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Abstract

In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the in-

formation theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum

mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of

quantum systems specified in terms of their density matrices. We commence by computing the

density matrix associated with a continuous-time quantum walk over each graph being compared.

In particular, we adopt the closed form solution of the density matrix introduced in [27, 28] to re-

duce the computational complexity and to avoid the cumbersome task of simulating the quantum

walk evolution explicitly. Next, we compare the mixed states represented by the density matrices

using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs de-

scribed by their density matrices to hand, the quantum graph kernel between the pair of graphs is

defined using the quantum Jensen-Shannon divergence between the graph density matrices. We

evaluate the performance of our kernel on several standard graph datasets from both bioinformat-

ics and computer vision. The experimental results demonstrate the effectiveness of the proposed

quantum graph kernel.
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1. Introduction

Structural representations have been used for over 30 years in pattern recognition due to their

representational power. However, the increased descriptiveness comes at the cost of a greater dif-

ficulty in applying standard techniques to them, as these usually require data to reside in a vector

space. The famous kernel trick [1] allows the focus to be shifted from the vectorial representation

of data, which now becomes implicit, to a similarity representation. This allows standard learning

techniques to be applied to data for which no obvious vectorial representation exists. For this rea-

son, in recent years pattern recognition has witnessed an increasing interest in structural learning

using graph kernels.

1.1. Literature Review

1.1.1. Graph Kernels

One of the most influential works on structural kernels was the generic R-convolution kernel

proposed by Haussler [2]. Here graph kernels are computed by comparing the similarity of each of

the decompositions of the two graphs. Depending on how the graphs are decomposed, we obtain

different kernels. Generally speaking, most R-convolution kernels count the number of isomor-

phic substructures in the two graphs. Kashima et al. [3] compute the kernel by decomposing the

graph into random walks, while Borgwardt et al. [4] have proposed a kernel based on shortest

paths. Here, the similarity is determined by counting the numbers of pairs of shortest paths of the

same length in a pair of graphs. Shervashidze et al. [5] have developed a subtree kernel on sub-

trees of limited size. They compute the number of subtrees shared between two graphs using the

Weisfeiler-Lehman graph invariant. Aziz et al. [6] have defined a backtrackless kernel on cycles

of limited length. They compute the kernel value by counting the numbers of pairs of cycles of

the same length in a pair of graphs. Costa and Grave [7] have defined a so-called neighborhood

subgraph pairwise distance kernel by counting the number of pairs of isomorphic neighborhood

subgraphs. Recently, Kriege et al [8] counted the number of isomorphisms between pairs of sub-

graphs, while Neumann et al. [9] have introduced the concept of propagation kernels to handle

partially labeled graphs through the use of continuous-valued vertex attributes.
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One drawback of these kernels is that they neglect the locational information for the substruc-

tures in a graph. In other words, the similarity does not depend on the relationships between sub-

structures. As a consequence, these kernels cannot establish reliable structural correspondences

between the substructures. This limits the precision of the resulting similarity measure. To over-

come this problem, Fröhlich et al. [10] introduced alternative optimal assignment kernels. Here

each pair of structures is aligned before comparison. However, the introduction of the alignment

step results in a kernel that is not positive definite in general [11]. The problem results from the

fact that alignments are not in general transitive. In other words, if σ is the vertex-alignment be-

tween graph A and graph B, and π is the alignment between graph B and graph C, in general we

cannot guarantee that the alignment between graph A and graph C is π ◦ σ. On the other hand,

when the alignments are transitive, there is a common simultaneous alignment of all the graphs.

Under this alignment, the optimal assignment kernel is simply the sum over all the vertex/edge

kernels, and this is positive definite since it is the sum of separate positive definite kernels. While

lacking positive definiteness the optimal assignment kernels cannot be guaranteed to represent an

implicit embedding into a Hilbert space, they have nonetheless been proven to be very effective

in classifying structures. Another example of alignment-based kernels are the edit-distance-based

kernels introduced by Neuhaus and Bunke [12]. Here the alignments obtained from graph-edit

distance are used to guide random walks on the structures being compared.

An attractive alternative way to measure the similarity of a pair of graphs is to use the mutual

information and compute the classical Jensen-Shannon divergence [13]. In information theory,

the Jensen-Shannon divergence is a dissimilarity measure between probability distributions. It is

symmetric, always well defined and bounded [13]. Bai and Hancock [14] have used the diver-

gence to define a Jensen-Shannon kernel for graphs. Here, the kernel between a pair of graphs is

computed using a nonextensive entropy measure in terms of the classical Jensen-Shannon diver-

gence between probability distributions over graphs. For a graph, the elements of the probability

distribution are computed from the degree of corresponding vertices. The entropy associated with

a probability distribution of an individual graph can thus be directly computed without the need of

decomposing the graph into substructures. Hence, unlike the aforementioned existing graph ker-

nels, the Jensen-Shannon kernel between a pair of graphs avoids the computationally burdensome
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task of determining the similarities between all pairs of substructures. Unfortunately, the required

composite entropy for the Jensen-Shannon kernel is computed from a product graph formed by

a pair of graphs, and reflects no correspondence information between pairs of vertices. As a re-

sult, the Jensen-Shannon graph kernel lacks correspondence information between the probability

distributions over the graphs, and thus cannot precisely reflect the similarity between graphs.

