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1. Introduction

In-fibre inscription of grating structures in the core of an optical fibre was firstly reported in
1978 by Hill [1]. Being a promising device as narrow band reflector, the fibre Bragg gratings
(FBGs) have drawn a lot of attentions in the field of optical communication at that time.
However, the functionality of FBGs as sensors has been only recognised after a decade of the
invention of the device which can inscribe FBG with resonant wavelength independent of the
writing laser wavelength [2]. Since then, the research of FBG based sensors has grown
tremendously [3]. The techniques using diffractive optical element to fabricate FBG have put
the field into a more commercial way as reproductive of identical FBGs is possible [4]. FBGs
are then found a range of applications in sensing field such as strain, temperature, curvature,
loading, displacement etc. In 1996, anew type of fibre grating device which is called long period
fibre grating (LPG) was demonstrated which has superior temperature sensitivity while
possessing refractive index (RI) responsivity [5]. Both FBGs and LPGs have shown significant
role in the optical sensing domain. They have been utilised directly or functionalised or
integrated with other structures to show functionality in various sensing applications.

Another class of in-fibre gratings is the grating structure with tilted grating planes which called
tilted fibre gratings (TFGs). Such a type of gratings is capable of couple the core propagating
mode into strong cladding modes. In terms of the tilted angles, such gratings can be divided
into three types namely small angle (<45°) TFG, 45° TFG and excessively (>45°) TFG (ETFG).
The small angle TFGs were originally used as mode coupler which taps the light out from the
fibre core area [6]. Recently, such gratings have shown strong potential in sensing field [7-10].
When incorporated with metal coating, such gratings also exhibit great potential for refractive
index sensing based on surface plasmon resonance [11]. 45°-TFG was initially demonstrated
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as a polarisation dependent loss equaliser [12] and later as an in-fibre polariser [13]. The ETFG
is a new class of fibre gratings which was first demonstrated in 2006 by Zhou et al [14]. Since
then, the ETFGs have shown great capability as a novel kind of fibre sensors. This chapter will
review the recent development of ETFGs as various optical sensors. The chapter will be
organised in three main parts: first part (sections 2) gives a general introduction and funda-
mental background on fibre gratings with a particular emphasis on the ETFG; second part
(section 3) describes the inscription and characterisation of ETFG; third part (sections 4-9)
discusses ETFG based sensors and fibre laser sensing systems including strain, twist [15, 16],
loading[17], refractive index (RI) and liquid level sensing [18].

2. Background of fibre gratings

Light coupling in a non-tilted fibre grating can be well illustrated by ray tracing as shown in
Figure 1. For an FBG, the mode coupling occurs at resonant wavelength where the forward
propagating mode reflects into an identical backward propagating mode (Figure 1a). While for
an LPG, the mode coupling occurs close to wavelength at which a forward propagating core
mode is strongly coupled into co-propagating cladding modes (Figure 1b). For TFGs, the
mechanism of light coupling can also be described by ray tracing method as shown in Figure 2.

(a)

Figure 1. Schematic of light coupling of (a) a FBG showing light coupled from forward propagating core mode to
backward propagating cladding mode; (b) a LPG showing light coupled from forward propagating core mode to for-
ward propagating cladding modes.

As can be seen from Figure 2, when the grating tilted angle is smaller than 45°, the grating is
capable of coupling forward propagating core mode into backward propagating cladding
modes (Figure 2a). At 45°, as a unique case, the core mode will be coupled into radiation mode
normal to the fibre axis (Figure 2b). When the tilted angle is larger than 45°, like LPGs, the
ETFGs are capable of coupling the forward propagating core mode into forward propagating
cladding modes, but to the high order ones (Figure 2c). The strongest light coupling occurs at
the resonant wavelength where the phase matching condition A, ~(ng*n,,) A/cosO is
satisfied, where n, and n,,, are the effective mode refractive indices of the core mode and the
mth cladding mode, A is the grating period and 0 is the tilted angle of the grating structure.
The mode coupling mechanism can be well understood by the phase matching condition. We
hereby define the following wave vector relationship for mode coupling in a fibre grating
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Figure 2. Schematic of light coupling of TFGs with tilted angle (a)< 45°; (b)=45°;(c)>45°.

which is commonly regarded as the phase matching conditionK,,,=K;, + K. All K described

21 2.7
in this section are vectors. K, =—~ - 1,,is the wave vector of the incident light and K;= s
G

the grating vector. The phase matching condition of a fibre grating can then be described in a
vectorial plane in Figure 3 and Figure 4. For the case of FBG mode coupling, as shown in Figure

3a, the relationship K, =K;,= TTZ - n, applies as an FBG structure will couple the light from

a forward propagating core mode into an identical backward propagating core mode. For the
case of LPG mode coupling, as shown in Figure 3b, the grating can couple the incident light

2
into forward propagating cladding modes with K, = Tn - n, indicating the cladding modes.
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Figure 3. Vectorial descriptions of phase matching conditions of (a) FBG and (b) LPG.

