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ABSTRACT: The reactivity of chemically isolated lignocellulosic blocks, namely, α-cellulose, holocellulose, and lignin, has been
rationalized on the basis of the dependence of the effective activation energy (Eα) upon conversion (α) determined via the
popular isoconversional kinetic analysis, Friedman’s method. First of all, a detailed procedure for the thermogravimetric data
preparation, kinetic calculation, and uncertainty estimation was implemented. Resulting Eα dependencies obtained for the slow
pyrolysis of the extractive-free Eucalyptus grandis isolated α-cellulose and holocellulose remained constant for 0.05 < α < 0.80 and
equal to 173 ± 10, 208 ± 11, and 197 ± 118 kJ/mol, thus confirming the single-step nature of pyrolysis. On the other hand, large
and significant variations in Eα with α from 174 ± 10 to 322 ± 11 kJ/mol in the region of 0.05 and 0.79 were obtained for the
Klason lignin and reported for the first time. The non-monotonic nature of weight loss at low and high conversions had a direct
consequence on the confidence levels of Eα. The new experimental and calculation guidelines applied led to more accurate
estimates of Eα values than those reported earlier. The increasing Eα dependency trend confirms that lignin is converted into a
thermally more stable carbonaceous material.

1. INTRODUCTION

The knowledge of the complex thermal behavior of plant
biomass is a key element in enabling the industrial application
of processes that convert biomass efficiently into fuels or
valuable chemicals. It is crucial to understand the role played by
the different main components of the biomass (i.e., hemi-
celluloses, cellulose, and lignin) in the degradation process
because their chemical reactivity is substantially different.
Providing relevant macroscopic kinetics information on
pyrolysis is a challenge considering the heterogeneity of
biomass substrates and the number of experimental kinetic
techniques, fundamental rate equations, and degradation
models.1

Since the early 20th century, thermal analysis techniques
have been increasingly used to measure physical and chemical
changes of solids/liquids as a function of the temperature/time
in controlled conditions. In particular, the commonly used
thermogravimetric analysis (TGA) that measures mass changes
of materials is seen as a useful tool to determine the kinetic
parameters of solid-state reactions. A considerable number of
methods capable of quantitatively characterizing these reactions
have been developed over the years and are generally
categorized as model-fitting and model-free methods. In this
study, we have chosen to use the classical differential
isoconversional analysis, named Friedman’s method, to evaluate
the activation energy dependency as a function of the
conversion degree without any previous knowledge of the
reaction model.2

Although many concerns and issues were raised on the
aptitude of isoconversional differential methods in determining
reliable kinetic parameters (because of their high sensitivity
toward data noise3), the analysis of Eα dependency using these

approaches has been proven to be helpful in exploring
mechanisms and prediction of kinetics for synthetic poly-
mers.2,4 The interpretation of the dependence of activation
energy values upon the conversion may provide useful
mechanistic clues, such as the number of presumable reaction
steps and/or important indications for model-fitting meth-
ods.5,6 For example, it has been demonstrated that the use of
Friedman’s method applied to deconvoluate thermogravimetric
signals of three pseudo-components obtained from the whole
experimental signal of the raw material could satisfactorily
predict the kinetic rate of the same plant material.6 The same
authors observed that the resulting apparent activation energy
for these pseudo-components was consistent with values
reported for model compounds ascribed as hemicelluloses,
cellulose, and lignin. The pyrolysis of the raw material was
modeled with good approximation by three independent
reactions, whose kinetic parameters were determined using
model-free Friedman’s kinetic method.6

It is then not surprising that numerous attempts in modeling
pyrolysis kinetics based on global reaction models or the
individual contribution of model compounds have been made
and often failed at describing the whole degradation process of
plant biomass.7 One reason that is frequently invoked to
explain these discrepancies is that a mixture of model
compounds is not representative of the whole lignocellulosic
structure made up by three main natural biopolymers (i.e.,
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hemicelluloses, cellulose, and lignin). Few studies have reported
encouraging results when using isolated natural biocompo-
nents. For example, Orfao et al.7 managed to predict with a
good confidence interval the solid-phase pyrolysis kinetics of
lignocellulosic materials using two model compounds and an
extracted lignin compound assuming a first-order reaction for
the three parallel reactions, thus indicating that the accurate
description of the peculiar behavior of lignin is very important
to successfully model biomass pyrolysis. In a more recent study,
Lv et al.8 isolated hemicelluloses from corn stalk and provided
Eα values ranging between 211.6 and 213.3 kJ/mol depending
upon the non-isothermal methods. Gasparovie et al.9 could not
describe the pyrolysis of biomass combining both Eα values,
with 132.9, 175.6, and 101.0 kJ/mol ascribed to extracted
hemicelluloses, cellulose, and lignin, respectively, and applying a
distribution activation energy model. Although they did not
provide any details on extraction methods and chemical
characteristics of biopolymers used, they attributed discrep-
ancies to the occurrence of synergistic mechanisms between
compounds that were not described. The Eα value reported for
extracted lignins, which is slightly higher than typical values
found in the literature, 46−110 kJ/mol,10−12 appeared to be
still too low to be representative of the complex nature of
lignin.
On the basis of these previous works, this study evaluates the

