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Abstract—A closed-form expression for a lower bound on the
per soliton capacity of the nonlinear optical fibre channel in the
presence of (optical) amplifier spontaneous emission (ASE) noise
is derived. This bound is based on a non-Gaussian conditional
probability density function for the soliton amplitude jitter
induced by the ASE noise and is proven to grow logarithmically
as the signal-to-noise ratio increases.

I. INTRODUCTION

It is widely accepted that in order to meet the ever-growing

demand for data rates in fibre-optic telecommunication sys-

tems, the spectral efficiency of the optical fibre transmission

system needs to be increased [1]. The key physical effects

distinguishing a fibre optical system from a free space trans-

mission are: dispersion, nonlinearity and optical noise [2]–

[5]. The implementation of the “fifth generation” of optical

transceivers and networks operating with coherent detection,

advanced multilevel modulation formats, and digital signal

processing techniques, has led to the possibility of channel

rates exceeding 100 Gbit/s [6]. The key to this breakthrough

is the mitigation of linear transmission impairments, such as

chromatic and polarization mode dispersion.

The performance of current coherent systems is limited by

noise and nonlinearity. In contrast to linear channels, however,

spectral efficiencies for the optical fibre channel usually exhibit

a peak and decay at high input powers; this is often referred

to as the “nonlinear Shannon limit” [7], [8]. This behaviour is

caused by the Kerr nonlinearity and is believed to ultimately

lead to a “capacity crunch” [1], i.e., to the inability of the

optical network infrastructure to cope with the increasing

capacity demand.

The capacity analysis of the nonlinear channel relies on

well-established methods of information theory [9], [10].

Unfortunately, most of the analytical results obtained to date

concern linear channel models, and hence, are not directly

applicable to nonlinear optical channels. Despite numerous ef-

forts to define the influence of Kerr nonlinearity on the channel

capacity [7], [8], [11]–[16], the capacity of the nonlinear op-

tical channel still remains as an open research problem. Most

of the capacity bounds presented in the literature typically
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display a peaky behaviour, where the maximum is reached

at a finite threshold power. To the best of our knowledge,

the first nondecaying (lower) bound on the capacity of the

nonlinear optical fibre channel (with zero average dispersion)

was presented in [17]. Other nondecaying bounds include, e.g.,

those recently in [18] and [19], [20].

A multitude of different nonlinearity mitigation techniques

have been proposed over recent years to suppress nonlinearity-

induced distortions. This includes receiver-based digital signal

processing [21], digital back-propagation [22], optical phase

conjugation [23], twin-waves phase conjugation [24], etc.

However, there are still many limitations and further chal-

lenges in applying these methods. A promising alternative for

nonlinearity compensation is the nonlinear Fourier transform

(NLFT) developed in the 70’s [25], [26]. The applications

of the NLFT in optical communication originates from the

pioneering work of Hasegawa and Nyu [27], an approach that

has been extended in a number of recent works [28]–[37].

An experimental demonstration of a NLFT-based transmission

was recently presented by Bülow in [38].

The use of NLFT for nonlinearity compensation in optical

fibre links is possible because the master model governing

signal propagation in a single mode optical fibre (in the ab-

sence of noise and loss) is the nonlinear Schrödinger equation

(NLSE) [3]–[5] that belongs to the class of integrable (i.e.,

completely solvable) evolutionary equations [25]. The solution

method can be considered as the generalisation of the linear

Fourier transform (FT) operation onto the nonlinear (inte-

grable) system, hence the name NLFT. Similarly to the FT,

the NLFT decomposes a waveform in the NLSE space-time

domain into the nonlinear normal modes inside the nonlinear

spectral domain [29], [35]. The key underlying feature of the

NLFT transmission is that these nonlinear modes (nonlinear

signal spectrum) propagate without crosstalk, effectively in a

linear manner. Thus, the nonlinear spectrum can be used for

encoding and efficient transmission of information over the

nonlinear fibre.

The original work by Hasegawa and Nyu [27] introduced

the concept of “eigenvalue communications”, where the in-

formation was encoded using discrete eigenvalues associated

with the solitonic degrees of freedom [3] (see also [29]). In



the absence of both loss and noise, the evolution of nonlinear

modes is inherently free from any nonlinear impairments, in-

cluding nonlinear cross-talks. To make the propagation model

close to the lossless NLSE, the fibre loss can be uniformly

compensated by e.g., specially arranged distributed Raman

gain [2], [39], [40]. However, the signal will still be distorted

by amplified spontaneous emission (ASE) and beating between

noise and signal.