For TFGs, as the grating has the ability to couple the forward propagating core mode into

2.7
radiation mode, it is hence to have K, = X Melad which is similar to LPG. With the condition
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n., =1, the following relationship K;, = K, therefore applies. Hence, the phase matching

out
condition of TFGs can be depicted in the vector plane which is shown in Figure 4, where 0
indicates the tilted angle of the grating with respect to the fibre axis. In Figure 4a, we can simply
infer that when the tilted angle is minimised to zero, the phase matching illustration evolves
into the standard FBG condition from which a forward propagating mode has been coupled
into an identical backward propagating mode via Bragg diffraction. Figure 4b shows the
special case of 45°-TFG which is capable of coupling out light perpendicular to the fibre axis
or incident beam propagation direction. While Figure 4c shows the mechanism of an incident
beam couples into a forward propagating mode through an excessively titled grating structure.
Although the phase matching condition gives very good approximation for interpretation of
mode coupling mechanism inside the TFGs, it does not involve the polarisation effect which
is actually one of the key properties of the TFGs.
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Figure 4. Vectorial description of phase matching conditions for TFGs with titled angles at (a) <45°, (b) =45°and (c) > 45°.

Due to their large tilted angle induced strong asymmetry to the fibre geometry, ETFGs exhibit
polarisation dependent mode splitting which features with pairs of peaks corresponding to
two orthogonal polarisation modes. We can therefore identify an equivalent fast-axis and slow-
axis similar to the conventional polarisation maintaining (PM) fibre structure as shown in
Figure 5. It is this distinctive polarisation mode splitting mechanism makes ETFGs as ideal
loading [17] and twisting sensors [16] based on their polarisation property and as refractive
index sensors utilising intrinsic sensitivity of the high order modes to surrounding medium.
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Figure 5. Schematic illustration of an ETFG structure with two assigned orthogonal polarisation axes.

3. Fabrication and spectral properties of ETFG

As illustrated in Figure 6, a TFG can be inscribed either by tilting the mask with respect to the
fibre axis (Figure 6a), or by using a mask with tilted pitches (Figure 6b). As an alternative
approach, one can inscribe such gratings by tilting the fibre about its axis orthogonal to the
plane defined by the two interfering UV beams in a two-beam holographic fabrication system
(Figure 6c). A commercial argon ion UV laser is employed to inscribe ETFG in hydrogenated
standard telecom fibre (SMF28). Similar to standard FBG fabrication, we have adopted mask
scanning technique for ETFG inscription due to high reproducibility and fine control of the
grating devices. A commercial amplitude mask with 6.6 um period was purchased for ETFG
inscription ensuring the spectral response residing within a broad range from 1200 to 1700 nm.
The schematic UV inscription setup is shown in Figure 7a. A typical microscopic image of an
ETFG is shown in Figure 7b demonstrating the slanted grating fringes at ~78°.

A broadband light source (BBS), a polariser and a polarisation controller (PC) are utilised to
examine the spectral properties of ETFG through an optical spectrum analyser (OSA). A typical
measurement schematic setup is illustrated in Figure 8.

Figure 9a shows the optical spectrum of a typical ETFG from 1200 to 1700 nm, exhibiting unique
paired loss peaks due to polarisation mode splitting, when probed using unpolarised BBS.
When polarised light with proper polarisation state is launched as a probe, only one set of split
modes will be excited and the other set disappears. As can be seen from Figure 9b, either the
equivalent fast- (blue dash-dotted line) or the slow-axis (red-dashed line) mode can be fully
excited or eliminated with polarised light.



28 Optical Sensors - New Developments and Practical Applications

@ | :’ (b) )
e i ——

I

(©)

Optical
Fibre

Figure 6. (a) and (b) mask scanning (c) two-beam holographic technique for TFG fabrication.
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Figure 7. (a) Schematic of UV mask scanning technique for ETFG fabrication; (b) a typical microscopic image of an
ETFG (Reprinted from Optics Communication Vol.305 pp271-275, Copyright (2013) with permission from Elsevier ).
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Figure 8. Typical measurement schematic for characterising ETFG.



Optical Fibre Sensors Based on UV Inscribed Excessively Tilted Fibre Grating 29
http://dx.doi.org/10.5772/57146

(@)

o o
) z
[ = c
o L o
2 8
£ £
2 2
g £

. .