aptitude of Friedman’s isoconversional method to provide
reliable Eα levels of chemically isolated biocomponents (i.e., α-
cellulose, holocellulose, and lignin) on which mechanistic
conclusions have been drawn. To do this, conventional wet
chemical methods have been used to extract the carbohydrate,
cellulosic, and lignin solid fractions, which have been
subsequently exposed to pyrolysis conditions. Then, a
comprehensive calculation method has been implemented to
determine the effective activation energy. This procedure aimed
at reducing experimental and calculation artifacts during TGA
data collection and their preparation and evaluating confidence
limits and standard deviations related to Eα. Considering the
accuracy and reliability of Eα values obtained for each
biocomponent, the prediction of overall and apparent Eα for
biomass was attempted.

2. MATERIALS AND METHODS
2.1. Raw and Extracted Materials. Holocellulose, α-cellulose,

and lignin fractions were isolated from a subsample of air-dried and
milled Eucalyptus grandis provided by Mondi from the Kwazulu-Natal
coastline. The raw eucalyptus wood chips were ground using a SM 100
Retsch mill and sieved with an AS 200 Retsch shaker. The biomass
particle size range from 250 to 425 μm was used for lignocellulosic
characterization. The compositional analysis was carried out according
the Technical Association of the Pulp and Paper Industry (TAPPI)
standard methods for characterizing woody biomass. Extractives were
removed using a 1:2 volume ratio of 95% ethanol and cyclohexane
(instead of benzene as prescribed in the standard method T264 om-
88), followed by distilled water extraction. Klason lignin was extracted
using an adapted standard method T222 om-88.13 A first hydrolysis of
the biomass with 72% sulfuric acid was followed by a second
hydrolysis with 3% H2SO4 for 1 h in an autoclave at 1.25 bar and 122
°C. The holocellulose fraction was prepared following Browning’s
extraction method.14 Extraction of holocellulose was achieved by
adding extracted biomass (5 g) to demineralized water at 70−80 °C
(160 mL), glacial acetic acid (0.5 mL), and sodium chlorite (1.5 g)
with stirring, followed by two more additions of acetic acid and sodium
chlorite at 1 h intervals. Once cooled (10 °C), the mixture was filtered.
The solid residue was then washed with high-performance liquid
chromatography (HPLC)-grade acetone (50 mL) and HPLC-grade

ethanol (100 mL) and dried. α-Cellulose was obtained by dissolution
of the holocellulose extract (3 g) in a 17.5% (w/w) sodium hydroxide
solution (35 mL) under stirring at 20 °C, followed by three additions
of NaOH solution (in total 45 mL) at 10 min intervals. The residue
was washed with a 10% acetic acid solution (40 mL) and distilled
water and finally filtered. Both fractions were determined from the
weight ratio of the solid residue after extraction and drying (105 °C).
All isolated materials were stored in sealed glass flasks. The resulting
lignocellulosic composition was 2.6 (±0.2) wt % [on a dry and ash-free
basis (daf)] extractives, 82.2 (±2.4) wt % (daf) holocellulose, 57.5
(±0.3) wt % (daf) α-cellulose, and 15.2 (±1.5) wt % (daf) lignin.15

2.2. Ultimate and Proximate Analyses. Proximate analysis was
determined in accordance with the ASTM E1131 standard procedure
using a TGA/DSC 1-LF1100 Mettler Toledo. Ultimate analysis was
performed using a TruSpec Micro from LECO in accordance with
ASTM D5291-10. The calibration of C, H, N, and S contents was
performed using the standard sulfamethazine (QC, LECO), and the
results were expressed on a dry basis.

