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Graphical Abstract 

 

 

Highlights 

 Supported Ni catalysts used to convert lipids to diesel were promoted with Cu or Sn 

 Addition of 5% Cu to 20%Ni/Al2O3 resulted in pronounced promotion effects 

 Cu improved Ni reducibility, leading to more active Ni0 sites and higher conversion 

 Cu curbed cracking, leading to higher selectivity to diesel and reduced deactivation 

 Cu promotion was observed in semi-batch and continuous runs involving various lipids 

 

Abstract 

The ability of Cu and Sn to promote the performance of a 20% Ni/Al2O3 catalyst in the 

deoxygenation of lipids to fuel-like hydrocarbons was investigated using model triglyceride and 

fatty acid feeds, as well as algal lipids. In the semi-batch deoxygenation of tristearin at 260 °C a 

pronounced promotional effect was observed, a 20% Ni-5% Cu/Al2O3 catalyst affording both 

higher conversion (97%) and selectivity to C10-C17 alkanes (99%) in comparison with 

unpromoted 20% Ni/Al2O3 (27% conversion and 87% selectivity to C10-C17). In the same 

reaction at 350 °C, a 20% Ni-1% Sn/Al2O3 catalyst afforded the best results, giving yields of 

C10-C17 and C17 of 97% and 55%, respectively, which contrasts with the corresponding values 

of 87 and 21% obtained over 20% Ni/Al2O3. Equally encouraging results were obtained in the 

semi-batch deoxygenation of stearic acid at 300 °C, in which the 20% Ni-5% Cu/Al2O3 catalyst 

afforded the highest yields of C10-C17 and C17. Experiments were also conducted at 260 °C in a 

fixed bed reactor using triolein – a model unsaturated triglyceride – as the feed. While both 20% 

Ni/Al2O3 and 20% Ni-5% Cu/Al2O3 achieved quantitative yields of diesel-like hydrocarbons at 

all reaction times sampled, the Cu-promoted catalyst exhibited higher selectivity to longer chain 
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hydrocarbons, a phenomenon which was also observed in experiments involving algal lipids as 

the feed. Characterization of fresh and spent catalysts indicates that Cu enhances the reducibility 

of Ni and suppresses both cracking reactions and coke-induced deactivation.    

 

Keywords: Nickel; Copper; Tin; Deoxygenation; Lipids  

 

1. Introduction 

The non-renewable nature of fossil fuels and the environmental impacts of the CO2 

emissions resulting from their combustion demand the development of alternative fuels that are 

both sustainable and carbon neutral. Biofuels fulfill these two conditions, as they derive from a 

renewable  resource – biomass – and they have the potential for closing the carbon cycle without 

disrupting the food supply when produced from waste and nonedible biomass feedstocks [1-3].  

The production of biodiesel – a biofuel consisting of fatty acid methyl esters (FAMEs) – via the 

transesterification of vegetable oils or animal fats offers one pathway for the production of 

renewable liquid fuels.  Biodiesel has certain advantages compared to traditional petroleum-

derived fuels, such as high cetane number and increased lubricity [4]. However, the high oxygen 

content of FAMEs gives rise to several drawbacks including poor storage stability and cold flow 

properties. Therefore, interest has shifted to the development of catalytic methods for the 

deoxygenation of triglyceride and fatty acid feeds to fuel-like hydrocarbons [4, 5]. 

Hydrodeoxygenation (HDO) and decarboxylation/decarbonylation (deCOx) represent two 

processes that have been developed to remove the oxygen from fats and oils in the form of H2O 

and CO2/CO, respectively [6, 7]. Although effective, HDO requires high H2 pressures and the 

use of sulfided catalysts, both of which are problematic. Indeed, the H2 pressures required for 

HDO limit the process to centralized facilities and the sulfided catalysts risk contaminating the 

products with sulfur and tend to deactivate in the presence of water, a co-product of the HDO 

reaction [8, 9].  In contrast, deCOx proceeds under lower H2 pressures and does not require the 

use of sulfided catalysts.    

Much of the previous work concerning deCOx has focused on supported Pd [7, 10-18] or 

Pt [19-21] catalysts, which exhibit high conversion and selectivity to diesel-like hydrocarbons.   

However, the high cost of these precious metals can forestall their use in large industrial 
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applications. Significantly, inexpensive Ni-based catalysts have exhibited near comparable 

results to Pd- and Pt-based formulations in converting lipid-based feeds to fuel-like hydrocarbons 

[22, 23], the Ni-catalyzed transformation of triglycerides and related compounds to green diesel 

being the subject of a recent review by Kordulis et al. [24].  The fact that good conversions and 

selectivities have been achieved on Ni catalysts incorporating metal oxide supports – as opposed 

to high surface area carbon supports – is particularly noteworthy [25-27]. Indeed, carbon-

supported catalysts typically lead to better yields in deCOx reactions due to the more favorable 

adsorption of fatty acids on the catalyst [28]; however, deCOx catalysts are susceptible to 

deactivation by the accumulation of carbonaceous deposits on their surface [13, 15, 16, 29-32], 

which makes metal oxide supports advantageous since they allow for spent catalyst to be easily 

regenerated by simply combusting these deposits [33].   

Although oxide supported Ni catalysts have shown promising activity in deCOx reactions, 

they require further improvement if they are to become viable candidates for the production of 

fuel-like hydrocarbons. Specifically, Ni catalysts have a tendency to produce light hydrocarbons 

and thus, improving the selectivity towards the longer chain products that constitute diesel fuel 

(~C10-C20 hydrocarbons [34]) is desirable. As mentioned above, catalyst deactivation is also an 

issue for deCOx catalysts, Ni-based formulations being particularly prone to coking [35]. It can 

be postulated that these issues are both related to the high activity of Ni for C-C cracking, given 

that cracking reactions result in the formation of light products and cause the accumulation of 

organic material on the catalyst, leading to its deactivation. This problem has been addressed in 

other Ni-catalyzed reactions by the addition of promoters such as Cu and Sn. Compared to 

monometallic Ni catalysts, supported catalysts containing a Ni-Cu alloy phase have shown 

superior performance in methane dissociation [36], ethanol reforming [37], ethylene 

hydrogenation reactions [38] and the hydrodeoxygenation of algae-derived pyrolysis oil [39]. 