18] fast axis mode slow axis mode
1200 13‘00 14‘00 15'00 18!00 17‘00 15‘50 15‘55 15‘60 15’85
Wavelength(nm) Wavelength(nm)

Figure 9. (a) Optical spectrum of a typical ETFG from 1200 nm to 1700 nm; (b) the spectra of one zoomed loss peak
pair when polarised light probing the ETFG (Reprinted from Optics Communication Vol.305 pp271-275, Copyright
(2013) with permission from Elsevier ).

4. Thermal responsivity of ETFG

The ETFGs have shown a thermal responsivity as low as 3.3 pm/°C in 1200 nm range [19]. For
the application of optical sensors, the thermal responsivity in the 1550 nm range is of interest.
The thermal responsivity of the ETFG has been examined by mounting the grating on a peltier
device based heat exchange board using a commercial temperature controller while monitor-
ing the transmission spectrum change with elevated temperature. We studied two pairs of loss
peaks of the ETFG around 1560 nm and 1610 nm individually. Figure 10 plots the wavelength
shift of the two paired loss peaks when the temperature of the grating increases from 20 °C to
80 °C with a step of 10 °C. Because a polariser and a PC has been used in the experiment, extra
insertion loss is therefore induced to the system. Moreover, the BBS has a low power response
at the interested wavelength range. Hence, the measured intensity of the loss peaks almost
reach the sensitivity limit of the OSA. While the resolution of the OSA used in the experiment
was limited to 0.02 nm, the errors in the experiment in terms of wavelength change is 0.04 nm
which is shown in the error bars. Figure 10 shows the thermal responsivities of the two paired
loss peaks have a quasi linear relationship. The thermal responsivities of the fast- and slow-
axis modes around 1560 nm are 4.5 pm/°C and 5.5 pm/°C (Figure 10a) while around 1610 nm
are 4.5 pm/°C and 7.5 pm/°C (Figure 10b). It can be clearly seen that the thermal responsivity
of ETFG depends on the mode orders, this is quite similar to the thermal behaviour of normal
LPGs [20]. We have also found that the thermal responsivity of slow-axis mode is slightly
higher than that of the fast-axis mode. Furthermore, compared to the conventional LPG [20],
ETFG shows a much lower temperature sensitivity. Therefore, the ETFG could be an ideal
optical sensor without compulsory temperature compensation scheme.
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Figure 10. Wavelength shifts of two paired loss peaks of the ETFG against the temperature change in the ranges
around (a) 1560 nm and (b) 1610 nm (Reprinted from Optics Communication Vol.305 pp271-275, Copyright (2013)
with permission from Elsevier ).

5. ETFG based strain sensing

To evaluate the strain responsivity of the ETFG, the grating fibre was mounted in a homemade
fibre stretcher where the fibre was clamped on two metal block holders with a fixed distance,
one of which being fitted with a precision translational micrometer driver. By moving the
micrometer driver, the fibre was then stretched therefore inducing the strain from 0 to 2000
pe. Figure 11 depicts the wavelength shift against applied strain for two paired loss peaks. The
figure shows a linear relationship between the wavelength change and the applied strain. It
can be seen that the strain responsivities of the fast- and slow-axis modes around 1530 nm are
1.3 pm/ue and 1.6 pm/pe (Figure 11a) while are 1 pm/pe and 1.7 pm/ue (Figure 11b) in the
region around 1610 nm. We notice that the strain responsivity of the ETFG is slightly higher
than FBG [3]. The strain responsivity of the fast-axis mode is generally higher than that of the
slow-axis mode. It also worth to notice that the resonant wavelength of the ETFG has blue shift
while it is under tensile strain. This is in contrast to the FBG strain response, however,
corresponds very well to an LPG with relatively small period [20].

Although the passive detection of wavelength shift can offer smart sensing solutions, the
systems are still subjected to complexity. Normally, in this case, an additional light source is
necessary. Active strain sensors using fibre laser configuration provide an alternative meas-
urement method with higher signal to noise ratio while having a less complicated system.
Moreover, most of the passive sensing systems rely on optical spectrum domain signal
demodulation from which the cost is high. Time domain signal demodulation offering low
system cost has been reported through integrating a conventional LPG in a linear laser cavity
[21]. In the following section, we describe the demonstration of a fibre laser strain sensor
incorporating an ETFG. Low cost time domain signal demodulation can be achieved by
monitoring the built-up time of the modulated laser cavity. The built-up time of the laser
system is subject to the loss change of the cavity in a modulated laser system when gain and
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pump condition is constant. Because the ETFG has spectral loss bands, when it is subjected to
mechanical strain in the laser cavity, the loss band will then shift accordingly, so that the cavity
loss is related with applied strain and the built-up time of laser system will change corre-
spondingly. Therefore the strain can be detected by monitoring the built-up time of the laser
system.
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Figure 11. Wavelength shifts of two paired loss peaks of the ETFG against the temperature change in the ranges
around (a) 1530 nm and (b) 1620 nm.