2.3. TGA: Collection of Data. TGAs were conducted using a
TGA/DSC 1 (LF 1100) unit (Mettler Toledo) thermogravimetric
analyzer. For all TGA experiments, a nitrogen flow rate of 20 mL/min
was used as protective gas, while 50 mL/min was used as reactive gas.
A constant sample size of 15 mg was placed in a 70 μL alumina
crucible. These samples were heated from 313 to 873 K using slow
reactor heating rates (10, 20, 30, and 50 °C/min). To minimize
systematic errors in the temperature measurement that may have a
large impact on the final values of kinetic parameters if not corrected,16

two thermocouples (i.e., oven and sample thermocouples) were used
and calibrated using three different pure metals (indium, aluminum,
and gold) provided by Mettler Toledo. Resulting onset temperatures
for both standards were 156.4 °C for In, 659.4 °C for Al, and 1063.3
°C for Au. When past recommendations on good thermal analysis
practices provided by Burnham and Braun17 and more recent
recommendations provided by the ICTAC Kinetics Committee18 are
taken into account, a blank correction was applied to each TGA curve.
Indeed, integral TGA data sets obtained under the conditions of
continuous heating require a baseline correction for the buoyancy
effect that reveals itself as an apparent mass gain.

2.4. Kinetic Method and Procedure. As clearly demonstrated by
Arnold et al.19 and more recently by White et al.,1 the recurrent
inconsistency of Eα values found in the literature is primarily
influenced by the experimental conditions but also by the choice of
the kinetic method, thus making the comparison to values from the
literature difficult. The non-isothermal isoconversional method,
Friedman’s method, has been selected in this study for the main
reasons mentioned earlier in the Introduction. Non-isothermal and
heterogeneous solid-state reactions are in general described by the
following equation:
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where α is the extent of the conversion, t is the time, A is the pre-
exponential factor, Eα is the activation energy, R is the gas constant, T
is the temperature, f(α) is the reaction model, m0 is the initial mass of
reactant, mi is its mass at a certain time during the reaction, mf is the
final mass at the end of reaction, and β stands for the heating rate. The
actual transformation of eq 1 that consists of replacing the temporal
differential by eq 3 under non-isothermal conditions may have
important implications when step reaction kinetics are studied, and we
must “abandon the notion that a single activation energy controls the
temperature dependence of the reaction rate throughout the entire
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duration of a solid state reaction” as stated by Vyazovkin and Wight.20

Once again, on the basis of past recommendations,17,18 an automated
and rigorous methodology to determine kinetic parameters was
implemented using MATLAB (R2015a, version 8.5.0). The main
actions that were undertaken are summarized by the flow diagram
(Figure 1) and separated in two main stages: data preparation and
kinetic calculation.
2.4.1. Data Preparation. In the first place, the dehydration stage

that is clearly separated from the overall pyrolysis stage under slow
pyrolysis (Figure 2) was removed considering the ASTM E1131
method, which recommends the center of the first mass loss plateau as

the end of the dehydration stage. The selected average temperatures
for each run are shown in Supplementary Table 1 of the Supporting
Information. The weight data sets were normalized on the initial mass
at this average temperature, and the extent of reaction was expressed
by eq 2.

Smoothing of the data was applied before their derivation (Figure
2) because differentiating integral data tends to magnify noise,21 which
can lead to systematic calculation errors and, thus, affect the
confidence interval of Eα. This can be avoided by smoothing the
data before their derivation22 but also using a reasonable amount of
weight loss measurements for small time intervals and, thus, by making
dα (eq 1) infinitesimal, which is an important prerequisite for applying
Friedman’s method.23,24 A decreasing data collection interval of 0.6,
0.4, 0.3, and 0.2 s was set for increasing reactor heating rates of 10, 20,
30, and 50 °C/min, respectively. Nevertheless, it is important to
mention that selecting small data collection rates (0.2−0.6 s) may
increase experimental noise as a result of the non-monotonic loss in
weight during the reaction. The method by Savitzky and Golay was
applied to smooth data. This latter was found superior to the adjacent
averaging method because it uses a polynomial of high order to
describe curves.22 Once filtered, the data were derived using eqs 4 and
6 and eq 5 (Figure 1) to determine boundaries and intermediate
points. Finally, a last cleaning/filtering stage consisting of the removal
of negative calculated derivatives and null calculated derivatives was
included.