One explanation for this improved performance is that nickel carbide phases can readily form on 

monometallic Ni catalysts, which leads to the formation of graphitic carbon deposits on the 

active sites of the catalyst. Since Cu does not form a carbide phase, Ni-Cu catalysts are less 

prone to coking than their monometallic analogs [37, 40]. Evidence suggests that the formation 

of carbon deposits on Ni particles occurs at step edges and that these are the sites preferentially 

occupied by Cu, which explains why Cu-doped Ni catalysts are less prone to deactivation [36]. 
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Also of note in this context is a report by Yakovlev et al. concerning the HDO of anisole and 

FAMEs, in which Ni-Cu catalysts were found to outperform their monometallic Ni counterparts 

[41].  The authors of this study attributed the superior performance of the bimetallic catalysts to 

the ability of copper to simultaneously facilitate nickel oxide reduction and prevent the 

methanation of oxygen-containing molecules.   

Bimetallic catalysts comprising Sn as a Ni promoter have also been shown to outperform 

Ni-only catalysts in steam reforming [42, 43]. As with Ni-Cu catalysts, the improvement in 

activity has been attributed to the decrease in coke formation resulting from Sn doping.  Indeed, 

it has been reported that Sn can lower the binding energy of carbon on the Ni surface sites that 

serve as nucleation centers for the carbon deposits [42], which has the potential to decrease the 

catalyst deactivation caused by coking. Similar to the case of Ni-Cu catalysts, the promoting 

effect of Sn can likewise be explained on the basis of metal particle morphology, since Sn atoms 

can occupy step edge sites which are otherwise the Ni sites most responsible for coking [43]. 

Based on the foregoing, the effect of promoting Ni with Cu or Sn in the deCOx of 

tristearin and stearic acid – used respectively as model triglyceride and fatty acid compounds –

was studied in the present work. Initially, reaction temperature and the level of doping were 

systematically changed in semi-batch experiments to find the optimum set of conditions. The 

best Ni-promoter combination was then tested in a fixed bed reactor to evaluate the bimetallic 

catalyst in continuous mode and obtain results more relevant to industrial applications. In fixed 

bed reactions triolein – a triglyceride with a double bond between the 9th and 10th carbons in each 

acyl chain – was used as a model unsaturated triglyceride feed. Given that unsaturated feeds are 

more prone to cracking than saturated feeds [44], thereby exacerbating catalyst deactivation, the 

use of triolein represents a good test of the ability of promoters to improve both selectivity to 

long chain hydrocarbons and catalyst resistance to deactivation. 

 

2. Experimental 

2.1. Catalyst preparation and characterization 

Catalysts were prepared by excess wetness impregnation using, as appropriate, Ni(NO3)2  

• 6H2O (Alfa Aesar), Cu(NO3)2 • 3H2O (Sigma Aldrich), and SnCl2 • 2H2O (Gelest, Inc.) as the 

metal precursors and γ-Al2O3 (Sasol; surface area of 216 m2/g) as the support. Ni loading was 
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kept constant at 20 wt.%, while the Cu or Sn loading was varied. The impregnated materials 

were dried overnight at 60 °C under vacuum before calcination at 500 °C for 3 h in static air.  

The surface area, pore volume and average pore radius of the catalysts were determined 

by N2 physisorption using previously described instruments and methods [22]. The average NiO 

particle size was found by applying the Scherrer equation to the NiO peaks observed in powder 

X-ray diffractograms, which were acquired using equipment and procedures described 

previously [25]. Thermogravimetric analysis (TGA) of the spent catalysts was performed under 

flowing air (50 mL/min) on a TA instruments Discovery Series thermogravimetric analyzer. The 

temperature was ramped from room temperature to 800 °C at a rate of 10 °C/min. Temperature-

programmed reduction (TPR) was used to study the reducibility of the catalysts employing 

instrumentation and methods described in a previous contribution [25].  For pulsed H2 

chemisorption measurements, the catalyst (250 mg) was first reduced under 10% H2/Ar flow at 

350 °C for 1 h.  The U-tube reactor was then purged with Ar at 450 °C for 30 min, and then 

cooled under flowing Ar to 45 °C.  0.025 mL (STP) 10% H2/Ar was then pulsed into the Ar 

carrier gas flowing to the reactor (at 50 mL/min). Pulsing was continued at 3 min intervals until 

the area of the H2 peaks remained constant.  

X-ray photoelectron spectroscopy (XPS) was undertaken on a Kratos AXIS HSi 

spectrometer equipped with a charge neutralizer and monochromated Al K excitation source 

(1486.7 eV), with energies referenced to adventitious carbon at 284.6 eV. High resolution 

spectra were acquired with a pass energy of 40 eV. Spectral fitting was performed using 

CasaXPS version 2.3.14, utilizing a common Gaussian-Lorentzian lineshape and FWHM for 

each element, and the relevant instrumental response factors for quantitification. The minimum 

number of components required to minimize the residual difference between experiment data and 

fitting model was employed in all cases. 

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was performed on 

the 20% Ni/Al2O3 and the 20% Ni-5% Cu/Al2O3 catalysts during CO adsorption.  The catalysts 

were reduced in situ in 10% H2/N2 flow (120 mL/min) at 350 °C for 1 h.  The reactor was then 

purged with Ar while the temperature was raised to 450 °C (hold time 30 min) to remove 

adsorbed hydrogen prior to cooling the catalyst to 50 °C under flowing Ar. Each CO adsorption 

measurement was performed with 10% CO/He at 50 °C for 30 min, followed by Ar purging to 
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remove gas phase CO and weakly adsorbed CO. Spectra were collected every 30 s during Ar 

purging until there was no change in IR band intensity. 

Materials for electron microscopy were supported on Au grids purchased from Electron 

Microscopy Sciences. Transmission electron microscopy (TEM) and scanning transmission 

electron microscopy (STEM) studies were conducted using a field emission JEOL 2010F with a 

URP pole piece, GATAN 200 GIF, GATAN DigiScann II, Fischione HAADF STEM detector, 

Oxford energy-dispersive X-ray detector and  EmiSpec EsVision software. STEM measurements 

were acquired for both samples using a high-resolution probe at 2 Å. 