The setup for the proposed fibre laser strain sensor system is shown in Figure 12a. The ETFG
is again mounted in a home made fibre stretcher. The pump LD is modulated by a square wave
through a standard function generator at 5 Hz. The laser output is connected to a low noise
photodiode, and the built-up time is measured via a standard two-channel digital oscilloscope.
Figure 12b shows a typical oscillation trace of the laser oscillation built-up process.

In the experiment, by tuning the micrometer, we can obtain equivalent strain from 0 pe to 2000
pe applied on the ETFG. When the ETFG is at Ope, this corresponds to the maximum loss in
the laser cavity which gives out the longest built-up time. While the strain increases, the loss
bands will have a blue shift thus decreasing the cavity loss which results in a shorter built-up
time of the system. A typical output spectra change is illustrated in Figure 13a.

The system was firstly set the lower and upper level modulation pump at constant values
of 14.6 mW and 112.4 mW individually. The built-up time was then measured for the strain
applied on the ETFG with an increment of 100 pe. The absolute built-up time change against
the applied strain on the ETFG is depicted in Figure 13b. From Figure 13b it can be seen
that, initially when the ETFG is under no strain, the laser cavity suffers the maximum loss
therefore exhibiting the largest built-up time. The experiment was then repeated for a
different lower pump level at 24 mW. It can also be found that this laser strain sensor
system is subject to the saturation of the applied strain as the system is in different lower
pump levels. For a better understanding of the experimental results, it has been re-
plotted from which linear range of the sensor response counts for in Figure 13b (i.e. lower
pump level 24 mW) and Figure 13c (i.e. lower pump level 14.6 mW). It indicates, when the
lower pump level is 14.6 mW, the sensor system can measure strain from 0 pe to 1000 pe

31
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with a linear responsivity of ~500 ns/ue. This is far beyond the resolution of a standard
oscilloscope. The sensor then reaches its saturation point when the applied strain is over
1000 pe. For lower pump level at 24 mW, the sensor is only capable of measuring strain
from 0 pe to 500 pe with a linear strain responsivity of ~349 ns/ue.
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Figure 12. (a) Schematic diagram of the ETFG based fibre laser torsion sensor system; (b) Typical built-up time trace of
the fibre laser observed on a digital oscilloscope. Modulation signal is shown in black dotted line; laser output signal is
shown in red solid line.
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Figure 13. (a) Typical output spectrum change when the 79°-TFG is under strain; (b) Laser oscillation built-up time
against applied strain on 79°-TFG for two different lower modulation pump power levels, and re-plotted separately
for (c) lower pump level 14.6 mW from 0 to 1000 pe (d) lower pump level 24 mW from 0 pe to 500 pe.
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6. ETFG based twist sensing

As the ETFG is polarisation dependent, when probed with polarised light, the polarisation
direction of the light will alternate accordingly if the fibre is under twist. The schematic of ETFG
twist sensor is shown in Figure 14. In Figure 14, the broadband light is polarised through a fibre
pigtailed linear polariser. The PC is then employed to alternate the state of polarisation of the
input light to excite either fast-axis or slow-axis mode of the ETFG. One side of the ETFG is
clamped on a stage using a metal block while the other side of the ETFG is fed into the OSA
through a fibre rotator. The length between the fibre clamp and the fibre rotator is defined as
L. A small tension was then applied to the fibre in order to eliminate the axial strain and bending
effects, which may induce measurement uncertainty. Before the twist measurement com-
menced, the zero degree of rotation was normalised to a state that only fast-axis mode is fully
excited by adjusting the PC. The twist was then applied to the grating in clockwise direction
from 0° to 180° with 10° increment. The resultant transmission spectra evolution is depicted in
Figure 15. From Figure 15 one can clearly see that when the ETFG is under twist, the strength
of fast-axis mode increases while that of the slow-axis mode decreases. More importantly, the
fast-axis mode diminished completely when the twist angle is 180°. A vice versa evolution was
also observed when the twist was applied in the anti-clockwise direction from 0° to 180° between
the fast-axis and slow-axis mode.

Metal Fibre
eta
Polariser PC block ETFG "B Fibre

Figure 14. Schematic description of ETFG twist sensor system using a BBS.