2.4.2. Kinetic Calculation. Friedman’s analysis based on the
Arrhenius equation applies the logarithm of the conversion rate dα/
dt (eq 1) as a function of the reciprocal temperature at different
degrees of the conversion α as follows:

α α= −
α
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α
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Figure 1. Step-by-step flow diagrams for data preparation and kinetic calculation.

Figure 2. Thermogravimetric (TGA) and derivative (DTG) curves for
extracted E. grandis, holocellulose, α-cellulose, and lignin at 10 °C/
min.
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Because f(α) is constant at each conversion degree αi, the method is
named “isoconversional”. Once ln(dα/dt) versus 1/T was plotted, an
interpolation procedure was then applied to determine isoconversional
couple points [1/T and ln(dα/dt)], where the experiments at different
heating rates would correspond to the same degree of conversion. A
first approximation to robust (local) linear interpolation, addressing
some of the experimental issues (for example, a small sample interval
may lead to the recording of the same values of consecutive weight
fractions, and/or the presence of noise causes dependent variables to
be non-monotonic) has been applied. The natural ordering of the
weight fraction data was considered as informative, i.e., descending
order from 1 (this follows time progression as well). This interpolation
procedure is fully described in Supplementary Information 2 of the
Supporting Information, with Supplementary Figure 2 of the
Supporting Information displaying the interpolated values.
The linear dependence of the logarithm of the reaction rate over 1/

T as illustrated by the Arrhenius plots (Figure 3) allows for the

determination of the kinetic parameters, Eα and A, with the slope of
Eα/R and the intercept A. After interpolation, Eα/R was estimated by
linear regression for every four heating rate points combining two
different data sets at a specific extent of conversion based on eq 7.

Finally, the confidence intervals and standard deviations for Eα were
determined according to the traditional linear regression standard
error approach.

3. RESULTS AND DISCUSSION
3.1. Raw Thermogravimetric Results. The interpretation

of derivative thermogravimetric (DTG) curves is often required
as a prerequisite to extract preliminary and important
thermophysical characteristics of materials. The main DTG
peak is usually attributed to the cellulose degradation,
accompanied by a shoulder at the lower temperature, which
is related to the hemicellulose degradation, and a tail at a high

Figure 3. Arrhenius plot for the (a) extracted material, (b) holocellulose, (c) α-cellulose, and (d) lignin.

Table 1. Ultimate and Proximate Analyses of the Materials

raw extracted α-cellulose holocellulose lignin

MCa 6.2 6 4.6 5.8 4.2
Ultimate Analysis (Dry, wt %)a

C 48.67 ± 0.23 49.29 ± 0.08 43.97 ± 0.07 45.64 ± 0.0 60.90 ± 0.81
H 6.10 ± 0.04 6.32 ± 0.03 6.44 ± 0.07 6.02 ± 0.06 5.59 ± 0.13
N 0.09 ± 0.01 0.08 ± 0.01 0.01 ± 0.00 0.10 ± 0.10 0.14 ± 0.01
S 0.66 ± 0.14 0.47 ± 0.15 0.51 ± 0.07 0.35 ± 0.5 0.78 ± 0.01
O 43.95 ± 0.12 43.67 ± 0.19 48.35 ± 0.21 46.51 ± 0.34 30.72 ± 0.96

Proximate Analysis (Dry, wt %)b

VM 86.25 85.36 85.97 83.40 57.28
FC 20.36 14.47 13.42 15.53 41.04
AC 0.53 0.17 0.71 1.39 1.88

aDetermined by ASTM D5291-10. bDetermined by ASTM E113.
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temperature corresponding to the lignin degradation. The
shape and area of the peaks (Figure 1) follow classical trends.
The presence of a larger peak located between 287 and 371 °C
is in general attributed to high concentrations of α-cellulose,
while the presence of a peak in the temperature range of 200−
300 °C confirms the presence of a non-negligible amount of
hemicelluloses. The flat tailing section of the DTG curve is
ascribed to the lignin because it is known to decompose slowly
over a broad temperature range.25

