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Abstract

We introduce a novel algorithm for medial surfaces ex-
traction that is based on the density-corrected Hamiltonian
analysis [20]. The approach extracts the skeleton directly
from a triangulated mesh and adopts an adaptive octree-
based approach in which only skeletal voxels are refined to
a lower level of the hierarchy, resulting in robust and accu-
rate skeletons at extremely high resolution. The quality of
the extracted medial surfaces is confirmed by an extensive
set of experiments.

1. Introduction

The skeleton has proven to be a valuable and widely used
shape descriptor for a number of tasks such as 2-D and 3-
D shape recognition [13, 19], volumetric models deforma-
tion [21], segmentation [15] and protein structure identifi-
cation [1]. When working in two dimensions, the skeleton,
or medial axis transform, is defined as the locus of the cen-
ters of the maximal inscribed circles bitangent to the shape
boundary. The interest in this descriptor stems from its be-
ing a concise representation of the original shape, which is
topologically equivalent to it, and invariant to several shape
deformations.

Broadly speaking, the algorithms to extract a skeleton
can be divided into four main categories. Approaches in
the first class simulate Blum’s grassfire transform by itera-
tively eroding layers from the shape [5]. These algorithms,
while fast and simple to implement, are sensitive to Eu-
clidean transformations. Approaches in the second class de-
tect the ridges of the distance map either directly [7] or by
evolving a series of curves, such as snakes, under a poten-
tial energy field defined by the distance map [10]. Although
these methods fulfill the geometrical constraint, the topo-
logical correctness is not guaranteed. Approaches in the
third class are based on the Voronoi diagram of a triangu-
lated shape [12]. These techniques extract the correct topol-
ogy, and are invariant under Euclidean transformations, but

extract very noisy skeletons. The fourth, and final, class of
methods is based on the analysis of the differential struc-
ture of the boundary. In [9], the boundary is segmented at
points of maximal curvature and the skeleton is computed
through the Voronoi diagram of these segments. Leymarie
and Leving [10] proposed a similar approach based on ac-
tive contours, where the curve is evolved according to the
eikonal equation, and the points where the wavefront col-
lapses define the skeletal points. Unfortunately, as in [9]
this requires an initial segmentation of the boundary at cur-
vature extrema, which is itself a challenging problem.

Another important method that belongs to this class
stems from the Hamiltonian analysis of the boundary flow
dynamics [18]. Siddiqi et al. state that the singular points
where the system ceases to be Hamiltonian (i.e., an energy
conservation principle is violated) are responsible for the
formation of skeletal points. Torsello and Hancock [20] im-
prove the localization properties of the approach by taking
into account the effects of the boundary curvature.

Today, the wide availability of cheap 3D scanning de-
vices renders topical the automated extraction of a repre-
sentation which provides a simple venue to perform shape
analysis and representation under deformation and articula-
tion. For this reason, the design of efficient algorithms for
3D skeleton extraction is of pivotal importance. Note also
that while in 2D the image needs to be segmented in order
to extract the shapes, in 3D the objects are naturally mod-
eled as distinct meshes, thus rendering the skeletonization
much more practical. The addition of a third dimension,
however, renders the task of medial surfaces extraction par-
ticularly challenging. First, there is an exponential growth
of the number of voxels, which may render the computation
impracticable when a high resolution is needed. Further,
volumetric objects are commonly represented as triangle
meshes, that may eventually need to be voxelized before any
further computation is done. Depending on the resolution
chosen, this discretization might yield the wrong topology.
Moreover, not only the spatial and time complexity of the
algorithm is increased, but also tasks that are almost trivial
in two dimensions, such as ensuring the topological equiv-
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Figure 1. Steps to refine the skeleton: a) computation of the gradient and Laplacian of the distance map; b) integration of the log-density in
the voxels with a full neighborhood; c) alternating thinning and dilation step to detect skeletal voxels at the current level of the octree.

alence between the object and its skeleton, become more
challenging when a third dimension is added.