 

2.2. Deoxygenation experiments in semi-batch mode 

Tristearin (95%, obtained from City Chemical) and stearic acid (97%, obtained from 

Acros Organics) were respectively used as model saturated triglyceride and fatty acid 

compounds. Details on the acid number and the distribution of fatty acids in the tristearin 

employed are available elsewhere [33]. Experiments were performed in a 100 mL stainless steel, 

mechanically stirred autoclave. The catalyst (0.5 g) was added in powder form (<150 μm particle 

size) to the reactor, which was then purged with argon. The catalyst was subsequently reduced at 

350 °C under a flow (~60 mL/min) of 10% H2/N2 for 3 h prior to cooling to room temperature, 

purging the reactor with Ar, and adding both solvent and feed (in experiments involving 

tristearin 22 g of dodecane and 1.8 g of feed was used while in experiments involving stearic 

acid 28.8 g of solvent and 1.72 g of feed was employed). After the addition of feed and solvent, 

the autoclave was purged three times with Ar prior to being pressurized with H2 (to 580 psi and 

300 psi for experiments involving tristearin and stearic acid, respectively) and heated to the 

reaction temperature, which was measured by a K-type thermocouple placed inside a 

thermowell. A constant flow of 60 mL/min of H2 and mechanical stirring of 1,000 rpm was 

maintained during each experiment. Volatile products were collected from the gas stream exiting 

the reactor by a condenser kept at room temperature. At the end of these reactions, which lasted 

6 and 1.5 h when tristearin and stearic acid were employed, respectively, forced air and an ice 

bath were used to cool the reactor to room temperature while the system was slowly 

depressurized. The liquid product mixture and the spent catalyst were removed from the reactor 

and separated by gravity filtration, the catalyst being washed twice with chloroform to yield 
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additional material.  All experiments for which results are shown were performed a minimum of 

two times. 

 

2.3. Deoxygenation experiments in continuous mode 

Triolein (glyceryl trioleate, ≥99%) was purchased from Sigma-Aldrich, details on the 

acid number and the distribution of fatty acids in the triolein being reported elsewhere [45]. 

Algal lipids were extracted via the Bligh-Dyer method [46] from a sample of dry Scenedesmus 

sp. grown in a photobioreactor fed with the flue gas of a coal-fired power plant [47]. Extracted 

lipids were then purified using a column containing both activated carbon (DARCO® KB-G 

purchased from Sigma-Aldrich) and silica gel. Experimental details on algae culturing as well as 

algal lipids extraction and purification can be found in a recent contribution [47]. Deoxygenation 

experiments in continuous mode were performed in a fixed bed stainless steel tubular reactor 

(1/2 in o.d.) equipped with an HPLC pump. The catalyst (0.5 g, particle size 150-300 μm, held in 

place using a stainless steel frit) was reduced under flowing H2 at 400 °C for 3 h. Next, the 

system was taken to the reaction temperature (260 °C) and pressurized with H2 to 580 psi. A 

liquid solution of the feed in dodecane (1.33 wt% triolein) was introduced to the system at a rate 

of 0.2 mL/min along with a flow of H2 (50 mL/min). A liquid gas separator (kept at 0 °C) placed 

downstream from the catalyst bed was used to collect liquid samples.  

2.4. Product analysis 

All feeds and reaction products were analyzed using a GC method specifically devised to 

identify and quantify the constituents of the feeds used and the products obtained in the 

upgrading of fats and oils to hydrocarbons, detailed information about the development and 

application of this method being available elsewhere [48]. Briefly, analyses were performed 

using an Agilent 7890A GC equipped with an Agilent Multimode inlet, a deactivated open ended 

helix liner and a flame ionization detector (FID). Helium was used as the carrier gas and a 1 μL 

injection was employed. The FID was set to 350 °C with the following gas flow rates:  H2=30 

mL/min; air=400 mL/min; makeup= 5mL/min. The inlet was ran in split mode (split ratio 25:1; 

split flow 50 mL/min) using an initial temperature of 100 °C. Inlet temperature was increased 

immediately upon injection (at a rate of 8 °C/min) to a final temperature of 320 °C, which was 

maintained for the duration of the analysis. The initial oven temperature of 45 °C was 
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immediately increased upon injection first to 325 °C (at a rate of 4 °C/min) and then to 400 °C 

(at a rate of 10 °C/min). This temperature was then maintained for 12.5 minutes, making the total 

run time 90 minutes. An Agilent J&W DB-5HT column (30 m × 250 µm × 0.1 µm) rated to 400 

°C was employed along with a constant He flow of 2 mL/min. Quantification was performed 

using cyclohexanone as internal standard. Agilent Chemstation and Separation Systems Inc. 

SimDis Expert 9 software were respectively used to perform chromatographic programming and 

to process the chromatographic data acquired. Solvents (i.e., chloroform and dodecane) and 

internal standard (cyclohexanone) were quenched and/or subtracted prior to processing the data, 

which precluded the acquisition of quantitative data for linear C5-C9 hydrocarbons.  

 

3. Results and Discussion 

3.1. Catalyst Characterization 

The X-ray diffractograms in Figure S1 in the supplementary material show that all 

catalysts present diffraction peaks – at 37.2°, 43.3°, 62.9°, 75.4° and 79.4° – indicative of NiO 

[49]. Notably, peaks at 35.5° and 38.7° corresponding to a distinct CuO phase [50] are not 

observed, which may be the result of the low amount of Cu; indeed, several authors have 

reported that these peaks are not discernable at low Cu loadings [49, 51]. However, all of the 

NiO peaks increase in intensity as the Cu metal loading increases. This is consistent with a report 

by Lee et al., who observed that an increase in the amount of Cu in Ni-Cu/Al2O3 catalysts results 

in an increase in XRD peak intensity and in the formation of Ni-Cu mixed oxides [51].  

The textural properties and the average NiO particle size of the catalysts used in this 

study are collected in Table 1. The effect of promoter addition on the average particle size of 

NiO was studied by applying the Scherrer equation to the X-ray diffractograms of the promoted 

catalysts.  Evidently, at low loadings, the addition of the promoter does not have a direct impact 

on the NiO particle size, as illustrated by the fact that 20% Ni-2% Cu/Al2O3 had the smallest 

NiO particle size (6.4 nm) of all the catalysts. However, the NiO particle size in the 20% Ni-5% 

Cu/Al2O3 sample (10.7 nm) was the largest among the samples, which points to an increase of 

particle size at high Cu loadings. TEM and STEM imaging of the 20% Ni/Al2O3 and 20% Ni-5% 

Cu/Al2O3 samples was found to be consistent with the average particle sizes reported in Table 1, 
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STEM-EDX revealing the presence of Ni-Cu, Ni-only and Cu-only particles in 20% Ni-5% 

Cu/Al2O3 (see Figures S2 and S3 in the supplementary material). This agrees with TPR data 

(vide infra), in which the bimetallic catalysts show separate reduction maxima corresponding to 

particles of these compositions.  

