This is because the dependence a(h) in
Eq. (16) is single-valued in this case. Nevertheless, the
dependence X(hi) can be multivalued even for Ω > 1
(see Fig. 5). This feature seems to be paradoxical. In-
deed, the particle motion is completely defined for any
initial conditions. However, an assignment of the value
of hi in relations (19), (20), and (21) does not mean an
imposition of definite initial conditions for the particle
motion. To illustrate this nontrivial feature of the elec-
tromagnetic wave transmission through a slab of layered
superconductor, let us now consider the inverse problem.
We wish to find the amplitude hi of the incident wave
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FIG. 8: (Color online) The trajectory of the virtual parti-
cle consisting of three parts, which correspond to three in-
tervals of the time ζ: the lower vacuum semispace, ζ < 0
(dotted line); the layered superconducting slab, 0 < ζ < δ
(solid line); the upper vacuum semispace, ζ > δ (dashed
line). Arrows shows the direction of the virtual particle mo-
tion when increasing the time ζ. The negative frequency de-
tuning (Ω−1) = −2 ·10−5, the normalized thickness δ = 0.18,
the incident amplitude hi = 0.004, the reflectivity R = 0.7,
X = −0.22X0 and other parameters are the same as in Fig. 2.

that is necessary to obtain a given value ht of the trans-
mitted wave,

ht =
Ht

H0

κ

|1− Ω2|
. (35)

According to Eq. (20), the value of ht defines unambigu-
ously the angular momentum L = h2

t/Γ of the particle.
On the basis of the motion equation (17) and the bound-
ary condition Eq. (20) and (21), we can see that ht de-
termines the trajectory in a single way. So, Eqs. (24)
and (19) gives that the dependences X(ht) and hi(ht)
should be single-valued. However, this dependences is
nonmonotonic if the condition Eq. (30) is satisfied. As
a result, the dependence X(hi) appears to be multiple-
valued.

V. CONCLUSION

In this paper we describe a nonlinear phenomenon in
layered superconductors. We show that the reflectivity
R and the surface reactance X of a superconducting slab
are sensitive to the amplitude of the incident wave due
to the nonlinearity of the Josephson relation for the c-
axis current. As a result, these quantities vary over a

wide range [R from near 1 to 0 and X from 0 to −X0,
Eq. (1)], when changing the amplitude of the incident
electromagnetic wave, and show the hysteretic behavior.
It is important to note that, for frequencies close to the
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FIG. 9: (Color online) Solution of the inverse problem: de-
pendences of the amplitude hi of the incident wave and the
normalized reactance X/X0 on the amplitude ht of the trans-
mitted wave. The values of the parameters and the num-
bers near the indicated points are the same as in the main
panel in Fig. 5. The dependences plotted by dotted curves
are monotonic, leading to the single-valued dependence X(hi)
(the lower panel in Fig. 5). The solid-and-dashed curves show
the nonmonotonic behavior that results in the multivalued de-
pendence X(hi) (the solid curve in the upper panel in Fig. 5).

Josephson plasma frequency, this phenomenon can be ob-
served even in the case of weak nonlinearity, when the
interlayer phase difference ϕ is small, ϕ� 1.
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