Note that in the literature there are two competing 3D
generalizations of the skeleton: the curve (or line) skele-
ton [3], which provides a minimal representation for shape
analysis and recognition, and the medial surfaces, which,
on the other hand, carry enough information to recover the
original shape. Moreover the medial surface is topologi-
cally equivalent to the shape in the sense that there exists
a homotety that maps its segments (considered as two ori-
ented surfaces) to the original mesh. The same is not tur of
the line skeleton which is a lossy simplification of the shape.
Finally, the curve skeleton is ill-defined in some degenerate
cases, as for example the shape of a cup. In this paper, we
therefore concentrate on the extraction of medial surfaces
from triangulated meshes.

Arcelli et al. [2] propose a distance-driven algorithm that
is topology preserving but works only on voxelized ob-
jects, and thus is unable to cope with high resolution inputs.
The same holds for the algorithm proposed by Siddiqi et
al. [19], which is a generalization to three dimensions of the
Hamilton-Jacobi skeleton. Again, this approach is topology
preserving but requires a discretized input and moreover
it suffers from the same limitations of its two-dimensional
counterpart, since it doesn’t take into account the effects
of boundary curvature. A more robust algorithm is that of
Reniers et al. [16], where both the curve and the surface
skeletons are located by means of an advection-based im-
portance measure. Unfortunately this measure turns out to
be well defined only for genus 0 shapes.

Another approach is that of Bai et al. [4] and Quadros
et al. [14], who propose to use adaptive octrees in order to
reduce the spatial and time complexity. This allows some
parts to be discretized more densely while the rest can be
analyzed at a coarser scale. However, both these approaches
work on a precomputed octree, where the grid refinement
criterion is based on simple heuristics.

On the other hand Yoshizawa et al. [21] take a Voronoi-
based approach, where the skeleton of a mesh is approxi-

mated by a skeletal mesh having the same connectivity as
the original mesh. These approaches are fast and do not
require an initial voxelization, but extract only an approxi-
mation of the skeleton and are extremely sensible to small
perturbations of the boundary.

In this paper we introduce a novel algorithm for medial
surfaces extraction that is based on a generalization to three
dimensions of the density-corrected analysis of Torsello and
Hancock [20], while taking an adaptive octree-based ap-
proach for the discretization of the initial mesh where we
iteratively decide which voxels to refine based on the lo-
cal value of the divergence of the momentum field, i.e., the
confidence we have in that point being skeletal.

2. Hamilton-Jacobi Skeleton
Let the distance mapD be a function that assigns to each

point in the interior of the shape its distance to the clos-
est point on the object boundary B. We define the velocity
field F = ∇D. In their original formulation, Siddiqi et al.
propose to label as skeletal those points in which the diver-
gence of F is non-zero, under the assumption that the field
F is conservative everywhere except on the skeleton [18].
However, under a compressing front, the divergence can be
negative also at non-skeletal locations. The problem was
overcome with the introduction of the concept of normal-
ized flux , however, due to the discrete structure of the lat-
tice, the integration radius has a lower bound of one pixel.
Since the divergence of the velocity field in p depends on
the local boundary curvature, assuming an integration ra-
dius of one pixel, the value of the normalized flux at p will
be NφA(F)(p) = − 1

2k(p), where k(p) is the curvature
of the evolving boundary at p. The problem is that near
the endpoints of the skeleton the value of the curvature will
tend to infinity, thus the discrete normalized flux diverges in
their proximity.

A solution to this problem was proposed in [20] where
the authors observe that the linear density of the boundary is
not constant over time when the boundary is curved, so they
propose to resort to a mass conservation principle. They



(a) 32× 32× 32 (b) 64× 64× 64

(c) 128× 128× 128 (d) 256× 256× 256
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Figure 2. The hierarchical refinement of the medial surfaces. The
skeletal points are meshed for ease of visualization.

state that it is the momentum field M = ρF that is con-
servative. Here ρ is a scalar field that assigns to each point
the linear density of the inward-evolving boundary front. In
other words, we have∇·(ρF) = 0 at any non-skeletal point
and thus also φA(ρF) = 0 for any region A not containing
a skeletal point.