There has recently been an increasing interest in quantum computing because of the potential

speed-ups over classical algorithms. Examples include Grover’s polynomially faster search al-

gorithm [15] and Shor’s exponentially faster factorization algorithm [16]. Furthermore, quantum

algorithms also offer us a richer structure than their classical counterparts since they use qubits

rather than bits as the basic representational unit [17].

1.1.2. Quantum Computation

Quantum systems differ from their classical counterparts, since they add the possibility of

state entanglement to the classical statistical mixture of classical systems, which results in an ex-

ponential increase of the dimensionality of the state-space which is at the basis of the quantum

speedup. Pure quantum states are represented as entries in a complex Hilbert space, while poten-

tially mixed quantum states are represented through the density matrix. Mixed states can then be

compared by examining their density matrices. One convenient way to do this is to use the quan-

tum Jensen-Shannon divergence, first introduced by Majtey et al. [13, 18]. Unlike the classical

Jensen-Shannon divergence which is defined as a similarity measure between probability distribu-

tions, the quantum Jensen-Shannon divergence is defined as the distance measure between mixed

quantum states described by density matrices. Moreover, it can be used to measure both the degree

of mixing and entanglement [13, 18].

In this paper, we are interested in computing a kernel between pairs of graphs using the quan-

tum Jensen-Shannon divergence between two mixed states representing the evolution of continuous-

time quantum walks on the graphs. The continuous-time quantum walk has been introduced as the

natural quantum analogue of the classical random walk by Farhi and Gutmann in [19], and has

been widely used in the design of novel quantum algorithms. Ambainis et al. [20, 21] were among

the first to generalize random walks on finite graphs to the quantum world. Furthermore, they
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have explored the application of quantum walks on graphs to a number of problems [22]. Childs

et al. [23, 24] have explored the difference between quantum and classical random walks, and then

exploited the increased power of quantum walk as a general model of computation.

Similar to the classical random walk on a graph, the state space of the continuous-time quantum

walk is the set of vertices of the graph. However, unlike the classical random walk where the state

vector is real-valued and the evolution is governed by a doubly stochastic matrix, the state vector

of the continuous-time quantum walk is complex-valued and its evolution is governed by a time-

varying unitary matrix. The continuous-time quantum walk possesses a number of interesting

properties which are not exhibited by the classical random walk. For instance, the continuous-

time quantum walk is reversible and non-ergodic, and does not have a limiting distribution. As a

result, the continuous-time quantum walk offers us an elegant way to design quantum algorithms

on graphs. For further details on quantum computation and quantum algorithms, we refer the

reader to the textbook in [17].

There have recently been several attempts to define quantum kernels using the continuous-

time quantum walk. For instance, Bai et al. [26] have introduced a novel graph kernel where the

similarity between two graphs is defined in terms of the similarity between two quantum walks

evolving on the two graphs. The basic idea here is to associate with each graph a mixed quan-

tum state representing the time evolution of a quantum walk. The kernel between the walk is

defined as the divergence between the corresponding density operators. However, this quantum

divergence measure requires the computation of an additional mixed state where the system has

equal probability of being in each of the two original quantum states. Unless this quantum kernel

takes into account the correspondences between the vertices of the two graphs, it can be shown

that it is not permutation invariant. Rossi et al. [27, 28] have attempted to overcome this problem

by allowing the two quantum walks to evolve on the union of the two graphs. This exploits the

relation between the intereferences of the continuous-time quantum walks and the symmetries in

the structures being compared. Since both the mixed states are defined on the same structure,

this quantum kernel addresses the shortcoming of permutation variance. However, the resulting

approach is less intuitive, thus making it particularly hard to prove the positive semidefiniteness of

the kernel. Moreover, the union graph is established by roughly connecting all vertex pairs of the
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two graphs, and thus also lacks vertex correspondence information. As a result, this kernel cannot

reflect precise similarity between the two graphs.

1.2. Contributions

The aim of this paper is to overcome the shortcomings of the existing graph kernels by defining

a novel quantum kernel. To this end, we develop the work in [26] further. We intend to solve the

problems of permutation variance and missing vertex correspondence by introducing an additional

alignment step, and thus compute an aligned mixed density matrix. The goal of the alignment is

to provide vertex correspondences and a lower bound on the divergence over permutations of the

vertices/quantum states. However we approximate the alignment that minimizes the divergence

with that which minimizes the Frobenious norm between the density operators. This latter prob-

lem is solved using Umeyama’s graph matching method [29]. Since the aligned density matrix is

computed by taking into account the vertex correspondences between the two graphs, the density

matrix reflects the locational correspondences between the quantum walks over the vertices of the

two graphs. As a result, our new quantum kernel can not only overcome the shortcomings of miss-

ing vertex correspondence and permutation variance that arise with the existing kernels from the

classical/quantum Jensen-Shannon divergence, but also overcomes the shortcoming of neglecting

locational correspondence between substructures that arises in the existing R-convolution kernels.