In order to make the system more integrated, we carefully spliced the ETFG with a 45°-TFG
make the system a compact all-fibre grating based system. While the polarising axis of the 45°-
TFG matches either the fast-axis or slow-axis, the corresponding mode will be excited so that
the necessity of PC adjustment is removed. To further lower down the cost of the system, single
wavelength laser (SWL) was employed as a light source to which the laser line matches either
the fast-axis or slow-axis mode. Therefore, while the twist was applied on the ETFG, the power
variation can be recorded using a low cost power detector rather than an expensive OSA. The
experimental setup of this improved low cost system is shown in Figure 16.

To perform the twist experiment, the SWL is set at the wavelength matching either the fast-
axis or slow-axis mode as shown in Figure 17. The zero position of the sensor was calibrated by
optimising the fibre rotator which has a minimum transmission power. The twist was then
applied again from 0° to 180° with an elevation step of 10° for both fast-axis and slow-axis mode.
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Figure 15. Spectral evolution of ETFG under twist in clockwise direction from 0° to 180° with an increment of 10°.
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Figure 16. Schematic experimental setup of all-fibre grating based twist sensor system.

The result of the ETFG based twist sensor using power detection method is shown in Figure
18. In Figure 18a, it demonstrates that from 0° to 180° the transmission power of the fast-axis
mode increases from -10 dBm to -2 dBm while that of the slow-axis mode is vice versa. One may
identify a linear range of the sensor at the position of 90°+30°. Thus the sensitivity of the sensor
is 0.1 dBm/(rad/m) and 0.24 dBm/(rad/m) for the slow-axis and fast-axis mode respectively. In
Figure 18b, it shows similar results when detected with a photodetctor resulting in a voltage
change from 0 to 3000 mV. The corresponding linear range gives out a sensitivity of 102.4 mW/
(rad/m) and 101.8 mW/(rad/m) for the slow-axis and fast-axis mode individually. It can be seen
clearly that when using a photodetector, the linearity is better than using a power meter. Also,
the sensitivity is slightly better when using a photodetector. The twist sensitivity of both fast-
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Figure 17. The upper plot is the transmission spectra of the ETFG; the lower one is the output spectra of a SWL set at
the wavelength matching either fast-axis or slow-axis mode.

axis and slow-axis mode is quite similar. Therefore, in the real application, either mode can be
used. The successful demonstration of using photodetector may provide a mechanism that the
signal could be potentially transmitted through wireless control and remote monitoring.
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Figure 18. Transmission power variation against twist angle for fast-axis and slow-axis modes measured through low-
cost power detection methods: (a) using a power meter and (b) a photodetector.

Similar to strain sensing, the ETFG can also be incorporated into a fibre laser to form a fibre
laser based twist sensor system where time domain signal demodulation technique can be
applied. The system setup is quite similar to the ETFG based fibre laser strain sensing system,
the only difference is to replace the fibre clamps for strain by a set of fibre rotator. The setup
for the ETFG based fibre laser twist sensor system is shown in Figure 19. The ETFG itself is a
polarisation dependent loss filter, when an ETFG is inserted to the laser cavity and subject to
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twist, the intracavity loss will change accordingly, thus affecting the laser built-up time. Based
on this principle, the twist experienced by the ETFG can therefore be monitored by measuring
the built-up time of the laser cavity.

ETFG  Output
FBG ~ WDM

Photo
diode

Rotator

-l

Figure 19. Schematic diagram of the ETFG based fibre laser twist sensor system. (reprint from REF[15] with permission
from SPIE ).

In the experiment, a segment of laser cavity fibre with ETFG was fixed by a clamp on one side
and the other side was mounted on a fibre rotator, as shown in Figure 19a. In order to eliminate
the noise induced from other effects such as axial strain and bending, the grating fibre was
under small tension to maintain it straight. In the twist sensing experiment, the lower and
upper modulation levels of the pump power were first set at 14.6 mW and 43.3 mW, respec-
tively. To perform the measurement, the grating fibre was subjected to twist from 0 to 150°
with an elecvation of 10° in both clockwise and anti-clockwise directions. We have measured
the built-up time for each twist angle and the normalised results are plotted in Figure 20a.
Figure 20a shows that at the initial position, i.e. under 0° twist, the ETFG induced polarisation
loss to the laser cavity is at its maximum, so the largest built-up time is expected at this point.
Therefore, when the grating fibre is subjected to twist in either clockwise or anti-clockwise
direction, the induced polarisation loss through the ETFG to the laser cavity decreases and the
built-up time hence reduces accordingly with increasing twist. We have repeated the twist
experiment at a different lower pump modulation level of 24 mW. We observed a decrease for
the overall torsion sensitivity, as the lower trace shown in Figure 20a. This is because a higher
pump power could provide higher gain for the laser system therefore shorter build up time is
expected. To work out the sensitivity of the twist sensor, we re-plot the results for twist applied
in clockwise and anti-clockwise direction separately in Figure 20b and Figure 20c. Within the
dynamic range of +140°, the sensor shows a quasi-linear response indicating a torsion sensi-
tivity of ~412 us/(rad/m). The resolution of the oscilloscope used in the experiment is 5 ns, this
gives an estimated sensor resolution of ~1.25x10% rad/m. Furthermore, if the sensor is set at a
predefined twist angle, i.e. at +80° as indicated in Figure 20b and Figure 20c, one is able to
identify the twist direction.
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Figure 20. (a) Laser oscillation built-up time against twist angle for twist applied to clockwise and anti-clockwise direc-
tions for two different low modulation pump power levels, and re-plotted separately for (b) clockwise and (c) anti-
clockwise direction to show the capability of identifying twist direction. (reprint from REF[15] with permission from
SPIE).