Applying the rule of product differentiation to the con-
servation equation and setting σ = log(ρ) we obtain

∇σ · F = −∇ · F , (1)

which can be further reduced to the system of ordinary dif-
ferential equations along the path of boundary points{

∂
∂tσ(s(t)) = −∇ · F(s(t))
∂
∂ts(t) = F(s(t))

(2)

where s(t) is the trajectory of a boundary point under the
eikonal equation.

3. Hierarchical Skeletonization
In this work we derive a hierarchical refinement ap-

proach which computes high resolution medial surfaces us-
ing a density-corrected Hamiltonian analysis. To this end,
we start at an initial resolution resmin by constructing a
complete octree of height log8 (resmin), and we compute
an initial medial surface through a 3D generalization of

the curvature corrected Hamiltonian analysis of Torsello
and Hancock [20]. Once the initial approximation of the
skeleton is to hand, we iteratively increase the resolution
by subdividing the leaves of the octree with a large value of
∇·(ρF), i.e., the voxels that are most likely to contain skele-
tal points. The Hamiltonian analysis is then carried over the
newly created octree level and the refinement process is it-
erated until the required resolution resmax and octree level
log8 (resmax) is reached.

In order to carry over the Hamiltonian analysis at a lower
octree level the following steps must be undertaken (see
Figure 1): a) computation of the distance map, its gradient,
and its Laplacian at the newly refined voxels; b) integration
of the front-density; c) thinning and dilation.

In the final step, the extraction of the skeleton is obtained
through a thinning process, but then we need to perform a
morphological dilation. We perform two different but con-
secutive dilations: The first immediately before subdivid-
ing skeletal points creating the new octree level which is
done to guarantee that the exploded points have a complete
neighborhood around each skeletal point. The second di-
lation is performed after the thinning process to partially
compensate for discretization errors incurred at the coarser
levels (see Section 3.4 for the details). With this high-level
overview in mind, we will now present all the computa-
tional ingredients needed by the proposed approach.

3.1. Distance, gradient and Laplacian

We assume we can compute the distance map at each
leaf of the current octree. In our implementation we per-
form distance queries against an Axis Aligned Bounding
Box (AABB) tree holding the original mesh, but other, more
efficient approaches can be adopted. Once the distance map
is to hand, its gradient and divergence can be determined.
Note, however, that while in the beginning all the leaves of
the octree are at the same level and thus the gradient and the
Laplacian can be approximated using the finite difference
method, as the skeleton is refined there will be several vox-
els at different levels of resolution. For this reason we need
to resort to a different approximation method that is able to
cope with a non-uniform grid setting.

We compute the gradient by fitting a hyperplane over all
the neighbors of x. More formally, given a set of points
{(xi, yi, zi, di)}mi=1, where (xi, yi, zi)T is a neighbor of x
and di its distance to the boundary, we look for the coeffi-
cients A,B,C,D so that the hyperplane d = Ax + By +
Cz + D best fits the samples in a least squares sense. The
gradient is then F(x) = (A,B,C)T

||(A,B,C)T || .

As for the Laplacian of the distance map, i.e., the diver-
gence of the velocity field, we compute its value using the
following discretization of the divergence theorem:



∇ · F(x) = lim
|U |→0

∫
δU

F(s) · n(s) ds
|U |

≈∑8
t=1

1
3Atnt ·

(∑
p∈Vt

F(p)
)

|U0|
(3)

where U0 is the convex hull of the 6-neighbors of x and At,
nt, and Vt are respectively the area, the normal, and the set
of vertices of the (triangular) faces of U0.