The TPR profiles of the catalysts, which are shown in Figure 1, indicate that an increase 

in Cu loading results in a decrease in the reduction temperature of the catalyst. The 20% 

Ni/Al2O3 catalyst shows a broad reduction peak, which can be attributed to the reduction of NiO 

to metallic Ni, with a maximum at 507 °C [52]; however, a small shoulder showing a local 

maximum at 300 °C (assigned to the reduction of large Ni ensembles [52]) can also be seen. The 

main reduction event also shows an indistinct shoulder above 700 °C that can be assigned to the 

reduction of a NiAl2O4 phase, a feature more clearly displayed by the other catalysts examined 

(vide infra). The TPR profile of 20% Ni-1% Cu/Al2O3 shows two similar reduction events, a 

broad peak with a maximum at 497 °C and a small shoulder with a maximum at 275 °C, these 

peaks sharing the aforementioned assignments and the shift of their maxima to lower 

temperature being attributable to the presence of Cu [53]. In addition, the main peak is 

accompanied by two shoulders, one centered around 385 °C, which can be attributed to the 

reduction of a NiO-CuO phase [54] and one centered around 710 °C which can be assigned to 

nickel aluminate (NiAl2O4) formed from the reaction of NiO with the Al2O3 support [55].  

Notably, the TPR profile for 20% Ni-2% Cu/Al2O3 displays five distinct reduction events: 1) a 

peak with a maximum at 480 °C attributable to the reduction of NiO to Ni metal; 2) a shoulder of 

the latter peak, centered around 700 °C, which is assigned to the reduction of NiAl2O4; 3) a main 

peak with a maximum at 355 °C attributed to the reduction of a NiO-CuO phase ; 4) a shoulder 

of this peak centered around 255 °C signaling the reduction of large NiO and/or NiO-CuO 

ensembles; and 5) a small but well-defined peak with a maximum at 200 °C due to the reduction 

of copper oxides to Cu metal [49, 53]. This last assignment was confirmed by TPR measurement 

of a 5% Cu/Al2O3 sample (not shown). In line with the aforementioned trends, the TPR profile 

for 20% Ni-5% Cu/Al2O3 also shows several reduction events, including broad peaks centered 

around 688 °C and 453 °C (due to the reduction of NiAl2O4 and NiO, respectively), and well-

defined peaks with maxima at 355 °C and 180 °C, attributed to the reduction of a NiO-CuO 

phase and to that of copper oxides, respectively. In short, Cu addition reduces the reduction 
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temperature of NiO in agreement with observations recently reported by Guo et al. [39]. 

Moreover, the reduction temperature of both nickel and copper oxides decreases as the Cu 

loading increases, a phenomenon that has also been observed by other authors [53]. In turn, the 

decrease in the reduction temperature of Ni resulting from Cu addition leads to the creation of 

additional Ni0; XPS of reduced 20%Ni/Al2O3 and 20%Ni-5%Cu/Al2O3 confirming that the 

bimetallic catalyst has more than double the concentration of Ni0 at the catalyst surface (see 

Figure S4 in the supplementary material). This explains in part the improved performance that 

certain Ni-Cu catalysts display relative to the Ni-only sample (see sections 3.3-3.6), since Ni0 is 

believed to be the catalytically active phase for lipid deoxygenation.  

Figure 1 also shows the TPR profile for 20% Ni-1% Sn/Al2O3, which shows a main peak 

with a maximum at 500 °C and a shoulder centered around 700 °C, along with a small but well-

defined peak with a maximum at 307 °C. The effect of Sn on the TPR profiles seems to be 

limited to a narrowing of the peaks displayed by the Ni-only catalyst, which is in line with a 

previous report by Castaño et al., who concluded that metals with a lower surface tension and 

larger atomic radius than Ni do not form alloys with the latter since they are expelled from the 

matrix and segregate strongly [56].   

H2 chemisorption was performed on the 20% Ni/Al2O3 and the 20% Ni-5% Cu/Al2O3 

catalysts in order to evaluate the amount of metal active sites present on the catalyst surface after 

reduction at 350 °C (corresponding to the catalyst reduction temperature applied in the semi-

batch experiments). The monometallic and bimetallic catalysts exhibited a H2 uptake of 0.1569 

and 0.4943 mL/g, respectively, corresponding to roughly 8.433x1018 and 2.658x1019 reduced 

surface metal sites per gram of catalyst. The larger volume of H2 adsorbed at this temperature is 

consistent with the lower reduction temperature of the metals in the bimetallic catalysts as 

observed in the TPR measurements and is in good quantitative agreement with the surface Ni0 

content determined directly by XPS. 

DRIFTS measurements made on the 20% Ni-5% Cu/Al2O3 sample after CO adsorption 

further confirmed the presence of an electronic interaction between Ni and Cu. As shown in 

Figure S5 in the supplementary material, when the monometallic Ni catalyst was reduced at 350 

°C and CO was subsequently adsorbed at room temperature, band intensity in the CO stretching 
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region was extremely weak. However, when the reduction temperature was increased to 500 °C, 

two CO adsorption bands were observed. A band at 2036 cm-1 can be assigned to CO linearly 

adsorbed on Ni0, while a low frequency band at 1960 cm-1 can be assigned to CO bridge-bonded 

to Ni0 [53]. For the bimetallic Ni-Cu catalyst, significant Ni reduction took place at 350 °C, as 

evidenced by the presence of strong CO bands. Notably, the CO bands observed at 2036 and 

1960 cm-1 by 20% Ni/Al2O3 after reduction at 500 °C showed a red shift – indicative of an 

electronic interaction between Ni and Cu – to 2010 and 1890 cm-1 in 20% Ni-5% Cu/Al2O3 

reduced at 350 °C, the first CO band showing a concomitant increase in intensity, implying that 

the formation of additional Ni0 sites was facilitated by the presence of Cu [53, 57, 58]. An 

additional band at 2121 cm-1 can be attributed to CO adsorbed on Cu sites [53, 59, 60], which is 

in agreement with the fact that an intense band was observed in the same position for a 5% 

Cu/Al2O3 reference sample. Other bands (1660, 1435 and 1228 cm-1) can be assigned to 

bicarbonate formed on the Al2O3 support [61]. XPS further evidences electron transfer between 

Ni and Cu, with the introduction of copper shifting the Ni 2p3/2 XP peak to lower binding energy 

(Figure S6), from 854.5 eV in 20% Ni/Al2O3 to 853.4 eV in 20% Ni-5% Cu/Al2O3, consistent 

with enhanced nickel reduction. 