Furthermore, in contrast to what is done in previous assignment-based kernels, we do not align the

structures directly. Rather we align the density matrices, which are a special case of a Laplacian

family signature [30] which are well known to provide a more robust representation for correspon-

dence estimation. Finally, we adopt the closed form solution of the density matrix introduced

in [27, 28] to reduce the computational complexity and to avoid the cumbersome task of explicitly

simulating the time evolution of the quantum walk. We evaluate the performance of our kernel on

several standard graph datasets from bioinformatics and computer vision. The experimental results

demonstrate the effectiveness of the proposed graph kernel, providing both a higher classification

accuracy than the unaligned kernel and also achieving a performance comparable or superior to

other state of the art graph kernels.
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1.3. Paper Outline

In Section 2, we introduce the quantum mechanical formalism that will be used to develop the

ideas proposed in the paper. We describe how to compute a density matrix for the mixed quantum

state of the continuous-time quantum walk on a graph. With the mixed state density matrix to

hand, we compute the von Neumann entropy of the continuous-time quantum walk on the graph.

In Section 3, we compute a graph kernel using the quantum Jensen-Shannon divergence between

the density matrices for a pair of graphs. In Section 4, we provide some experimental evaluations,

which demonstrate experimentally the effectiveness of our quantum kernel. In Section 5, we

conclude the paper and suggest future research directions.

2. Quantum Mechanical Background

In this section, we introduce the quantum mechanical formalism to be used in this work. We

commence by reviewing the concept of a continuous-time quantum walk on a graph. We then

describe how to establish a density matrix for the mixed quantum state of the graph through a

quantum walk. With the density matrix of the mixed quantum state to hand, we show how to

compute a von Neumann entropy for a graph.

2.1. The Continuous-Time Quantum Walk

The continuous-time quantum walk is a natural quantum analogue of the classical random

walk [19, 31]. Classical random walks can be used to model a diffusion process on a graph, and

have proven to be a useful tool in the analysis of graph structure. In general, diffusion is modeled

as a Markovian process defined over the vertices of the graph, where the transitions take place on

the edges. More formally, letG = (V,E) be an undirected graph, where V is a set of n vertices and

E = (V × V ) is a set of edges. The state vector for the walk at time t is a probability distribution

over V , i.e., a vector ~pt ∈ Rn whose uth entry gives the probability that the walk is at vertex u at

time t. Let A denote the symmetric adjacency matrix of the undirected graph G and let D be the

diagonal degree matrix with elements du =
∑n

v=1 A(u, v), where du is the degree of the vertex u.

Then, the continuous-time random walk on G will evolve according to the equation

~pt = e−Lt~p0, (1)
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where L = D − A is the graph Laplacian.

As in the classical case, the continuous-time quantum walk is defined as a dynamical process

over the vertices of the graph. However, in contrast to the classical case where the state vector

is constrained to lie in a probability space, in the quantum case the state of the system is defined

through a vector of complex amplitudes over the vertex set V . The squared norm of the amplitudes

sums to unity over the vertices of the graph, with no restriction on their sign or complex phase.

This in turn allows both destructive and constructive interference to take place between the com-

plex amplitudes. Moreover, in the quantum case the evolution of the walk is governed by a com-

plex valued unitary matrix, whereas the dynamics of the classical random walks is governed by a

stochastic matrix. Hence the evolution of the quantum walk is reversible, which implies that quan-

tum walks are non-ergodic and do not possess a limiting distribution. As a result, the behaviour

of classical and quantum walks differs significantly. In particular, the quantum walk possesses a

number of interesting properties not exhibited in the classical case. One notable consequence of

the interference properties of quantum walks is that when a quantum walker backtracks on an edge

it does so with opposite phase. This gives rise to destructive interference and reduces the problem

of tottering. In fact the faster hitting time observed in quantum walks on the line are a consequence

of the destructive interference of backtracking paths [31].

The Dirac notation, also known as bra-ket notation, is a standard notation used for describing

quantum states. We call pure state a quantum state that can be described using a single ket vector

|a〉. In the context of the paper, a ket vector is a complex valued column vector of unit Euclidean

length, in a n-dimensional Hilbert space. Its conjugate transpose is a bra (row) vector, denoted

as 〈a|. As a result, the inner product between two states |a〉 and |b〉 is written 〈a | b〉, while their

outer product is |a〉 〈b|. Using the Dirac notation, we denote the basis state corresponding to the

walk being at vertex u ∈ V as |u〉. In other words, |u〉 is the vector which is equal to 1 in the

position corresponding to the vertex u and is zero everywhere else. A general state of the walk

is then expressed as a complex linear combination of these orthonormal basis states, such that the

state vector of the walk at time t is defined as

|ψt〉 =
∑
u∈V

αu(t) |u〉 , (2)
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where the amplitude αu(t) ∈ C is subject to the constraints
∑

u∈V αu(t)α
∗
u(t) = 1 for all u ∈ V ,

t ∈ R+, where α∗u(t) is the complex conjugate of αu(t).