3.2. Integration of the momentum field

Once the distance, gradient and Laplacian have been
computed, we can integrate the density in the newly sub-
divided skeletal points.

The keypoint of the density integration is that it is car-
ried out only on points that have a full 27-neighborhood,
the voxels with a non-homogeneous neighborhood simply
inherit the value of the density and divergence fields of their
parent node. The reason for this is that an inhomogeneous
neighborhood induces a higher discretization error to the di-
rection of the gradient which will severely affect the accu-
racy of the integration step. In order to guarantee that all the
children of the skeletal voxels at the previous octree level
will indeed have a complete neighborhood, we perform a
dilation of the skeleton at the higher level before subdivid-
ing it to form the next level. In this way the voxels with
non-homogeneous neighborhood will form a 1-voxel thick
boundary at the current octree level and will be children of
the dilation voxels rather than of the skeletal voxels. This
dilation can simply be considered a part of the last thin-
ning/dilation step of the refinement of the previous level,
which will be described later.

The computation of the momentum field is performed by
solving equation 2. Note however that since the skeleton is
defined as the set of singularities of the momentum field, we
expect the density field to have different values at opposite
sides of a medial surface, thus any finite difference solution
must not cross a skeletal surface. We follow [20] and inte-
grate the equation in the time domain, thus ensuring that the
integration of the log-density σ only references values of σ
calculated at points already crossed by the inward-evolving
boundary.

Assume that there exists a family of surfaces Bt repre-
senting the inward evolution of the boundary B, that can be
locally parametrized as Bt(u, v) around any point x. Then,
we have

σ(Bt(u, v)) = σ(Bt−1(u, v)) +
1
2

[∇ · F(Bt(u, v)) +∇ · F(Bt−1(u, v))] (4)

In the spatial domain, if x = Bt(u, v) we have

Bt−1(u, v) ≈ x−F(x), which, substituted into equation 4,
yields

σ(x) = σ(x−F(x))+
1
2

[∇·F(x)+∇·F(x−F(x))] (5)

By interpolating σ(x − F(x)) using trilinear interpola-
tion, we can rewrite equation 5 as

σ(x)(1− (1− |F1|)(1− |F2|)(1− |F3|)) =
σ(x− F(x))− (1− |F1|)(1− |F2|)(1− |F3|)σ(x)

+
1
2

[∇ · F(x) +∇ · F(x− F(x))] (6)

where, F1, F2, and F3, are the three components of F(x)
and, due to the fact that we use trilinear interpolation, σ(x−
F(x))−(1−|F1|)(1−|F2|)(1−|F3|)σ(x) does not depend
on the value of σ(x).

Given this formulation, we can integrate the value of the
log-density over the interior of the shape, starting from the
most external voxels inwards. At the first level the most ex-
ternal voxels will be the boundary boxes, which have a unit
density, and thus a null log-density. At all other steps, the
external voxels will be the voxels with irregular neighbor-
hood that inherit the log-density from their parents. Once
the log-density has been integrated, we can proceed to com-
pute the divergence of the momentum field in each point of
the interior of the shape. The value of ∇ · (ρF)(x) is given
by approximating equation 1 as follows:

∇ · (ρF)(x) = ∆σeσ(x)− 1
2 ∆σ

+
1
2

[
∇ · F(x− F(x))eσ(x−F(x)) +∇ · F(x)eσ(x)

]
(7)

where ∆σ = σ(x) − σ(x − F(x)). Note that, since the
equations introduced in this section are to be evaluated at
different levels of resolution, the integration step is actually
dependent on the corresponding voxel size.

3.3. Divergence driven thinning

With the divergence information to hand, we can select
the voxels that are likely to contain skeletal points and that
will be further subdivided to form the next level in the oc-
tree. The skeleton extraction is based on a thinning pro-
cess guided by the value of the divergence of the momentum
field at each voxel.