3.2. Blank runs 

The results obtained when tristearin and stearic acid are submitted to the reaction 

conditions described in section 2.2 in the absence of a catalyst have been previously reported and 

discussed [23]. In short, stearic acid conversion at 300 °C was only 5% and selectivity to C10-

C17 and C17 were approximately 85% and 15%, respectively. For blank experiments using 

tristearin at 360 °C, conversion was around 85% and selectivity to C10-C17 and C17 were ca. 

47% and 14%, respectively. These observations are in agreement with thermal (non-catalytic) 

experiments by other workers [62, 63], the differing reactivity of stearic acid and tristearin being 

attributed to the more forcing conditions employed with the latter. Notably, an additional blank 

experiment was performed by subjecting dodecane to tristearin deoxygenation conditions in the 

presence of a supported Ni catalyst; dodecane proved entirely unreactive and hence, none of the 

reaction products detected in the experiments described below arose from the reaction solvent. 
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3.3. Tristearin deoxygenation in semi-batch mode 

The results of tristearin deoxygenation performed at three different temperatures are 

summarized in Table 2. Conversion increased with increasing temperature, which is unsurprising 

since triglycerides are reported to thermally decompose to diglycerides, free fatty acids and 

hydrocarbons at temperatures approaching 360 °C [63]. Moreover, selectivity to both C10-C17 

and C17 invariably decreased as the reaction temperature increased for all catalysts showing 

>99% tristearin conversion, as expected since higher temperatures favor cracking reactions and 

consequently, lighter hydrocarbons.  

Remarkably, whereas the monometallic catalyst afforded only 27% conversion at 260 °C, 

20% Ni-5% Cu/Al2O3 exhibited 97% conversion. 5% Cu/Al2O3 was also tested since 

Berenblyum et al. found this catalyst to be active in lipid deoxygenation [64, 65]; however, 5% 

Cu/Al2O3 afforded only 11% conversion at 260 °C, which indicates that the superior 

performance of 20% Ni-5% Cu/Al2O3 stems from a synergistic effect between Ni and Cu and not 

merely from the additive but independent contributions of these two metals. 20% Ni-1% 

Sn/Al2O3 was the worst performing of all formulations included in Table 2 at 260 °C, with only 

11% conversion. Parenthetically, residual Cl (~2,400 ppm) was detected in this catalyst, which 

was synthesized using SnCl2 • 2H2O as the Sn precursor (see section 2.1). Albeit it is widely 

known that electronegative elements such as Cl can act as catalyst poisons by reducing electron 

density at the metal surface, the latter could also result in promotion effects. Indeed, it has been 

reported that Cl hinders coke deposition on metal nanoparticles, since a decrease in electron 

density at the metal surface reduces electron transfer from the metal to the π* orbital of 

chemisorbed reactant molecules, thereby disfavoring their dissociative adsorption and the 

concurrent catalyst deactivation [66]. In addition, Cl has also been reported to increase the 

spillover of hydrogen from the metal to the support, which can eliminate coke precursors via 

hydrogenation and further reduce coke-induced deactivation [67].  Therefore, Cl may have both 

poisoning and promotion effects, the investigation of which is outside the scope of the present 

contribution.  

Copper promotion was less apparent at 300 °C, a consequence of the high (98%) 

conversion exhibited by the monometallic Ni catalyst being similar to that of the Ni-Cu 
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bimetallic catalysts. The Ni-Sn catalyst again exhibited the poorest activity (38% conversion) 

and selectivity (45% to C10-C17 hydrocarbons), although these values were considerably 

improved relative to those at 260 °C. Notably, the Cu loading had little impact on the selectivity 

to C17 or C10-C17 hydrocarbons at 300 °C; however, at 350 °C – a temperature at which 

conversions invariably exceeded 99% (as expected from the results obtained at 300 °C) – it 

noticeably influenced selectivity. Indeed, 20% Ni-5% Cu/Al2O3 exhibited the highest selectivity 

to both C10-C17 and C17 hydrocarbons (98% and 49%, respectively), which contrasts with the 

88% and 21% selectivity values obtained over the monometallic 20% Ni/Al2O3 catalyst. This 

demonstrates that doping with 5% Cu effectively curbs cracking reactions at 350 °C. 

Surprisingly, at 350 °C the best catalyst was 20% Ni-1% Sn/Al2O3, yielding 99% conversion and 

C10-C17 and C17 hydrocarbon selectivities of 97% and 56%, respectively. Tin promotion is thus 

extremely temperature dependent. It should be noted that further increasing the copper loading to 

7.5% did not improve performance relative to the 20% Ni-5% Cu/Al2O3 catalyst.  

Notably, in all experiments small amounts of reaction products with a bp higher than C17 

were observed. In all cases (Table 2) product mixtures contained 1-2% of C18, which suggests 

that deoxygenation proceeds mainly through deCOx rather than HDO, as also observed in 

experiments involving stearic acid as the feed (see section 3.4). Small amounts of fatty esters 

such as cetyl stearate and stearyl stearate were also observed in some product mixtures, although 

this was dependent on both the temperature and the catalysts employed. Indeed, at 260 °C both 

the Ni-only catalyst and catalysts promoted with 1% Cu or Sn afforded moderate amounts (~5%) 

of these esters, which were obtained in lower amounts (~2%) over 20% Ni-2% Cu/Al2O3 and 

were not observed over 20% Ni-5% Cu/Al2O3. At 300 °C, only the Sn-promoted catalyst yielded 

a small amount (~5%) of these esters, whereas at 350 °C the latter were not detected. As 

discussed below (section 3.4), these esters can be formed as intermediates but are completely 

converted to hydrocarbons in the presence of the more active catalysts.   

In order to be able to unequivocally attribute improvements in catalytic performance to 

the presence of promoters, the effect of metal dispersion on catalyst performance must be 

considered to discount the possibility that the differences in Table 2 simply reflect metal particle 

size effects. To this end, a 20% Ni/Al2O3 catalyst with a markedly different average NiO particle 
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size of 16.1 nm was prepared (using butanol in lieu of water in the synthesis described in section 

2.1) and its deoxygenation activity at 260 °C was compared to that of the 20% Ni/Al2O3 catalyst 

with an average NiO particle size of 7.4 nm, the results of these experiments being summarized 

in Table S1. While the catalytic properties of these two formulations differed somewhat, it is 

clear that the effect of copper addition cannot be explained solely in terms of its impact on NiO 

particle size. Indeed, increasing the particle size of the monometallic catalyst from 7.4 nm to 

16.1 nm increased tristearin conversion by 11 % at the expense of a 10% decrease in selectivity 

to C10-C17 and a 19% decrease in selectivity to C17 (see Table S1). This contrasts with the 

greatly increased conversion and selectivity observed for the 20% Ni-5% Cu/Al2O3 at 260 °C 

(Table 2) relative to both 20% Ni/Al2O3 catalysts. 