At each instant of time, the probability of the walk being at a particular vertex of the graph

G(V,E) is given by the squared norm of the amplitude associated with |ψt〉. More formally, let

X t be a random variable giving the location of the walk at time t. The probability of the walk

being at vertex u ∈ V at time t is given by

Pr(X t = u) = αu(t)α
∗
u(t). (3)

More generally, a quantum walker represented by |ψt〉 can be observed to be in any state

|φ〉 ∈ Cn, and not just in the states |u〉 , u ∈ V corresponding to the graph vertices. Given

an orthonormal basis |φ1〉 , . . . , |φn〉 of Cn, the quantum walker |ψt〉 is observed in state |φi〉 with

probability 〈ψi |ψi〉. After being observed on state |φi〉, the new state of the quantum walker is |φi〉.

Further, given the nature of quantum observation, only orthonormal states can be distinguished by

a single observation.

In quantum mechanics, the Schrödinger equation is a partial differential equation that describes

how quantum systems evolve with time. In the non relativistic case it assumes the form

i~
∂

∂t
|ψ〉 = H |ψ〉 , (4)

where the Hamiltonian operator H accounts for the total energy of a system. In the case of a par-

ticle moving in an empty space with zero potential energy, this reduces to the Laplacian operator

∇2. Here, we take the Hamiltonian of the system to be the graph Laplacian matrix L. However,

any Hermitian operator encoding the structure of the graph can be chosen as an alternative.

The evolution of the walk at time t is then given by the Schrödinger equation

∂

∂t
|ψt〉 = −iL |ψt〉 , (5)

where the Laplacian L plays the role of the system Hamiltonian. Given an initial state |ψ0〉, the

Schrödinger equation has an exponential solution which can be used to determine the state of the

walk at a time, t, giving

|ψt〉 = e−iLt |ψ0〉 , (6)
9



where Ut = e−iLt is a unitary matrix governing the evolution of the walk. To simulate the evolution

of the quantum walk, it is customary to rewrite Eq.(6) in terms of the spectral decomposition

L = ΦTΛΦ of the Laplacian matrix L, where Λ = diag(λ1, λ2, ..., λ|V |) is a diagonal matrix

with the ordered eigenvalues as elements (λ1 < λ2 < ... < λ|V |) and Φ = (φ1|φ2|...|φ|V |) is a

matrix with the corresponding ordered orthonormal eigenvectors as columns. Hence, Eq.(6) can

be rewritten as

|ψt〉 = ΦT e−iΛtΦ |ψ0〉 . (7)

In this work, we let αu(0) be proportional to du and using the constraints applied to the ampli-

tude we get

αu(0) =

√
du∑
du
. (8)

Note that there is no particular indication as how to choose the initial state. However, choosing a

uniform distribution over the vertices of G would result in the system remaining stationary, since

the initial state vector would be an eigenvector of the Laplacian of G and thus a stationary state of

the walk.

2.2. A Density Matrix from the Mixed State

While a pure state can be naturally described using a single ket vector, in general a quantum

system can be in a mixed state, i.e., a statistical ensemble of pure quantum states |ψi〉, each with

probability pi. The density operator (or density matrix) of such a system is defined as

ρ =
∑
i

pi |ψi〉 〈ψi| . (9)

Density operators are positive unit-trace matrices directly linked with the observables of the

(mixed) quantum system. Let O be an observable, i.e., an Hermitian operator acting on the quan-

tum states and providing a measurement. Without loss of generality we have O =
∑m

i=1 viPi,

where Pi is the orthogonal projector onto the i-th observation basis, and vi is the measurement

value when the quantum state is observed to be in this observation basis.

The expectation value of the measurement over a mixed state can be calculated from the density

matrix ρ:

〈O〉 = tr (ρO) , (10)
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where tr is the trace operator. Similarly, the observation probability on the i-th observation basis

can be expressed in terms of the density matrix ρ as

Pr(X = i) = tr(ρPi). (11)

Finally, after the measurement, the corresponding density operator will be

ρ′ =
m∑
i=1

PiρPi . (12)

For a graph G(V,E), let |ψt〉 denote the state corresponding to a continuous-time quantum

walk that has evolved from time t = 0 to time t = T . We define the time-averaged density matrix

ρTG for G(V,E)

ρTG =
1

T

∫ T

0

|ψt〉 〈ψt| dt, (13)

which can be expressed in terms of the initial state |ψ0〉 as

ρTG =
1

T

∫ T

0

e−iLt |ψ0〉 〈ψ0| eiLtdt. (14)

In other words, ρTG describes a system which has an equal probability of being in any of the pure

states defined by the evolution of the quantum walk from t = 0 to t = T . Using the spectral

decomposition of the Laplacian we can rewrite the previous equation as

ρTG =
1

T

∫ T

0

ΦT e−iΛtΦ |ψ0〉 〈ψ0|ΦT eiΛtΦ dt. (15)

Let φxy denote the (xy)th element of the matrix of eigenvectors Φ of the Laplacian. The (r, c)th

element of ρT can be computed as

ρTG(r, c) =
1

T

∫ T

0

(
n∑
k=1

n∑
l=1

φrke
−iλktφlkψ0l

)(
n∑
x=1

n∑
y=1

ψ0xφxye
iλytφcy

)
dt. (16)

Let ψ̄k =
∑

l φlkψ0l and ψ̄y =
∑

x φxyψ0y, where ψ0l denotes the lth element of |ψ0〉. Then

ρTG(r, c) =
1

T

∫ T

0

(
n∑
k=1

φrke
−iλktψ̄k

n∑
y=1

φcye
iλytψ̄y

)
dt, (17)
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which can be rewritten as