One may notice that when the torsion angle varies from -140° to 0°, there is a very obvious
jump for the built-up time change from -80° to -60°. This could be attributed to the experimental
error from rotating the grating in the laser cavity, as there is no such jump for rotation angle
from 0° to +140°. To increase the sensitivity of the sensor, it is possible to further decrease the
lower modulation pump level.

7. ETFG based loading sensing

Take a standard single mode optical fibre with cylindrical geometry into consideration, when
the transverse force is applied to the y axis as shown in Figure 21, for a given compressive force

. | 2-F 6-F
F, the stresses in x and y directions can be expressed as 0, =1~ and 0, =— 5.~ where

D is the diameter of the fibre, L is the length of the stressed area and F is the force applied on
the fibre. Itisnoted that 6, is tensile stress which is positive while 6, is compressive stress which
is negative therefore (6,- 6,)>0 is always true. The photoelastic effect induced refractive index
change in the fibre core area can be given by [22]:

An:nx—ny=(nx0—ny0)+(Cl+C2)~(§x—5y) (1)
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Where n,, and n, are the effective refractive indices of the fibre without stress. C, and C, are
the stress-optical coefficient, the relationship (C1-C2)>0 is always true for silica fibre [23]. If the
transverse load is applied in the slow-axis of an ETFG, we will have n,,=n;and n,=n, where n,
and 7, are the refractive indices for the predefined fast- and slow-axis of the ETFG. Hence, the
first term in equation (1) will be negative which will therefore reduce the birefringence An.
Under this situation, we anticipate the light coupling to the two orthogonal polarised modes
is apt to be affected by the external loading. On the contrary, if the transverse load is applied
in the fast-axis direction, we will have n,5=n, and n,,=n, Therefore, we will have a positive value
in the first term of equation (1) which will increase the birefringence An. In this scenario, the
ETFG is capable of preventing light from coupling to the two orthogonal polarised modes.

y 4

-

b X

Figure 21. The cross section of a fibre in an assigned x—y coordinate system with transverse load applied along the y-
axis.

The schematic experimental setup of the ETFG loading experiment is shown in Figure 22a. In
the experiment, an ETFG with 12 mm length and a support fibre were sandwiched between
the flat surface of a buffer plate and a base plate. The loading was applied on top of the buffer
plate with a nominal loading length of ~ 32 mm. A BBS was polarised through a commercial
polariser, the PC was employed to choose the desired polarisation state, here we choose, the
fast-axis mode of the ETFG. The spectral evolution was recorded through an OSA. The applied
transverse load on the slow-axis of the ETFG was from 0 to 2600 grams with an increment of
200 grams as shown in Figure 22b. The spectral evolution is plotted in Figure 23. It can be seen
clearly from Figure 23 that with the increase of the loading weight, the intensity of the fast-
axis mode is elevating while that of the slow-axis mode is decreasing. While we found when
the loading is applied on the fast axis of the ETFG as shown in Figure 22¢, no spectral evolution
can be observed. This unique property could potentially serve as a vectorial loading sensor
which is capable of not only measuring the amplitude of the loading but also identifying the
direction of the loading.

Similar to the twist sensor, the loading sensor can also be optimised into a low cost sensor
using a SWL and optical power detector. There also exists a linear range from 9 to 44 kg/m for
the loading responsivity which is approximately 2.04 pW/(kg/m). Therefore, by using a
standard detector with InW resolution, one could possibly reach a loading sensitivity of 0.0016
grams.
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Figure 22. (a) Schematic experimental setup of the transverse loading experiment using an ETFG. (b) and (c) The cross
section of the TFBG with transverse load applied along slow- and fast-axes; ¢ is the angle between the fast-axis of the
ETFG and the x direction.
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Figure 23. (a)Transmission spectral evolution of the ETFG with transverse load from 0 to 2600g applied on the slow-
axis of the ETFG and the support fibre. (b) Power evolution of the ETFG loading sensor using SWL and power meter.