 

3.4. Stearic acid deoxygenation in semi-batch mode 

Since triglyceride conversion to hydrocarbons via deCOx has been reported to be 

intermediated by free fatty acids [22, 23, 25, 27], representative experiments were also 

performed using stearic acid as the feed in an effort to gain additional insights into the promoting 

effect of Cu and Sn. The results of these deoxygenation experiments, which were performed at 

two different temperatures, are shown in Table 3. Irrespective of the catalyst or temperature 

employed, C18 represented at most 1% of the total product yield, indicating that deoxygenation 

occurred principally via deCOx (yielding C17) rather than through HDO (which would afford 

C18). This is consistent with previous reports indicating that deCOx is the dominant reaction 

pathway over Ni-based catalysts [9, 25, 35, 68].  In line with the results obtained using tristearin, 

20% Ni-5%Cu/Al2O3 and 20% Ni-1% Sn/Al2O3 respectively exhibited the highest and lowest 

stearic acid conversion at both temperatures. Selectivity values were more informative, since 

selectivities to C10-C17 hydrocarbons at 260 °C were much lower for both the Ni-only and the 

Ni-Cu catalysts than when tristearin was used as the feed. This is attributed to the intermediates 

formed during stearic acid deoxygenation. Indeed, the reaction may proceed by routes other than 

direct decarboxylation – as illustrated in Figure 2 – and consequently, a range of intermediates 

can form in accordance with previous work by the research groups of Murzin and Lercher [69, 

70]. For instance, an ester (in this case stearyl stearate) can form when an alcohol intermediate 
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(stearyl alcohol) undergoes esterification with the stearic acid feed. In turn, the stearyl stearate 

thus formed requires further hydrogenation of the ester bond to form stearyl alcohol once again 

before the latter can form the alkane via decarbonylation. Stearyl stearate formation was indeed 

significant at 260 °C, yields of 13, 16, and 9% being obtained after 1.5 h over 20% Ni/Al2O3, 

20% Ni-5% Cu/Al2O3, and 20% Ni-1% Sn/Al2O3, respectively. When the reaction temperature 

was increased to 300 °C, the yield of C10-C17 hydrocarbons surged while that of stearyl stearate 

decreased to 0, 4, and 7% over the Ni-only, Ni-Cu and Ni-Sn catalysts, respectively. The 

significant amounts of stearyl stearate intermediate detected offer a compelling explanation vis-

à-vis the lower selectivity to C10-C17 hydrocarbons obtained at lower reaction temperatures. 

This intermediate is not observed in experiments involving tristearin as the feed, which can be 

attributed to the longer reaction times employed for those runs. 

 

3.5. Triolein deoxygenation in continuous mode 

Continuous processes are favored for industrial applications and hence, the effect of Cu 

promotion was also assessed by comparing the performance of 20% Ni/Al2O3 and 20% Ni-5% 

Cu/Al2O3 in a fixed bed reactor. These experiments were performed using 1.33 wt.% triolein in 

dodecane as the feed, triolein being chosen not only due to the fact that unsaturated lipids are 

commonly found in biomass-derived feeds [44], but also because in the deCOx of lipids to 

hydrocarbons it has been observed that catalyst deactivation from coking occurs to a greater 

extent when unsaturated feeds are employed [32]; thus, triolein offers a means to gauge the 

ability of Cu to improve catalyst resistance to deactivation. Indeed, it has been suggested that 

unsaturated feeds cause catalyst deactivation due to their stronger adsorption and propensity for 

cracking, thus leading to coke deposition [44]. 

Figure 3 shows the boiling point distribution plots (BPDP) of both reactants and products 

from fixed bed experiments sampled at intervals of 1, 2, 3, and 4 h. These BPDPs, which were 

obtained through a recently published simulated distillation GC protocol [48], show that 

practically all products formed were hydrocarbons within the boiling range of diesel fuel (~180-

350 °C) at all reaction times. Notably, heptadecane (bp = 302 °C) represented the major product 

in all samples, further indicating that deCOx – as opposed to HDO – constitutes the main reaction 
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pathway. The superior performance of the Ni-Cu catalyst relative to the Ni-only catalyst is most 

prominent in the first hour of the reaction, in which long chain (C15-17) hydrocarbons 

comprised approximately half of the products formed over the monometallic catalyst, whereas 

C15-C17 constituted about three-quarters of the products afforded by the bimetallic catalyst. It is 

also noteworthy that while 20% Ni/Al2O3 showed evidence of slight deactivation after 4 h, at 

which time a small amount of the material appeared in the product mixture exhibiting a boiling 

point characteristic of the feed (600 °C) – this was not the case for 20% Ni-5% Cu/Al2O3. 

Overall, both catalysts achieved close to quantitative conversion in continuous mode at all 

reaction times sampled, although the bimetallic catalyst displayed higher selectivity to C15-C17 

hydrocarbons (which are more desirable than light hydrocarbons since they possess higher cetane 

numbers) than the monometallic catalyst irrespective of time on stream.   

 

3.6. Algal lipids deoxygenation in continuous mode 

In view of the promising results obtained in the continuous deoxygenation of triolein, the 

upgrading of a realistic and topical feed – namely algal lipids [47] – was attempted using 

identical reaction conditions as those employed with triolein. The BPDP of the algae extract and 

the reaction products obtained over both 20% Ni/Al2O3 and 20% Ni-5% Cu/Al2O3 are included 

in Figure 4. As illustrated by the BPDP of the feed, compounds boiling below 320 °C (mostly 

hydrocarbons) represented ~7% of the algae extract, compounds boiling between 320-500 °C 

(mostly free fatty acids) comprised ca. 66% of the feed, and compounds boiling >500 °C (mostly 

triglycerides) constituted ~27% of the extract.  In addition to these compounds, GC-MS of the 

algae extract (shown in the supplementary material as Figure S7) also revealed the presence of 

non-negligible amounts of other compounds such as fatty alcohols, phytols and other phytol-like 

compounds in agreement with a previous report [45]. Catalytic upgrading effectively increased 

the diesel range hydrocarbon content from ~7% in the feed to 78% and 83% at t=1 h over 20% 