ρTG(r, c) =
n∑
k=1

n∑
y=1

φrkφcyψ̄kψ̄y
1

T

∫ T

0

ei(λy−λk)t dt. (18)

If we let T →∞, Eq.(18) further simplifies to

ρ∞G (r, c) =
∑
λ∈Λ̃

∑
x∈Bλ

∑
yBλ

φrxφcyψ̄xψ̄y, (19)

where Λ̃ is the set of distinct eigenvalues of the Laplacian matrix L and Bλ is a basis of the

eigenspace associated with λ. As a consequence, computing the time-averaged density matrix

relies on computing the eigendecomposition of G(V,E), and hence has time complexity O(|V |3).

Note that in the remainder of this paper we will simplify our notation by referring to the time-

averaged density matrix as the density matrix associated with a graph. Moreover, we will assume

that ρTG is computed for T →∞, unless otherwise stated, and we will denote it as ρG.

2.3. The von Neumann Entropy of a Graph

In quantum mechanics, the von Neumann entropy [32] HN of a mixture is defined in terms of

the trace and logarithm of the density operator ρ

HN = − tr(ρ log ρ) = −
∑
i

ξi ln ξi, (20)

where ξ1, . . . , ξn are the eigenvalues of ρ. Note that if the quantum system is a pure state |ψi〉 with

probability pi = 1, then the Von Neumann entropy HN(ρ) = − tr(ρ log ρ) is zero. On other hand,

a mixed state generally has a non-zero Von Neumann entropy associated with its density operator.

Here we propose to associate to each graph the von Neumann entropy of the density matrix

computed as in Eq.(19). Consider a graph G(V,E), its von Neumann entropy is

HN(ρG) = − tr(ρG log ρG) = −
|V |∑
j

λGj log λGj , (21)

where λG1 , . . . , λ
G
j , . . . , λ

G
|V | are the eigenvalues of ρG.
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2.4. Quantum Jensen-Shannon Divergence

The classical Jensen-Shannon divergence is a non-extensive mutual information measure de-

fined between probability distributions over potentially structured data. It is related to the Shan-

non entropy of the two distributions [33]. Consider two (discrete) probability distributions P =

(p1, . . . , pa, . . . , pA) and Q = (q1, . . . , qb, . . . , qB), then the classical Jensen-Shannon divergence

between P and Q is defined as

DJS(P ,Q) = HS

(P +Q
2

)
− 1

2
HS(P)− 1

2
HS(Q), (22)

where HS(P) =
∑A

a=1 pa log pa is the Shannon entropy of distribution P . The classical Jensen-

Shannon divergence is always well defined, symmetric, negative definite and bounded, i.e., 0 ≤

DJS ≤ 1.

The quantum Jensen-Shannon divergence has recently been developed as a generalization of

the classical Jensen-Shannon divergence to quantum states by Lamberti et al. [13]. Given two

density operators ρ and σ, the quantum Jensen-Shannon divergence between them is defined as

DQJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN(ρ)− 1

2
HN(σ). (23)

The quantum Jensen-Shannon divergence is always well defined, symmetric, negative definite and

bounded, i.e., 0 ≤ DQJS ≤ 1 [13].

Additionally, the quantum Jensen-Shannon divergence verifies a number of properties which

are required for a good distinguishability measure between quantum states [13, 18]. This is a prob-

lem of key importance in quantum computation, and it requires the definition of a suitable distance

measure. Wootters [34] was the first to introduce the concept of statistical distance between pure

quantum states. His work is based on extending a distance over the space of probability distribu-

tions to the Hilbert space of pure quantum states. Similarly, the relative entropy [35] can be seen as

a generalization of the information theoretic Kullback-Leibler divergence. However, the relative

entropy is unbounded, it is not symmetric and it does not satisfy the triangle inequality.

The square root of the QJSD, on the other hand, is bounded, it is a distance and, as proved by

Lamberti et. al [13], it satisfies the triangle inequality. This is formally proved for pure states, while

for mixed states there is only empirical evidence. Some alternatives to the QJSD are described in
13



the literature, most notably the Bures distance [36]. Both the Bures distance and the QJSD require

the full density matrices to be computed. However, the QJSD turns out to be faster to compute.

On the one hand, the Bures distance involves taking the square root of matrices, usually computed

through matrix diagonalization and which has time complexity O(n3), where n is the number of

vertices in the graph. On the other hand, the QJSD simply requires computing the eigenvalues of

the density matrices, which can be done in O(n2).