The application of Friedman’s method implies the use of
multiple heating rate programs, thus allowing us to point out
the effect of the heating rate on biomass pyrolysis. An increase
of the reactor heating rate from 10 to 50 °C/min led to an
increase of the maximal temperature, which is usually correlated
to the intrinsic thermal lag of the biomass as a result of the
endothermal character of the pyrolysis reaction (Supplementary
Figure 1 of the Supporting Information). The maximum rates
of maximum loss were also increased. Previous studies that
reported similar trends26,27 ascribed this phenomenon to mass
and heat transfer limitations within the particles, which are
overcome when higher heating rates are applied.
When the heating rate is increased from 10 to 50 °C/min,

the dehydration stage shifts slowly toward the main pyrolysis
peak, as confirmed by the systematic decrease of the
temperature range of the first plateau (Supplementary Table
1 of the Supporting Information). This observation indicates
that the physical water, ascribed as the moisture content (MC)

(Table 1) and generally residing outside the cell walls, should
have a limited impact on the chemistry of slow pyrolysis and,
therefore, on the associated levels of activation energy.28

3.2. Eα Dependency. The Eα dependency (Figure 4) was
determined for both biopolymers isolated according to wet
chemical methods described in section 2.1. The detailed
evaluation of Eα versus α curves for 0.05 < α < 0.79 indicates
that Eα values for the extracted material, holocellulose, and α-
cellulose correspond to unique values of 173 ± 10, 197 ± 11,
and 208 ± 11 kJ/mol, respectively, between conversions of 0.05
and 0.79, while Eα values related to the lignin increase steadily
and sharply from 174 to 322 kJ/mol between 0.05 and 0.79
with increasing uncertainties for lower and higher confidence
intervals (deviations up to 300 kJ/mol when α < 0.05 and α >
0.80). A comparison to the literature is difficult because
substantial variations in the apparent activation energy were
reported for the same type of biomass by White et al.1 They
mentioned that multiple causes (e.g., experimental and
calculation system errors, thermal lag, temperature gradient,
compensation effect, etc.) are at the origin of these variations
and led to major confusion in the interpretation of biomass
pyrolysis kinetics. Despite this confusion, a consistent pattern
for the biomass decomposition process is often observed and
generally described by global reactions, including the
degradation of three pseudo-components, with typical
activation energies of 55−187 kJ/mol for the first pseudo-
component (corresponding to hemicelluloses),7,11,30−32 195−

Figure 4. Eα dependency upon conversion of pyrolysis of (a) extracted biomass, (b) holocellulose, (c) α-cellulose, and (d) lignin. Errors bars
represent confidence intervals.
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236 kJ/mol for the second pseudo-component (cellu-
lose),5,11,31,32 and 35−267 kJ/mol for the third and last
pseudo-component (lignin).10,11,31−33 On the other hand, the
reactivity of the holocellulose fraction that contains both
carbohydrates has received less attention. Eα of this latter was
found equal to 182 kJ/mol.10 Finally, Antal et al.34 concluded
that the pyrolysis of a small sample of pure cellulose is
characterized by an endothermic reaction governed by a first-
order rate law with a high activation energy (ca. 238 kJ/mol).
There is then a good correspondence between the present

and past Eα values for the slow pyrolysis of the raw biomass,
extracted biomass, holocellulose, and α-cellulose. These values
remain constant throughout most of the process, which is, in
general, related to the single-step nature of a reaction.
Nevertheless, the range of Eα values obtained here for lignin
are much higher and also increase with the extent of
degradation (Figure 4), which is representative of the great
variety of bonds29 and the multiphasic character of its
conversion.28 The last phenomenon can be explained by an
increase in the thermal stability as a result of the increasing
aromatic character of the lignin-derived char when higher
temperatures are reached, turning lignin into a highly cross-
linked carbonaceous material.35 If the highest and changing
values obtained for lignin are more appropriate than the low
and often reported literature values to describe lignin behavior,
these differences could also be attributed to alterations of the
chemical structure during the Klason extraction.36 A similar and
increasing trend of Eα values above α = 0.79 for the extracted

materials, holocellulose, and α-cellulose was observed and
ascribed to the formation of an aromatic polycyclic structure37

of a higher thermal stability.38

Greater levels of variance led to larger confidence intervals
below 0.15 and above 0.6, in particular, for lignin (Figure 4),
which can be explained by the non-monotonic loss of weight
collected for low and higher conversions, as already reported in
section 2.4.1. These disturbances can also be directly associated
with the thermal behavior of lignin, namely, its melting at a low
temperature and the high thermal stability of its solid residue at
a higher temperature. These results suggest that alternatives to
thermogravimetric techniques are required to assess the
pyrolysis reaction of lignin over the whole conversion range.