8. ETFG based refractive index sensing

Due to the nature of forward propagating cladding modes, the ETFG is intrinsically sensitive
to the external refractive index variation which is similar to an LPG. To characterise the RI
responsivity, the ETFG was mounted in a V-grooved aluminium plate, this is to guarantee the
measurement being free from other effects such as strain and bend. The refractive index gel
used to study the RI response of the ETFG is certified commercial gels from Cargille Lab. The
optical spectrum was recorded through a BBS and an OSA to study the spectral evolution of
RI response. In Figure 24, it clearly shows the two paired modes around 1560 nm and 1610 nm
in response to the RI gels with index change from 1.32 to 1.38 with an increment of 0.01. An
obvious trend is the degeneration of the dual loss peaks with increasing RI value. This can be
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explained by the reduction of polarisation mode dispersion (PMD) of the cladding modes
resulting from the decrease of refractive index difference between the fibre cladding and outer
medium. Figure 25a and Figure 25b shows the RI responses of the fast- and slow-axis mode
for 1560 nm and 1610 nm band, respectively. It can be clearly seen that the wavelength shift
for the two bands is around ~20 nm when the Rl increased from 1.32 to 1.38. Additionally, the
wavelength shift for 1610 nm band is observed to be slightly larger than that of the 1560 nm
band. It is also obvious to see that the ETFG has stronger Rl response for the RI value around
1.3 compared to conventional LPGs [20] which does not respond at this RI range. This indicates
that ETFG could be anideal candidate as bio/chemical sensor for water based solutions. Despite
the RI response within the desired RI range is not linear, the RI sensitivity of the two peaks is
estimated to be ~320 nm/RIU in ~1.33 refractive index region, which is much higher than that
of reported typical LPGs [20]. Further increase the RI may result in RI match between the
cladding and the index gel. This will remove the boundary condition for the survival of
cladding modes, therefore only radiation mode will appear without any loss band structure
in the optical spectrum.
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Figure 24. Rl response of a mode pair when subject into index gel from RI=1.32 to 1.38 with an increment of 0.01 for
(a) 1560 nm band and (b)1610 nm band (Reprinted from Optics Communication Vol.305 pp271-275, Copyright
(2013) with permission from Elsevier ).
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Figure 25. Rl response of fast- and slow- axis modes around (a) 1560 nm and (b) 1610 nm when the ETFG was sub-
jected to index gels with SRI change from 1.32 to 1.38 with an increment of 0.01 (Reprinted from Optics Communica-
tion Vol.305 pp271-275, Copyright (2013) with permission from Elsevier ).
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9. Liquid level sensor

Based on the RI response of the ETFG, we notice that when the ETFG is fully immersed in
water, the paired peaks shifted to the longer wavelength side, as shown in Figure 26. It is this
water induced wavelength shift enables ETFG to be an effective liquid level sensor. If part of
an ETFG is immersed in the water, it behaves as two individual gratings with two types of
surrounding media. Hence, when we just observe one paired loss peaks, we will see that a
paired loss peaks generated by the air-surrounded grating section with a broad peak on longer
wavelength side generated by the water-surround grating sections, as illustrated in Figure
26. This behaviour exhibits similarity to LPG and etched FBG based level sensors, and further
proves that the effective index of the propagating cladding or core mode is defined by the RI
of the surrounding medium covering the waveguide. Owing to the PMD nature of the ETFG
cladding modes, we have excited fast- and slow-axis mode individually by polarised light to
evaluate the ETFG spectral response to water level change.
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Figure 26. The transmission spectra of a 78°-ETFG when it is in air (black solid line) and fully immersed in water (red dot-
ted line) (Reprinted from Optics Communication Vol.305 pp271-275, Copyright (2013) with permission from Elsevier).

In the water level sensing experiment, a 12 mm long grating was attached to a plastic tube and
then immersed into the water. One part of the tube surface was removed to house the grating
fibre which is to ensure the grating is in full contact with water while also eliminating the
grating from bend. A precision translational stage was used to hold the beaker so that water
level on the submerged ETFG can be accurately controlled. Hence during the whole experi-
ment, the fibre movement can be eliminated which stops the polarisation induced uncertainty.
Figure 27a describes the schematic configuration of the level sensing experiment. In Figure
27b, it shows the transmission spectra when the slow-axis mode around 1560 nm band was
excited at three different liquid levels: the left peak (red solid line) indicates that the grating
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fully exposed to air, the middle two peaks (blue dashed line) appear when half of the grating
isimmersed in water, the right peak (black dotted line) illustrates that the grating is completely
immersed in water. The spectral evolution of the slow-axis mode around 1560 nm when the
ETFG was surrounded completely from by air to water is illustrated in Figure 27c. It is clear
to see that when the water level increases, the loss of the air-surrounded peak decreases
whereas the loss of the water-surrounded peak elevates. Figure 27d shows that the fast-axis
mode around 1560 nm band exhibited a similar spectral change,
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Figure 27. (a) Schematic diagram of the experimental setup for liquid level sensing; (b) Transmission spectra of the
ETFG for slow-axis mode coupling around 1560 nm: the left-side (red solid line), right-side (black dotted line) single
peak and the middle dual peaks (blue dashed line) corresponding to the grating surrounded by air, water and half
way in water. The air- and water-surrounded peaks evolving with increasing water level for (c) slow-axis mode and (d)