3. A Quantum Jensen-Shannon Graph Kernel

In this section, we propose a novel graph kernel based on the quantum Jensen-Shannon di-

vergence between continuous-time quantum walks on different graphs. Suppose the graphs under

consideration are represented by a set {G, . . . , Ga, . . . , Gb, . . . , GN}, we consider the continuous-

time quantum walks on a pair of graphs Ga(Va, Ea) and Gb(Vb, Eb), whose mixed state density

matrices ρa and ρb can be computed using Eq.(18) or Eq.(19). With the density matrices ρa and ρb

to hand we compute the quantum Jensen-Shannon divergence DQJS(ρa, ρb) using Eq.(23). How-

ever the result depends on the relative order of the vertices in the two graphs, and we need a way to

describe the mixed quantum state given by the walk on both graphs. To this end, we consider two

strategies. We refer to these as the unaligned density matrix and the aligned density matrix. In the

first case the density matrices are added maintaining the vertex order of the data. This results in

the unaligned kernel

kQJSU(Ga, Gb) = exp(−µDQJS(ρa, ρb)), (24)

where µ is a decay factor in the interval 0 < µ ≤ 1,

DQJS(ρa, ρb) = HN

(ρa + ρb
2

)
− 1

2
HN(ρa)−

1

2
HN(ρb), (25)

is the quantum Jensen Shannon divergence between the mixed state density matrices ρa and ρb of

Ga and Gb, and HN(.) is the von Neumann entropy of a graph density matrix defined in Eq.(21).

Here µ is used to ensure that the large value does not tend to dominant the kernel value, and in

this work we use µ = 1. The proposed kernel can be viewed as a similarity measure between the

quantum states associated with a pair of graphs. Unfortunately, since the unaligned density matrix
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ignores the vertex correspondence information for a pair of graphs, it is not permutation invariant

to vertex order. Instead it relies only on the global properties and long-range interactions between

vertices to differentiate between structures.

In the second case the mixing is performed after the density matrices are optimally aligned,

thus computing a lower bound of the divergence over the set Σ of state permutations. This results

in the aligned kernel

kQJSA(Ga, Gb) = max
Q∈Σ

exp(−µDQJS(ρa, QρbQ
T )) = exp(−µmin

Q∈Σ
DQJS(ρa, QρbQ

T )) . (26)

Here the alignment step adds correspondence information allowing for a more fine-grained dis-

crimination between structures.

In both cases the density matrix of smaller size is padded to size of the larger one before com-

puting the divergence. Note that this is equivalent to padding the adjacency matrix of the smaller

graph to be the same size as the larger one, since both these operations are simply increasing the

dimension of the kernel of the density matrix.

3.1. Alignment of the Density Matrix

The definition of the aligned kernel requires the computation of the permutation that minimizes

the divergence between the graphs. This is equivalent to minimizing the Von Neumann entropy

of the mixed state (ρa + ρb)/2. However, this is a computationally hard task, and so we perform

a two step approximation to the problem. First, we approximate the solution by minimizing the

Frobenious (L2) distance between matrices rather than the Von Neumann entropy. Second we find

an approximate solution to the L2 problem using Umeyama’s method [29].

The rationale behind this approximate method is given by the fact that we already have the

eigenvectors and eigenvalues of the Hamiltonian to hand, and with these we can efficiently com-

pute the eigendecomposition of the density matrices [37] (which is required in order to apply
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Umeyama’s spectral approach). More precisely, the authors of [37] show that

Lρa =

∑
λ∈Λ̃

λPλP
T
λ

∑
λ∈Λ̃

Pλρ0P
T
λ

 =
∑
λ∈Λ̃

Pλλρ0P
T
λ =

=

∑
λ∈Λ̃

Pλρ0P
T
λ

∑
λ∈Λ̃

λPλP
T
λ

 = ρaL, (27)

where ρ0 denotes the density matrix for G at time t = 0 and Pλ =
∑µ(λ)

k=1 φλ,kφ
T
λ,k is the projection

operator onto the subspace spanned by the µ(λ) eigenvectors φλ,k associated with the eigenvalue

λ of the Hamiltonian. In other words, given the spectral decomposition of the Laplacian matrix

L = ΦΛΦT , if we express the density matrix in the eigenvector basis given by Φ, then it assumes

a block diagonal form, where each block corresponds to an eigenspace of L corresponding to a

single eigenvalue. As a consequence, if L has all eigenvalues distinct, then ρa will have the same

spectrum as L. Otherwise, we need to independently compute the eigendecomposition of each

diagonal block, resulting in a complexity O
(∑

λ∈Λ̃ µ(λ)2
)
, where µ(λ) denotes the multiplicity

of the eigenvalue λ.

3.2. Properties of the Quantum Jensen-Shannon Kernel for Graphs

Theorem 3.1. If the Quantum Jensen-Shannon divergence is negative definite, then the unaligned

Quantum Jensen-Shannon Kernel is positive definite.

Proof. Fist note that for the computation of Quantum Jensen-Shannon divergence, padding the

smaller matrix to the size of the larger one is equivalent to padding both to an even larger size.

Thus we can consider the computation of the kernel matrix over N graphs to be performed over

density matrices padded to the size of the larger graph. This eliminates the dependence of the

density matrix of the first graph on the choice of the second graph.

In [38] the authors show that if s(Ga, Gb) is a conditionally positive semidefinite kernel, i.e.,

−s(Ga, Gb) is a negative definite kernel, then ks = exp(λs(Ga, Gb)) is positive semidefinite for

any λ > 0.