3.3. Prediction of Global Eα. The lack of description of
synergistic mechanisms between pyrolysis products evolved
from the fact that the main biopolymers does not permit the
full description of global pyrolysis kinetics. With the view to
quantify the potential role of these synergies and provide
indices/clues to describe them, the prediction of global Eα was
attempted.
Earlier work of Mamleev et al.5 showed that the overall

degree of cellulose decomposition could be described as a
simple additive relationship between the overall apparent
activation energies and activation energies of three individual
and independent processes. Assuming that the pyrolysis of the
studied woody biomass can be described by two independent
and parallel reactions, we obtained the following relationship
based on Mamleev’s approach:

Figure 5. Comparison of actual (blue) and predicted (orange) Eα dependencies at (a and b) 10 °C/min as duplicates and (c and d) 50 °C/min as
duplicates.
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where Eα,i stands for the activation energy of the biopolymer i,
αi stands for the extent of the conversion, t stands for the time,
and wi stands for the weight fraction.
In this study, the activation energy was predicted on the basis

of the above-mentioned equation, which considers Eα of the
extracted biomass (Eα,E) as a function of the activation energy
for holocellulose (Eα,H) and lignin (Eα,L) weighted by their
respective mass ratio (i.e., wH = 82.2 wt % for the holocellulose
and wL = 12.5 wt % for lignin) for each value of their respective
degree of conversion (αH or αL) at the same T. The
comparison of actual and predicted curves (Figure 5) indicates
that the pyrolysis of the extracted biomass cannot be modeled
by two independent and parallel reactions and even less likely
by three independent and parallel reactions. However, it is
worth noting that both trends are closely related, with an
apparent delay in degradation for the predicted curve.
The aforementioned observations may indicate that, in

addition to the potential alterations of the chemical structure of
holocellulose and lignin that occur during the extraction
treatments25 mentioned in section 3.2, the pyrolysis rate of
biomass is also conditioned by the presence of another
component binding both holocellulose and lignin blocks and
identified earlier as lignocellulosic−carbohydrate complexes
(LCCs) defined as hybrid (carbohydrate−lignin) chemical
structures.39 The consistency of Eα values between actual and
predicted curves suggests that the chemical nature of the LCCs
has a limited impact on biomass reactivity, while its architecture
could promote temperature gradients within biomass. More-
over, these results suggest that any kinetic model should
include at least three parallel reactions representing both
transformations of the carbohydrate fraction, LCCs, and lignin
as an alternative to the traditional pyrolysis kinetic models
developed for wood.40,41

4. CONCLUSION
A new and comprehensive procedure to carefully examine
accuracy and reliability of apparent activation energy (Eα)
values for biomass pyrolysis has been developed on the basis of
past recommendations. TGA combined with Friedman‘s kinetic
approach allowed for the determination of Eα values for the
chemically isolated biopolymers, α-cellulose, holocellulose, and
lignin. The Eα values reported for α-cellulose and holocellulose
were found in accordance with those found in the literature,
while striking differences between Eα values for lignin pyrolysis
were obtained. Although, the actual values proposed in this
study are more reasonable to describe the highly functional
chemical structure of lignins, it is possible that the extraction
technique applied could have affected the original chemical
structure of lignin, thus changing its thermal behavior and,
therefore, the level of energy required for its conversion.
The trends of the Eα dependency shown have then

confirmed and pointed out important mechanistic features. A
set of unique Eα values is needed to describe extracted woody
biomass, holocellulose, and α-cellulose, thus indicating that one
couple of kinetic parameters will suffice to model the pyrolysis
of these biopolymers. On the other hand, the broad distribution
of Eα values characteristic of the lignin degradation needs to be
modeled by a continuous function. The presence of lignin will
therefore confer a peculiar thermal behavior for the overall

plant biomass, which can be clearly described as a precursor for
producing highly cross-linked materials.
Finally, the attempt to predict Eα dependency for the woody

biomass free of its extractives, although unsatisfactory, has
allowed us to reveal clear manifestations of transfer limitations
within the biomass. On the basis of these results, it can be
concluded that to be representative of the unconventional
biomass pyrolysis process, future and new kinetic models
should therefore include reaction models accounting for both
chemical and phenomenological events with the parallel
conversions of the three main blocks holocellulose, lignin,
and LCC and heat transfer limitations.
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