fast-axis mode (Reprinted from Optics Communication Vol.305 pp271-275, Copyright (2013) with permission from
Elsevier).
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The transmission against submerging length of the ETFG in water for the fast- and slow-axis
mode are depicted in Figure 28a and Figure 28b respectively.
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Figure 28. Transmission change measured for the length of the 78-TFG in water for the grating sections surrounded
by water (m,0) and by air (a,a) for (a) fast-axis mode and (b) slow-axis mode (Reprinted from Optics Communication
Vol.305 pp271-275, Copyright (2013) with permission from Elsevier ).

In Figure 28, it can be seen that by observing the transmission of the fast-axis or slow-axis mode
and the related water surrounded peak of the ETFG, we can determine the water level.
Additionally, one need to note that the initial 3 mm for the air-surrounded modes is not
sensitive to the water level variation. The grating has alinear response to the water level change
from 3 mm to 10 mm and becomes insensitive from 10 mm to 12 mm. While for the water-
surrounded modes, the grating response has a linear relationship to water level from 0 mm to
8 mm followed by an insensitive range from 8 mm to 12 mm. It is still not clear that why the
sensing range is different between the air- and water-surrounded modes. We further linearly
fitted the results to characterise the sensitivity of the level sensor.

In Figure 28a, it can be seen the sensitivity for the air-surrounded fast-axis modes is quite
similar to that of the water-surrounded one which is ~ 13 %/mm despite the sensing range is
different for these two modes. The air- and water-surrounded slow-axis mode show a
sensitivity of ~ 12 %/mm which is shown in Figure 28b. This is more than twice of the sensitivity
of the LPG based liquid level sensor with a reported value of 4.8 %/mm [24]. We can therefore
conclude that both fast- and slow-axis mode of the ETFG is capable of water level sensing
which offers similar sensitivity and measurement range. The manufacture quoted accuracy of
7 % (0.3 dB) of the OSA can be regarded as the main factor of measurement uncertainties in
the experiment. Also, the environmental effect could be taken into account because the
measurement is polarisation sensitive. The uncertainty may increase up to ~ 35 % if the
transmission of the water-surrounded mode is getting lower. This is mainly due to reaching
the sensitivity limit of the OSA when the transmission of the peaks become smaller. A stronger
light source and low loss measurement kit could potentially increase the sensitivity and
eliminate these errors. The sensor may also be developed as a low cost solution using single
wavelength laser and a power meter.
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10. Conclusion

In summary, ETFGs have been demonstrated as effective RI, strain, twist, loading and liquid
level sensor. The ETFGs have shown a slightly low thermal responsivity and slightly higher
strain responsivity than the standard FBGs. The strain response of the ETFGs is also similar to
a short period LPG as shown a negative wavelength shift against strain. Because their unique
polarisation mode splitting property, the ETFGs have exhibited vectorial sensing functions as
loading and twisting sensors. This allows the ETFG can not only measure the amplitude of the
loading and twist but also determine the direction of the measurands. We have described that
as a strain or twist sensor, the signal can be demodulated using low cost method with a single
wavelength laser and a power detector. Furthermore, we have demonstrated that by incorpo-
rating the ETFG in a linear cavity fibre laser, a fibre laser based strain or twist sensor using a
time domain signal demodulation method can be realised showing high signal-to-noise ratio
for the sensing. The ETFG has also shown strong responsivity to external surrounding
medium. Compared to an LPG, the ETFG is sensitive in the RI range ~ 1.33 which allows it to
perform efficient sensing for aqueous based solution. Based on this, we have also demonstrated
an ETFG based water level sensor with higher sensitivity than an LPG based one.

In the future, we will expect to see more sensor applications based on ETFGs, such as bending
sensor and biophotonic application. With proper coating, the ETFGs could function as surface
plasmon resonance based ultrahigh sensitivity sensors. So far the theoretical understanding
of ETFGs has not been fully realised, thus a systematic study on the theory of the ETFG is
expected with which we could find more applications with such unique grating structures.
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