Hence, if the Quantum Jensen-Shannon divergence DQJS(Ga, Gb) is negative definite, then

−DQJS(Ga, Gb) is conditionally positive semidefinite, and the Quantum Jensen-Shannon kernel

kQJS(Ga, Gb) = exp(−µDQJS(Ga, Gb)) is positive definite. �
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Note that this proof is conditioned on the negative definiteness of the Quantum Jensen-Shannon

divergence, as is the case for the classical Jensen-Shannon divergence. Currently this is only a

conjecture, proved to be true on pure quantum states, and for which there is a strong empirical

evidence [39].

In general for the optimal alignment kernel [10, 11] we cannot guarantee positive definiteness

for the aligned version of our quantum kernel due to the lack of transitivity of the alignments. We

do have, however, a similar result when using any (possibly non optimal) set of alignments that

satisfy transitivity.

Corollary 3.2. If the Quantum Jensen-Shannon divergence is negative definite and the density

matrices are aligned by a transitive set of permutations, then the unaligned Quantum Jensen-

Shannon Kernel is positive definite.

Proof. If the alignments are transitive, each of the density matrices can be aligned to a single

common frame, for example that of the first graph. The aligned kernel on the original unaligned

data is equivalent to the unaligned kernel on the new pre-aligned data. �

Another important property for a kernel is its independence on the ordering of the data. There

are two ways by which the kernel can depend on this ordering: First, it might depend on the order

in which different graphs are presented. Second, it might depend on the order in which the vertices

are presented in each graph.

Since the kernel only depends on second order relations, a sufficient condition for the first

type of independence is for the kernel to be deterministic and symmetric. If this is so, then a

permutation of the graphs will just result in the same permutation to be applied to the rows and

columns of the kernel matrix. For the second type of invariance, we need full invariance of the

computed kernel values with respect to vertex permutations.

The unaligned kernel trivially satisfies the first condition since the Quantum Jensen-Shannon

divergence is both deterministic and symmetric, while it fails to satisfy the second condition, thus

resulting in a kernel that is independent on the order of the graphs, but not on the vertex order

within each graph. For the aligned kernel, on the other hand, the addition of the alignment step

requires a little more analysis.

Theorem 3.3. The aligned Quantum Jensen-Shannon kernel is independent both to graph and to
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vertex order.

Proof. Recall that given two graphs Ga and Gb with mixed state density matrices ρa and ρb, the

aligned kernel is

kQJSA(Ga, Gb) = max
Q∈Σ

exp(−µDQJS(ρa, QρbQ
T )). (28)

As a result the kernel value is uniquely identified even when there are multiple possible alignments.

Due to their optimality these alignments must all result in the same optimal divergence. It is easy

to see that the kernel is also symmetric. In fact, since the Von Neumann entropy is invariant to

similarity transformations, we have

HN

(
ρa +QρbQ

T

2

)
= HN

(
Q
QTρaQ+ ρb

2
QT

)
= HN

(
QTρaQ+ ρb

2

)
. (29)

From the above DQJS(ρa, QρbQ
T ) = DQJS(QTρaQ, ρb) = DQJS(ρb, Q

TρaQ). Hence,

kQJSA(Ga, Gb) = max
Q∈Σ

exp(−µDQJS(ρa, QρbQ
T )) (30)

= max
Q∈Σ

exp(−µDQJS(ρb, QρaQ
T )) = kQJSA(Gb, Ga).

As a result, the aligned kernel is deterministic and symmetric, even if the optimizer might not be.

Thus the kernel is independent of the order of the graphs.

The independence of vertex ordering again derives directly from the optimality of the value

of the divergence. Let G′b be a vertex-permuted version of Gb, such that its mixing matrix ρ′b =

TρbT
T for a permutation matrix T ∈ Σ, and assume that kQJSA(Ga, G

′
b) 6= kQJSA(Ga, Gb).

Without loss of generality we can assume kQJSA(Ga, G
′
b) > kQJSA(Ga, Gb). Let

Q∗ = argmax
QΣ

exp(−µDQJS(ρa, Qρ
′
bQ

T )), (31)

then

exp(−µDQJS(ρa, Q ∗ ρ′bQ∗T )) = exp(−µDQJS(ρa, Q ∗ TρbT TQ∗T )) (32)

> max
Q∈Σ

exp(−µDQJS(ρa, QρbQ
T )),

leading to a contradiction. �

Note that these properties depend on the optimality of the alignment with respect to the Quan-

tum Jensen-Shannon divergence. We approximate the optimal alignment by the minimization of
18



the Frobenious (L2) norm between the density matrices. This is approximated using Umeyama’s

algorithm since the resulting matching problem is still in general NP-hard. However, in the proof

the optimality was used as a means to uniquely identify the value of the divergence. Any other

uniquely identified value would still give an order invariant kernel, even if this is suboptimal.

Eq.(3.2) does not depend on the choice of optimal alignment, and so it would still hold un-

der L2 optimality. The main problem is whether two permutations leading to the same (minimal)

Frobenious distance between the density matrices can give different divergence values. If per-

mutations Q1 and Q2 differ by the combination of symmetries present in the two graphs , i.e.,

Q1 = SQ2R with S ∈ Aut(Ga) and R ∈ Aut(Gb), then clearly they will have the same diver-

gence since ρa = SρsS
T and ρb = RρbR

T , but that might not characterize all the L2 optimal

permutations. Nonetheless, we have the following

Theorem 3.4. If the L2 optimal permutation is unique modulo isomorphism in the two graphs,

then the L2 approximation is independent of the order of the graphs.