We follow [19, 20] and thin the shape by iteratively re-
moving boundary points that have a value of the divergence
below a certain threshold. Note though that while we are
guaranteed that the divergence is negative at skeletal points,
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a) Coarse discretization levels
might lose detail.

b) Dilation can change the
topology of the skeleton.

Figure 3. Dilation is needed to regain detail lost at lower levels,
but care must be given not to change the topology of the skeleton.

its value can become arbitrarily small, in particular it be-
comes zero on pure ligatures, i.e., skeletal segments gen-
erated by a boundary patch with a high negative curvature.
Hence, without any further control on the thinning process
we might actually end up altering the topology of the skele-
ton, introducing holes or even splitting it into disjoint parts.
For this reason we need to remove only voxels whose re-
moval will not change the topology of the skeleton.

Malandain et al. provide a way to determine the topolog-
ical classification of a point x in a cubic lattice by comput-
ing two numbers: C∗ and C̄ [11].

Definition 1 C∗ is the number of the 26-connected com-
ponents 26-adjacent to x in B ∩ N∗26(x), where N∗n(x) =
Nn(x) \ x and B is the set of object points.

Definition 2 C̄ is the number of the 6-connected compo-
nents 6-adjacent to x in W ∩N18(x), where W is the set of
background points.

Malandain et al. [11] prove that x is simple (i.e., its re-
moval will not change the topology of the shape) if and only
if C∗(x) = 1 and C̄(x) = 1.

With this result to hand, we can proceed with the thin-
ning process by iteratively removing all simple points with
a divergence above a given threshold. Due to the errors in-
troduced by the discretization of the shape, after the first
thinning process the medial surface can be two-voxel thick
in certain regions. To ensure thinness at the highest reso-
lution level we further thin the shape by removing all those
points that are simple but not endpoints of the surface, re-
gardless of their divergence. A necessary condition for a
point to be an endpoint is to have three 6-adjacent back-
ground voxels.

3.4. Skeleton dilation

With the proposed hierarchical approach, once a voxel
is flagged as non skeletal at any level, all its descendants
will inherit the property. A problem with this is that fine
details might be lost at coarser level, resulting in parts of the

(a) without dilation (b) with dilation

Figure 4. Dilating the skeleton recovers details lost in the coarser
levels.

skeleton that will be missing at all levels (see Figure 3 top).
Further, note that the skeletal voxels detected at the coarsest
level are not even guaranteed to be connected and, since all
further processing is topology preserving, a disconnected
skeleton will remain disconnected at all levels.

We address the latter problem by keeping only the largest
component, while the missing detail is addressed by dilating
the skeleton after it has been computed at each new level.
This way, once the voxels are small enough to capture the
detail, the skeleton will regrow into the missing parts.

Note that since the dilation adds new voxels to the cur-
rent medial surface, we need to ensure that the topology is
preserved, thus we dilate only into voxels that would be-
come simple after the dilation (see Figure 3 bottom). Let I
be the set of voxels that is fed as input of the thinning pro-
cedure. We mark the elements of the boundary of I as “bor-
der” points, then we thin the set as previously described.

After the thinning step, we check if some border voxel is
still present and if so we dilate it. Then we compute D, F,
∇ · F, ρ, ∇ · (ρF) on the dilated set and we apply the thin-
ning process again. The dilation-thinning process is iterated
until the thinned skeleton contains no boundary voxels. This
process gives us an adaptive dilation which adds only new
candidate skeletal voxels with a large value of∇ · (ρF) and
thus can be skeletal.

With this improvement, we are able to recover small de-
tails that might have been lost during the first discretiza-
tions, as well as longer skeletal segments. Figure 4 shows
how critical this procedure is. The eagle model in the figure
clearly needs a very dense voxelization in order to capture
details such as the claws, or even entire parts such as the
wings. With the proposed approach, one can simply start
from a lower and less computationally intensive resolution
and then refine the extracted skeleton to a certain desired
resolution.