In this paper, we study the channel capacity (in bits per

soliton) for a transmission system based on optical solitons

(sufficiently separated in time domain) launched into a noisy

NLSE channel. The information is assumed to be encoded

in the soliton’s amplitude only, which can be extracted from

the imaginary part of the discrete eigenvalue emerging from

the NLFT signal decomposition. We consider a discrete-time

continuous-input continuous-output channel model, based on

the asymptotically exact non-Gaussian marginal statistics of

the soliton amplitude in the presence of weak ASE noise

presented in [41]–[43]. We emphasise that the capacity estima-

tions for such fundamentally nonlinear channels are quite few

and far between. Notable exceptions are the works by Yousefi

and Kschischang [31] and Meron et al. [33]. While in [31]

the channel statistics were assumed a priori to be Gaussian

[31, eq. (27)], in [33] a tight lower bound on the channel

capacity as a function of the signal to noise ratio (SNR) was

not provided.

The discrete-time channel model governing transmission

systems based on optical solitons is a noncentral chi-squared

distribution with four degrees of freedom [42], [43]. Based

on this model we obtain an asymptotically nondecreasing

lower bound for the channel capacity vs. SNR. This bound

is similar to the one in [17], where a noisy nonlinear optical

fibre channel with zero fibre dispersion was considered. The

results in this paper show that the reachable capacity limits

for existing optical fibre channels could have been previously

underestimated.

II. THE MASTER EQUATION AND THE NONCENTRAL

CHI-SQUARED CHANNEL MODEL

A. Waveform channel

We consider the propagation of a slowly varying envelope

signal q(z, t) over a nonlinear optical fibre. Our model com-
bines the effects of chromatic dispersion (we consider the case

of anomalous dispersion), instantaneous Kerr nonlinearity, and

ASE noise due to optical Raman amplification. The fibre loss

is assumed to be continuously compensated along the fibre by

means of ideal Raman amplification and hence is set to zero

[2], [39], [40]. We write the resulting noise-perturbed NLSE

in dimensionless soliton units as [2], [3], [42]

i
∂q(z, t)

∂z
+

1

2

∂2q(z, t)

∂t2
+ |q(z, t)|2q(z, t) = n(z, t), (1)

where t is the time normalised by the intersymbol distance Ts,
z is the axial distance travelled normalised by the dispersion

length LD ,
T 2

s

|β2| , and β2 < 0 is the group velocity dispersion

coefficient. We also define s(t) = q(0, t) and r(t) = q(L, t)
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Fig. 1. System model: (a) Transmitter, continuous-channel model governed
by (1), and receiver. (b) Equivalent discrete-time channel model.

as the input and output waveforms of the physical channel

after transmission distance L, respectively, normalised by the

nonlinear power scale (γLD)−1, where γ is the nonlinearity

coefficient. The relationship between s(t) and r(t) is schemat-
ically shown in the inner part of Fig. 1(a).

The noise term n(t, z) on the right-hand side of (1) is

assumed to be a zero-mean (E [n(z, t)] = 0) circularly-

symmetric additive white Gaussian noise (AWGN) process

with autocorrelation function [2, eq. (53)]

E [n(z, t)n∗(z′, t′)] = 2D δ(z − z′) δ(t− t′), (2)

where ∗ denotes complex conjugation, E [·] is the mathematical
expectation operator, and δ(·) is the Dirac’s delta function.

Here the noise intensity D is written in dimensionless units [4,

eq. (5.29)] as D = γL2
D σ

2
0/2Ts. For ideal distributed Raman

amplification, the power spectral density of the ASE noise σ2
0

is defined as [2, eq. (56)] σ2
0 = αKT · hνs, where α is the

fibre attenuation coefficient, hνs is the average photon energy,
and KT ≈ 1 is the coefficient that characterizes the Raman

pump providing the gain [2].

It is known that the noiseless NLSE (i.e., (1) with n(z, t) =
0) possesses a special class of solutions, the so-called funda-

mental bright solitons [3]–[5]. At z = 0 we write it as [5,

eq. (1.40)] (in normalised units)

q(0, t) = A0 sech(A0t), (3)

where A0 denotes the normalised soliton amplitude and we

assume that the initial soliton frequency, phase and centre-

of-mass position are set to zero. The unperturbed soliton

solution (3) at a distance z = L is given by q(L, t) =
A0 sech(A0t) exp(iA

2
0L/2).