Ni/Al2O3 and 20% Ni-5% Cu/Al2O3, respectively, the corresponding values being 42% and 45% 

at t=4 h. In line with a recent report [45], the lower yields of diesel-like hydrocarbons, as well as 

the higher rate of deactivation observed in these runs relative to experiments involving triolein as 

the feed, can be attributed to the fact that the algae extract contains highly unsaturated fatty acid 

chains, as well as compounds such as phytols, which are potentially capable of poisoning 
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catalytically active sites via strong adsorption. Nevertheless, the results presented herein indicate 

that good diesel yields can be obtained. Notably, just as for the triolein upgrading experiments, 

the superior performance of the Ni-Cu bimetallic catalyst relative to the Ni-only catalyst is most 

prominent in the first hour of the reaction, C10-C14 hydrocarbons representing ~23 and 10% of 

the products obtained over 20% Ni/Al2O3 and 20% Ni-5% Cu/Al2O3, respectively, once again 

showing that the Ni-Cu catalyst favors the formation of long chain hydrocarbons.  

 

3.7. Spent catalyst characterization 

The ability of Ni-Cu catalysts to outperform their Ni-only counterparts has been 

postulated to arise from decreased coking, which results in reduced catalyst deactivation and 

enhanced conversion [37, 40]. Representative spent catalysts were therefore subjected to 

thermogravimetric analysis in air to quantify surface coking, the resulting profiles being 

collected in Figure 5. TGA profiles show a major weight loss event below 400 °C, which could 

reflect either the desorption and/or combustion of residual reactants, intermediates and/or 

products or the combustion of poorly structured carbon deposits [33]. Notably, the weight gain 

centered around 350-400 °C shown by some spent catalysts in Figure 5 is due to the oxidation of 

Ni to NiO [71]. 

For some catalysts, TGA profiles showed a good correlation between the degree of 

coking and their conversion. For instance, in experiments performed with tristearin as the feed at 

260 °C (Figure 5 top left), the spent 20% Ni-5% Cu/Al2O3 and 20% Ni-1% Sn/Al2O3 exhibited 

the lowest and highest weight loss, indicating the least and the greatest amount of coke 

formation, respectively. This is in agreement with the fact that 20% Ni-5% Cu/Al2O3 and 20% 

Ni-1% Sn/Al2O3 respectively showed the highest and lowest conversion. Nevertheless, all other 

catalysts showed almost identical weight losses, which contrasts with the fact that 20% Ni-2% 

Cu/Al2O3 displayed a considerably higher conversion than 20% Ni/Al2O3 and 20% Ni-1% 

Cu/Al2O3. For spent catalysts arising from experiments with tristearin as the feed at 350 °C 

(Figure 5 top right), all catalysts displayed a relatively small – and very similar – weight loss 

(7.5±1%), which is consistent with the fact that all catalysts afforded quantitative conversions.  

The TGA plots of catalysts spent using stearic acid as the feed at a reaction temperature 

of 300 °C (Figure 5 bottom left) also illustrate that albeit in some instances there is a clear 
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correlation between the amount of coke deposited on catalysts and their performance (e.g., 20% 

Ni-5% Cu/Al2O3 showed the least coking and best conversion), in other cases no such correlation 

exists (albeit 20% Ni-1% Sn/Al2O showed lower amounts of coke deposits than 20% Ni/Al2O3 

the monometallic formulation afforded a substantially higher conversion). However, the weight 

loss difference between the Ni-only and the Ni-Sn catalysts is fairly small (~4%), which suggest 

that catalyst performance – and specifically the effect of promoters on catalyst performance – 

can only be explained invoking the amount of carbonaceous deposits on the catalysts surface 

when the difference in the magnitude of coking is sizable. With this in mind, caution should be 

taken when interpreting thermogravimetric data such as that in Figure 5 bottom right, which 

shows the TGA plots of catalysts spent in the continuous deoxygenation of triolein. Indeed, 

while 20% Ni-5% Cu/Al2O3 exhibited less coking and better activity than 20% Ni/Al2O3, the 

difference in their associated carbonaceous deposits is too small (<1%) to be significant. The fact 

that the weight losses of spent catalysts from fixed bed experiments were almost negligible is in 

itself noteworthy, particularly since an unsaturated feed was employed in an effort to exacerbate 

catalyst coking and deactivation. 

In short, although longer and/or more stringent experiments may be necessary to 

accentuate coking and thereby uncover the role of promoters in retarding catalyst deactivation 

arising from accumulated carbonaceous deposits, the present work shows that Ni-Cu deCOx 

catalysts have the potential to outperform Ni-only formulations and that in some instances this 

enhancement can be attributed to the ability of Cu to suppress cracking and coke-induced 

deactivation, the capacity of Cu addition to curb coking in Ni-based deoxygenation catalysts 

being consistent with a recent report by Guo et al. [39]. It should be appreciated that these results 

were acquired using lipid feeds for which the dilution level is far from representative of 

industrial conditions. Therefore, a future contribution will focus on the use of concentrated waste 

lipid feeds.  

 

4. Conclusions 

 Semi-batch studies indicate that Cu is a very effective promoter of Ni for the deCOx of 

tristearin at 260 °C, tristearin conversion increasing from 27% over 20% Ni/Al2O3 to 97% over 

20% Ni-5% Cu/Al2O3. At 350 °C, Sn is also a promising promoter, increasing selectivity to C17 
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from 21% over 20% Ni/Al2O3 to 56% over 20% Ni-1% Sn/Al2O3. Cu also promoted the 

deoxygenation of stearic acid in semi-batch mode, 20% Ni-5% Cu/Al2O3 exhibiting higher 

stearic acid conversion than 20% Ni/Al2O3 at both 260 and 300 °C, as well as considerably 

higher selectivity to diesel-like hydrocarbons at the higher reaction temperature. The benefit of 

promoting 20% Ni/Al2O3 with 5% Cu was confirmed in fixed bed experiments with a triolein 

feed, for which the Ni-Cu bimetallic catalyst exhibited higher selectivity to long chain 

hydrocarbons than the Ni-only catalyst, particularly at the beginning of the reaction. 

