The Impact of Phase Conjugation on the Nonlinear-Shannon Limit

The Difference Between Optical and Electrical Phase Conjugation

Aston Institute of Photonic Technologies
Aston University, Aston Triangle
Birmingham, England
andrew.ellis@aston.ac.uk

G. Liga, D. Lavery, T.Xu, P. Bayvel
Optical Networks Group,
University College London,
Torrington Place,
London, WC1E 7JE, UK

Abstract—We show that optical and electrical phase conjugation enable effective nonlinear compensation. The impact of polarization mode dispersion and finite processing bandwidth on the ultimate limits are also considered.

Keywords—Optical Fiber Communication, Fiber Nonlinear Optics

I. INTRODUCTION

The terms “nonlinear Shannon limit” [1] and “capacity crunch” [2] are increasingly used to suggest that the maximum data throughput of an optical fiber has been reached and that deployed systems are within sight of this limit respectively. Recent research has largely been focused on ability of digital signal processing (DSP) to reverse nonlinearity, and for optical phase conjugation (OPC) to do so for multiple channels simultaneously, with impressive numerical and experimental results. A particularly promising digital signal processing technique introduced recently involves transmitting a phase conjugate copy of the data [3] (or a subset of the data [4]) along with the signal. When re-conjugated and coherently added back to the signal improve the signal-to-noise ratio and can, in certain circumstances, compensate nonlinearity.

In this paper, we compare the relative merits of various nonlinearity compensation techniques based on phase conjugation, and investigate their potential to allow data throughputs beyond the nonlinear Shannon limit.

II. NONLINEAR SHANNON LIMITS

We consider a generalized format for the nonlinear Shannon limit, considering amplified spontaneous emission, inter-signal nonlinearity, and parametric noise amplification but neglecting signal depletion [5] effects. It is given by [6]:

\[
\text{SNR}_{NL} \approx \frac{N \cdot P_S \cdot \left[N \cdot (\eta - \eta_c) + f_{SS} (N) \cdot \eta \cdot P_{ASE} / P_S \right]}{N \cdot P_L + N(\eta - \eta_c)P_S' + f_{SS} (N) \cdot \eta \cdot P_{ASE} / P_S}
\]

(1)

where \(P_S \) represents the signal power spectral density, \(N \) the number of simultaneously transmitted copies of the signal, \(N \) the number of spans, \(P_{ASE} \) the amplified spontaneous emission power spectral density generated by each span, \(\eta \) a coefficient of nonlinearity depending approximately logarithmically on the WDM signal bandwidth \(B_{\lambda} \) (which should take into account spectral broadening during transmission), and \(\eta_c \) represents the efficiency of nonlinear compensation (NLC) and depends on the effective bandwidth of the nonlinear compensation system and non-deterministic signal decorrelation due to, for example, polarization mode dispersion (PMD). The form of \(\eta \) depends on the nonlinear model chosen, but this choice has little practical impact in this paper. Parametric noise amplification scales nonlinearly with length in a manner given by:

\[
f_{SN} (N) \approx \left(\frac{N}{N_L} + N \sum_{N_S=1}^{N} \eta \right)
\]

(2)

where \(N_L = 1 \) for DSP and 2 for mid link OPC. Whilst detailed models for \(\eta_c \) exist [5-7], we assume a simplified form comparing the effective compensation and signal bandwidth and the relative correlation bandwidths of the NLC and PMD. By heuristically assuming that only the spectrum which would pass a Lyott filter with the mean birefringence of the link correctly contributes to NLC, integration reveals that:

\[
\frac{\eta_c}{\eta'} \approx \frac{Cl(\text{Min}(B_c, \sqrt{L} \sigma_{\text{PMD}} \pi / 2)) - Cl(f_{\text{osc}} \sqrt{L} \sigma_{\text{PMD}})}{\log (B_c / f_{\text{osc}})}
\]

(3)

where \(\eta' \) takes into account the difference between polarization multiplexed transmission with random orientation and with fixed orientation (the well known 8/9 factor), \(B_c \) is the effective bandwidth of the NLC, \(L \) the compensated length, \(\sigma_{\text{PMD}} \) the PMD parameter, \(f_{\text{osc}} \) the nonlinear phase matching bandwidth and \(Cl \) the Cosine Integral. We find agreement between Eqn. 3 and [7] for the parameter range of interest here.

III. IMPACT OF COMPENSATION TECHNIQUE

Optimizing the launch power in equation 1 assuming no parametric noise amplification \((f_{SN}=0) \) gives the well-known nonlinear Shannon limit, whilst optimizing for ideal nonlinear compensation \((\eta_c = \eta) \) gives a system by limited parametric noise amplification. It is straightforward to show that, in these ideal scenarios, compensation of nonlinearity should result in an increase in the signal to noise ratio after compensation, in
dB, of 50% of the uncompensated signal to noise ratio, plus 2.6dB. This is shown by the solid points of Fig. 1, where the performance without NLC, phase conjugate pilots (PCP) and phase conjugate subcarrier coding (PCSC) [8] are compared (taking into account the 3dB difference between Q^2 and SNR for a QPSK signal). Theoretical lines are also shown, where η_c is used as a fitting parameter (~ two channels equivalent bandwidth). A significant increase in SNR is obtained from OPC, which may be understood from the increased bandwidth of the NLC and the additional 1.5dB predicted by Eqn. 2, governing parametrically amplified noise growth.

![Fig. 1. Performance of a 7×15Gbaud QPSK Nyquist-spaced PDM WDM CO-OFDM transmission over a 50–80km with ideal Raman amplification showing no NLC (black), PCP (green), PCSC (purple), OPC (red) and OPC+PCSC (blue). OPC and OPC+PCSC with 0.1ps/\(\sqrt{K}\)km (open symbols), and 0.2ps/\(\sqrt{K}\)km (crosses) also shown. 50 fibre realisations used for PMD studies. Equations for optimum SNR shown as insets for conventional transmission and transmission with OPC. Theoretical curve fit shown for 0 ps/\(\sqrt{K}\)km (solid), 0.1 ps/\(\sqrt{K}\)km (dashed) and 0.2 ps/\(\sqrt{K}\)km (dotted) PMD.]

However, these benefits rely critically on the accuracy of the nonlinear compensation. This partly depends on the ADC performance and any DSP simplification, but is more fundamentally limited by the effective bandwidth of the NLC, and by PMD. The predictions of Eqn. 3 are compared against a second numerical simulation [9] in Fig. 2, where the NLC bandwidth is set to the bandwidth of 1, 3 and 5 channels for a PM-16QAM Nyquist WDM signal. Excellent agreement within 0.3dB is observed (with η used as a fitting parameter) impact of PMD on the OPC based system are shown to degrade the performance, however the combination of PCSC signals and an OPC link reduces the PMD penalty. In the absence of PMD, there is no performance degradation for the combined NLC.

![Fig. 2. Influence of PMD on the NLC gain of a 5×32 Gbaud dual polarisation 16QAM Nyquist WDM system over 40×80.17km spans with digital back propagation, showing (dots) simulated results [9] and (solid line) predictions of Eqn 3 for one (blue), three (green) and five (red) channel DBP. 10 fibre realisations were used for PMD studies. Error bars are 1.5 standard deviations.]

IV. CONCLUSIONS

In this paper, we have analytically considered the fundamental limiting of features of nonlinear compensation (parametric noise amplification, bandwidth and PMD). We have argued that only OPC offers significant ability to resist parametric noise amplification and that some form of phase conjugate coding is required for operation on fibers with finite PMD. A combination of the two techniques should allow the throughput of a given system to be increased by 50%.

REFERENCES