Finally, once the iterated dilation/thinning process gives
us the final skeleton, we perform one final dilation step to
ensure the presence of a complete 27-neighborhood around
the new set of voxels on which we need to compute ρ and∇·
(ρF). At the last resolution level, the final dilation process
is substituted with the endpoint-driven thinning that gives
us a 1-voxel thick medial surface.

4. Experimental results
In this section we evaluate the quality of the pro-

posed algorithm with a wide series of experiments. Here



Figure 5. Distribution of the voxels as a function of both diver-
gence and distance to the skeleton. The starting resolution ranges
from 128× 128× 128 to 16× 16× 16, while the maximum reso-
lution remains fixed at 128× 128× 128. Note that the points with
non-zero divergence are all located near the skeleton, while the
points that are far from the skeleton have a value of the divergence
equal to zero.

we present qualitative comparison with three different ap-
proaches, namely the Hamilton-Jacobi algorithm of Siddiqi
et al. [18], the multiscale algorithm of Reniers et al. [16] and
the Voronoi-based approach of Yoshizawa et al. [21]. Note
that the first two methods work on a voxelized 3D shape,
while the latter works directly on the mesh. The analy-
sis has been performed on a selection of 40 shapes from
the Princeton Shape Benchmark [17] and the SHREC 2010
database [6]. All skeletons are extracted with resmin = 16
and resmax = 1024, unless otherwise stated. Note that
the proposed approach works independently of the shape’s
genus, and our dataset include shapes with genus greater
than zero .

4.1. Skeleton localization

A common issue with the skeletonization algorithms
present in the literature is the lack of quantitative evalua-
tion against a ground truth, which is due to the difficulty
of constructing a dataset with ground truth except for syn-
thetic toy examples. Hence, in this section we try to address
this shortcoming by measuring the approach’s confusion by
measuring the dispersion of skeleton indicator function, i.e.,
of the divergence information around the skeleton. In par-
ticular we evaluate the localization properties of the skele-
tons extracted with our algorithm and we compare it against
the standard Hamilton-Jacobi approach.

To evaluate the localization properties of the density cor-
rection we plot the distribution of the voxels as a function
of both divergence and distance to the skeleton. In order

Figure 6. Comparison between the momentum field (left) and the
velocity field (right). The left histogram shows a good localization
of the skeleton, while in the right histogram we observe a non-
negligible tail of distant points with non-zero divergence.

to evaluate the loss in localization caused by the hierar-
chical approach, we compare this distribution for shapes
at the same target level but at different starting levels. In
particular, the histograms in Figure 5 plot the average dis-
tribution of skeletons extracted at the maximum resolution
of 128 × 128 × 128, with starting resolutions going from
128× 128× 128 (single level), to 16× 16× 16 (multi-level
(16)), thus all the skeletons were extracted with varying lev-
els of hierarchical refinement.

First we note that when the hierarchical approach goes
through more levels, the points tend to be more concen-
trated around the skeleton. This is to be expected since
there is a decrease in the total number of voxels expanded.
In general we see that the proposed algorithm yields a good
localization of the skeleton, since the points with non-zero
divergence are all located near the skeleton, while the points
that are far from the skeleton have a value of the divergence
equal to zero. However, we do observe a little noise due to
the propagation of numerical errors, which is typical of hi-
erarchical algorithms. Nonetheless, the distribution remains
tightly peaked, with very few points far from the skeleton
with a non-negligible divergence of the momentum field.

4.2. Comparison with other methods

Figure 6 compares the localization of the divergence of
the momentum field against that of the velocity field as used
by Siddiqi et al. [18]. As previously reported by Torsello
and Hancock [20], even in 3D the momentum field localizes
the skeleton much more tightly than the velocity field.