B. Discrete-time channel

Our continuous-time input signal s(t) is represented as a

sequence of soliton pulses separated in time domain by an

interval Ts (which we normalise to Ts = 1), i.e.,

s(t) =

∞
∑

k=1

sk(t), (4)

where

sk(t) = A0k sech[A0k(t− k)], (5)

and k is the discrete-time index. At each discrete time k,
the transmitter maps an amplitude A0k to sk(t) into (5). For

simplicity of the following analysis, however, we consider the

square root of the amplitudes, i.e., Xk =
√
A0k, as shown in

Fig. 1(a).

The dimensionless energy of the kth soliton waveform is

defined as

E(A0k) ,

(k+1/2)
∫

−(k−1/2)

|sk(t)|2dt. (6)

We consider the regime where the inter-symbol distance is

much larger than the typical soliton width (low duty cycle),

so the integral in (6) can be taken over (−∞,∞). This yields
the well-known linear energy-amplitude scaling of the soliton

pulse E(A0k) = 2A0k. The minimum inter-pulse separation

is then determined by the peak power A2
0k of each individual

soliton, which is in turn inversely proportional to the square

of its width T0k.
The receiver in Fig. 1(b) processes the received waveform

r(t) during a window of length one via the forward NLFT

and returns the amplitude of the received soliton. We assume

the NLFT operates ideally, i.e., we ignore NLFT precision

issues discussed in [30]. The symbol separation is also as-

sumed to be large enough so that solitons pulses are located

sufficiently far from each other, so there is no interaction

between the neighbours, i.e., exp(−A0k) ≪ 1, or equivalently,
1 ≫ T0k. Another source of corruption for the soliton-based

transmission system emanates from the Gordon-Haus (GH)

timing jitter [5], [33], which defines the standard deviation

∆TGH of the soliton position as a function of the propagation

distance and soliton amplitude. To avoid interaction between

adjacent solitons, the GH timing jitter should also be taken

into account [5]. For a given propagation distance L, the inter-
soliton separation must fulfill 1 > T0k +∆TGH. We assume

that this condition is satisfied throughout this paper, and thus,

from now on we drop the time index k.
The exact conditional PDF for a single received amplitude

A given a transmitted amplitude A0 is given by [42, eq. (24)]

(see also [43])

pA|A0
(a|a0) =

1

σ2
N

√

a

a0
exp

(

− a0 + a

σ2
N

)

I1

(

2
√
a0a

σ2
N

)

, (7)

where σ2
N = LL−1

D D/2 is the normalised variance of the

accumulated ASE noise and I1(x) is the modified Bessel

function of the first kind. Expression (7) is in fact the same

PDF obtained assuming an energy-detection receiver (i.e., a

receiver based on (6)), as shown in [4, eq. (5.501)].

Equation (7) is nothing else but a special case of a non-

central chi-squared distribution with four degrees of freedom

providing non-Gaussian statistics for soliton amplitudes. For

future use, it is convenient to designate the output of the

discrete-time channel model Y as the square root of the output

soliton amplitudes A. By making a change of variables, the

PDF (7) can be rewritten as

pY |X(y|x) = 2

σ2
N

y2

x
exp

(

− x2 + y2

σ2
N

)

I1

(

2xy

σ2
N

)

. (8)

The conditional PDF in (8) describes a channel with the

input-output relation

Y 2 =
1

2

4
∑

i=1

(

X√
2
+Ni

)2

, (9)

where Ni, i = 1, 2, 3, 4 are four independent and identi-

cally distributed zero-mean Gaussian random variables with

variance σ2
i = σ2

N. The input-output relationship in (9) is

schematically shown in Fig. 1(b).

III. MAIN RESULTS

Since the soliton pulses are assumed to be well separated

and the intersymbol interference due to pulse interaction can

be neglected, the model (8) describes a scalar memoryless

channel. The channel capacity is then defined as [9], [10]

C , max
pX

IXY , (10)

where IXY is the mutual information (MI) and the optimiza-

tion is performed over all possible input distributions pX with

fixed average symbol energy E [E(A0)]. The MI IXY can be

decomposed as [9], [10]

IXY = hY − hY |X , (11)

where hY and hY |X are the output and conditional differential

entropies, respectively.