 Improvements in deCOx performance arising from Cu or Sn addition to Ni catalysts does 

not appear related to particle size effects. Copper promotion arises from a combination of factors 

including the destabilization of NiO and the consequent increase in the proportion of surface Ni0, 

which is believed the catalytically active phase for lipid deoxygenation. Thermogravimetric 

analysis of spent catalysts suggests that Cu promotion may also be ascribed to the suppression of 

surface coking and hence catalyst deactivation, albeit only when there are significant differences 

in the amount of carbonaceous deposits between distinct catalysts. This enhanced resistance to 

coke-induced deactivation may reflect the ability of Cu to curb the cracking activity of Ni-only 

catalysts and impart superior selectivity to long chain hydrocarbons via both geometric and 

electronic effects.  
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Figure captions 

 

Figure 1.  H2 TPR profiles of the fresh catalysts. 

 

Figure 2.  Reaction scheme for stearic acid deoxygenation (after refs. [65,66]). 

 

Figure 3. Boiling point distribution plots of the feed and the liquid products obtained from 

triolein deoxygenation in fixed bed mode at 260 °C and 580 psi over20% Ni/Al2O3 (left), and 

20% Ni-5% Cu/Al2O3 (right). 

 

Figure 4.  Boiling point distribution plots of the feed and the liquid products obtained from algal 

lipids deoxygenation in fixed bed mode at 260 °C and 580 psi over 20% Ni/Al2O3 (left), and 20% 

Ni-5% Cu/Al2O3 (right). 

 

Figure 5. TGA profiles of catalysts spent upgrading tristearin at 260°C for 6 h in a semibatch 

reactor (top left), tristearin at 350°C for 6 h in a semibatch reactor (top right), stearic acid at 300 

°C for 1.5 h in a semibatch reactor (bottom left), and triolein at 260 °C for 4 h in a fixed bed 

reactor (bottom right). 
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Table 1.  Textural properties and metal dispersion of the catalysts studied. 

Catalyst 
BET surface 

area (m2/g) 

Pore volume 

(cm3/g) 

Avg. pore 

diameter (nm) 

Avg. NiO particle 

size (nm)* 

20% Ni/Al2O3 134 0.30 9.0 7.4 

20% Ni-1% Cu/Al2O3 148 0.32 8.7 7.7 

20% Ni-2% Cu/Al2O3 137 0.30 8.8 6.4 

20% Ni-5% Cu/Al2O3 129 0.28 8.8 10.7 

20% Ni-1% Sn/Al2O3 141 0.46 8.9 6.5 

*As measured from the powder X-ray diffractograms of the catalysts calcined under static air for 

3 h at 500 °C. 
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Table 2.  Semi-batch mode deoxygenation of tristearin over alumina-supported Ni-based 

catalysts (580 psi of H2, 6 h reaction time).* 

Catalyst 
Reaction Temperature 

(°C) 
Conversion (%)a 

Selectivity to [Yield 

of]    C10-C17 (%)b, d 

Selectivity to 

[Yield of] C17 

(%)c, d 

20% Ni/Al2O3 260 27 87 [23] 63 [17] 

20% Ni-1% Cu/Al2O3 260 27 89 [24] 56 [15] 

20% Ni-2% Cu/Al2O3 260 85 95 [81] 65 [55] 

20% Ni-5% Cu/Al2O3 260 97 99 [96] 71 [69] 

20% Ni-1% Sn/Al2O3 260 11 8 [1] 3 [1] 

20% Ni/Al2O3 300 98 97 [95] 53 [52] 

20% Ni-1% Cu/Al2O3 300 >99 >99 [98] 54 [53] 

20% Ni-2% Cu/Al2O3 300 98 98 [96] 55 [54] 

20% Ni-5% Cu/Al2O3 300 >99 >99 [98] 62 [61] 

20% Ni-1% Sn/Al2O3 300 38 45 [17] 27 [10] 

20% Ni/Al2O3 350 >99 88 [87] 21 [21] 

20% Ni-1% Cu/Al2O3 350 >99 86 [85] 15 [15] 

20% Ni-2% Cu/Al2O3 350 >99 81 [80] 3 [3] 

20% Ni-5% Cu/Al2O3 350 >99 98 [97] 49 [49] 

20% Ni-1% Sn/Al2O3 350 >99 97 [96] 56 [55] 

*All experiments for which results are shown were performed a minimum of two times, average 

standard deviations being 3.1, 3.6, and 9.1% for conversion, selectivity to C10-C17, and 

selectivity to C17, respectively. 

a Conversion = wt% of product with bp < 375°C. 

b Selectivity to C10-C17 = 100 × [(wt% of product with bp < 314°C – wt% of product with bp < 

177°C)/(wt% of product with bp < 375°C)]. 

c Selectivity to C17 = 100 × [(wt% of product with bp < 314°C – wt% of product with bp < 

295°C)/(wt% of product with bp < 375°C)]. 

d The corresponding yield (conversion × selectivity) values are shown between brackets. 
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Table 3. Semi-batch mode deoxygenation of stearic acid over alumina-supported Ni-based 

catalysts (300 psi of H2, 1.5 h reaction time).* 

Catalyst 
Reaction 

Temperature (°C) 

Conversion 

(%)a 

Selectivity to 

[Yield of]   C10-

C17 (%)b, d 

Selectivity to 

[Yield of] 

C17 (%)c, d 

20% Ni/Al2O3 260 39 15 [6] 2 [1] 

20% Ni-5% Cu/Al2O3 260 54 13 [7] 7 [4] 

20% Ni-1% Sn/Al2O3 260 30 7 [2] 3 [1] 

20% Ni/Al2O3 300 92 76 [70] 66 [61] 

20% Ni-5% Cu/Al2O3 300 98 86 [84] 79 [77] 

20% Ni-1% Sn/Al2O3 300 39 23 [9] 17 [7] 

*All experiments for which results are shown were performed a minimum of two times, average 

standard deviations being 7.3, 11.9, and 9.1% for conversion, selectivity to C10-C17, and 

selectivity to C17, respectively. 

a Conversion = 100 – (wt% of product with bp < 375°C – wt% of product with bp < 350°C). 

b Selectivity to C10-C17 = 100 × <(wt% of product with bp < 314°C – wt% of product with bp < 

177°C)/[100 - (wt% of product with bp < 375°C – wt% of product with bp < 350°C)]>. 

c Selectivity to C17 = 100 × <[(wt% of product with bp < 314°C – wt% of product with bp < 

295°C)/ [100 - (wt% of product with bp < 375°C – wt% of product with bp < 350°C)]>. 

d The corresponding yield (conversion × selectivity) values are shown between brackets. 

 