Here we show also a slice of the shape voxelization in
order to reveal its interior, where the voxels are colored ac-
cording to the value of the divergence, i.e., low values cor-
respond to white while high (negative) values correspond to



Figure 7. Comparison of our approach (top left) against a standard
Hamilton-Jacobi algorithm (top right), the Multiscale algorithm of
Reniers et al. [16] (bottom left) and the Voronoi-Based approach
of Yoshizawa et al. [21] (bottom right).

black. Recall that the value of ∇ · F in a point p depends
on the local boundary curvature and thus its value tends to
infinity as p moves closer to a skeleton endpoint, even if p
is not skeletal.

As a consequence of this, we observe some blurred areas
around the endpoints of the medial surface. On the other
hand, in the density-corrected slice we see a much sharper
localization of the skeleton.

We also compare our algorithm with the Voronoi-Based
approach of Yoshizawa et al. [21] and the Multiscale al-
gorithm of Reniers et al. [16]. Both the implementations
of [21] and [16] were downloaded from the authors web-
sites, while we implemented the Hamilton-Jacobi algorithm
simply by dropping the density integration procedure in our
framework.

Figure 7 shows a qualitative comparison between the
four methods. The Voronoi skeleton is clearly the noisiest
one and in most cases fails to provide an acceptable approxi-
mation of the medial surface, although it is computationally
significantly less expensive than the other algorithms. The
Multiscale approach on the other hand performs quite well,
although due to the complexity of processing a complete
voxelization of the shape it was not able to reach the level
of detail of our method. Finally, the Hamilton-Jacobi skele-
tons exhibit a few spurious skeletal segments due to the lack
of the correction of the curvature effects.

A good skeletonization algorithm should also be able to
deal with moderately noisy inputs. To this end, we approx-
imate the skeletonization of the diffused shape by smooth-
ing the distance map as in [20]. Hence, given a voxel and

Figure 8. Effects of noise. The first column shows the skeletons
extracted from the original object, while the second and the third
columns show the skeletons after random vertex displacement of
respectively 10% and 20% of the average edge applied to the
shape From top to bottom: our approach, Hamilton-Jacobi, Multi-
scale [16] and Voronoi-based [21].

its neighborhood, we update the local value of the distance
by interpolating the values of the distance function on its
neighbors [8].

Figure 8 shows the robustness to noise of the proposed
approach. The results obtained by our algorithm and the
Multiscale one are comparable. Note, though, that in the
latter the robustness is achieved thanks to a fine tuning of
the importance threshold, comes at the cost of losing some
detail in the finer parts. On the other hand the Voronoi-
based algorithm is unable to cope with the noise on the mesh
boundary and thus performs much worse than the other ap-
proaches. Finally, the presence of noise clearly increases
the formation of spurious branches in the Hamilton-Jacobi
algorithm.

4.3. Time and space complexity

Perhaps the most obvious advantage of our algorithm is
the decrease of space and time requirements. As for the the-
oretical complexity, it is governed by the sorting of points
with respect to their distance to the boundary that takes
place before the density integration, which is O(n log (n)),
where n is the number of leaves of the octree.

Figure 9 shows the average memory and time require-
ments of the proposed algorithm. Note that because of the
higher memory requirements of the complete discretization,
we couldn’t start the discretization at resolutions higher
than 256 × 256 × 256. On the other hand, using the hi-
erarchical approach we could easily reach much higher res-
olutions.
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Figure 9. The plots show the memory and time requirements for the computation of a series of skeleton with different levels of refinement.
Our approach clearly outperforms the standard algorithm where the space is completely discretized.

5. Conclusions

In this paper we introduced a novel algorithm for medial
surfaces extraction that is based on the density-corrected
Hamiltonian analysis [20]. The approach extracts the skele-
ton directly from a triangulated mesh and adopts an adaptive
octree-based approach in which only skeletal voxels are re-
fined to a lower level of the hierarchy, resulting in robust
and accurate skeletons at extremely high resolution. The
quality of the extracted medial surfaces is confirmed by an
extensive set of experiments.
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