The SNR is defined as [2, eq. (29)]

SNR ,
E [E(A0)]

σ2
NTs

=
2κσ2

S

σ2
N

, (12)

where σ2
S is the average amplitude σ2

S = E [A0] = E [X2] and
κ is the ratio between the available bandwidth and the symbol

rate 1/Ts. Thus, for a fixed bandwidth and symbol rate, the

SNR is proportional to the parameter ρ , σ2
S/σ

2
N. We shall

henceforth consider the capacity and MI as a function of ρ.
The exact solution for the power constrained optimization

problem (10) with the channel model (8) is unknown. To

obtain a lower bound on the capacity, we shall assume the

input symbols X are drawn from a trial input distribution. In

this work we use the Rayleigh PDF

pX(x) =
2x

σ2
S

exp

(

− x2

σ2
S

)

, (13)

which leads to exponentially-distributed soliton amplitudes A0

with average σ2
S.



The next two Lemmas provide exact closed-form expres-

sions for the output differential entropy hY of symbols Y
with input symbols X distributed according to (13) and for

the conditional differential entropy hY |X .
Lemma 1: For the channel in (9) and the input distribution

(13)

hY = log
√

σ2
S − log

√

1 + ρ−1 − ρ−1 log
√

1 + ρ

+ ρ+ ψ(ρ−1)− 3

2
ψ(1)− log 2 + 1, (14)

where ψ(x) , d
dx ln Γ(x) is the digamma function, and Γ(x)

is the gamma function.

Lemma 2: For the channel in (9) and the input distribution

(13)

hY |X = log
√

σ2
S + 2 (1 + ρ)− (1 + ρ−1) log (1 + ρ)

− ρ−1
√

1 + ρ−1 F (ρ)− ψ(1)

2
− log 2, (15)

where

F (ρ) ,

∞
∫

0

ξ K1(
√

1 + ρ−1 ξ) I1(ξ) log
[

I1(ξ)
]

dξ, (16)

and K1(x) is the modified Bessel function of the second kind
of order one.

Sketch of the proof: To prove both lemmas, the output

distribution pY (y) ,
∫∞
0
pY|X(y|x) pX(x)dx is calculated

using (8) and (13). The derived output PDF pY (y) is then used
in the definitions of differential entropies. The results of both

Lemmas are then obtained by evaluating the corresponding

integrals. The calculation follows closely that from the earlier

work [17], where calculations were performed for a chi-

squared distribution with two degrees of freedom (cf. (16) and

[17, eq. (24)]).

We note that the proof of Lemma 2 includes finding a

closed-form expression for the differential entropy of a chi-

squared distribution with four degrees of freedom. To the best

of our knowledge, this has never been previously reported

in the literature.1 The results from Lemmas 1 and 2 can be

combined to produce the following theorem.

Theorem 1: For the channel (9) and the input distribution

(13)

IXY = log
(

ρ
√

1 + ρ−1
)

+ ρ−1 log (
√

1 + ρ )− ρ

+ ρ−1
√

1 + ρ−1 F (ρ) + ψ(ρ−1)− ψ(1)− 1. (17)

Proof: From Lemmas 1 and 2 and (11).

The results of Lemma 1, Lemma 2, and Theorem 1 are

illustrated in Fig. 2. Analytical curves for the functions hY ,
hY |X , and IXY are compared with results obtained via nu-

merical integration. A perfect match between the analytical

expressions and the numerical results is observed.

1However, a closed-form expression for the expected-log of a noncentral
chi-squared distribution with even number of degrees of freedom was given
in [44, Lemma 10.1].
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The next theorem shows that the capacity lower bound is

asymptotically equivalent to half the logarithm of the SNR,

which is the main result of our work.

Theorem 2: The MI IXY in (17) satisfies

lim
ρ→∞

Ias
IXY

= 1, (18)

where

Ias ,
1

2
log ρ. (19)

Proof: The proof follows from an asymptotic expansion

of IXY in (17) together with the asymptotic expansion of (16)

provided in [17].

Fig. 3 shows the numerical evaluation of the ratio

Ias/IXY and confirms that the MI behaves asymptotically

as (1/2) log ρ, or equivalently, as (1/2) log SNR. Since the

channel capacity is lower-bounded by IXY , this result implies

that the capacity grows at least as fast as (1/2) log SNR, when
SNR → ∞.

IV. CONCLUSIONS

By using a rigorous channel model based on the exact

conditional PDF for the soliton amplitudes in (7), an exact

closed-form expression for a lower bound on the capacity of



the nonlinear optical fibre channel with no inline dispersion

compensation was derived. It has been analytically demon-

strated that the lower bound on the capacity for the channel

based on the individual amplitudes of well separated solitons

displays an unbounded growth similarly to the linear Gaussian

channel. In this paper we considered the channel capacity

in [bits/soliton]. The practically more relevant problem of

channel capacity in [bit/s/Hz] is left for future investigation.
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