Proof. Derives directly from the uniqueness of the kernel value for all the optimizers. �

There remains another source of error, since Umeyama’s algorithm is only an approximation to

the Frobenious minimizer. The impact of this is much wider since the lack of optimality implies an

inability to uniquely identify the value of the kernel in an invariant way. However, this is implicit

in all alignment-based approaches due to the NP hard nature of the graph matching problem.

3.3. Complexity Analysis

For a graph dataset having N graphs, the kernel matrix of the quantum Jensen-Shannon graph

kernel can be computed using Algorithm 1.

For N graphs each of which has n vertices, the time complexity of the quantum Jensen-

Shannon graph kernel on all pairs of these graphs is given by the three computational steps of

Algorithm 1. These are: a) The computation of the density matrix for each graph. Based on the

definition in Section 2.2, this step has time complexityO(Nn3). b) The computation of the aligned

density matrix and the unaligned density matrix for all pairs of graphs. This has time complex-

ities O(N2n4) and O(N2n), respectively. c) As a result, the time complexities of the quantum

kernel using the aligned and unaligned density matrices are O(Nn3 +N2n4) and O(Nn3 +N2n),
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Algorithm 1 Computing the kernel matrix of the quantum Jensen-Shannon graph kernel on N

graphs
Input: A graph dataset G = {G1, · · · , Ga, · · · , Gb, · · · , GN} with N test graphs. Output: A

|N | × |N | kernel matrix KQJS .

1. Computing the density matrices of graphs: For each graph Ga(Va, Ea), compute the density

matrix evolving from time 0 to time T using the definition in Section 19

2. Computing the density matrix for each pair of graphs: For each pair of graphs Ga(Va, Ea)

and Gb(Vb, Eb) with their density matrices ρa and ρb, compute ρa+ρb
2

using the unaligned or

the aligned procedure.

3. Computing the kernel matrix for the N graphs: Compute the kernel matrix KQJS . For

each pair of graphs Ga(Va, Ea) and Gb(Vb, Eb), compute the (Ga, Gb)th element of KQJS as

kQJS(Ga, Gb) using Eq.(24) or Eq.(26).

respectively.

4. Experimental Evaluation

In this section, we test our graph kernels on several standard graph based datasets. There are

three stages to our experimental evaluation. First, we evaluate the stability of the von Neumann

entropies obtained from the density matrices with time t. Second, we empirically compare our new

kernel with several alternative state of the art graph kernels. Finally, we evaluate the computational

efficiency of our new kernel.

4.1. Graph Datasets

We show the performance of our quantum Jensen-Shannon graph kernel on five standard graph

based datasets from bioinformatics and computer vision. These datasets include: MUTAG, PPIs,

PTC(MR), COIL5 and Shock.

Some statistic concerning the datasets are given in Table 1.
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MUTAG: The MUTAG dataset consists of graphs representing 188 chemical compounds, and

aims to predict whether each compound possesses mutagenicity [40]. Since the vertices and edges

of each compound are labeled with a real number, we transform these graphs into unweighted

graphs.

PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs) [41]. The graphs

describe the interaction relationships between histidine kinase in different species of bacteria.

Histidine kinase is a key protein in the development of signal transduction. If two proteins have

direct (physical) or indirect (functional) association, they are connected by an edge. There are 219

PPIs in this dataset and they are collected from 5 different kinds of bacteria with the following

evolution order (from older to more recent) Aquifex4 and thermotoga4 PPIs from Aquifex aelicus

and Thermotoga maritima, Gram-Positive52 PPIs from Staphylococcus aureus, Cyanobacteria73

PPIs from Anabaena variabilis and Proteobacteria40 PPIs from Acidovorax avenae. There is

an additional class (Acidobacteria46 PPIs) which is more controversial in terms of the bacterial

evolution since they were discovered. Here we select Proteobacteria40 PPIs and Acidobacteria46

PPIs as the testing graphs.

PTC: The PTC (The Predictive Toxicology Challenge) dataset records the carcinogenicity of sev-

eral hundred chemical compounds for male rats (MR), female rats (FR), male mice (MM) and

female mice (FM) [42]. These graphs are very small (i.e., 20 − 30 vertices), and sparse (i.e.,

25 − 40 edges. We select the graphs of male rats (MR) for evaluation. There are 344 test graphs

in the MR class.

COIL5: We create a dataset referred to as COIL5 from the COIL image database. The COIL

database consists of images of 100 3D objects. In our experiments, we use the images for the first

five objects. For each of these objects we employ 72 images captured from different viewpoints.

For each image we first extract corner points using the Harris detector, and then establish Delaunay

graphs based on the corner points as vertices. Each vertex is used as the seed of a Voronoi region,

which expands radially with a constant speed. The linear collision fronts of the regions delineate

the image plane into polygons, and the Delaunay graph is the region adjacency graph for the

Voronoi polygons. Associated with each object, there are 72 graphs from the 72 different object

views. Since the graphs of an object through different viewpoints are very different, this dataset is
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Table 1: Information of the Graph based Datasets.

Datasets MUTAG PPIs PTC COIL5 Shock

Max # vertices 28 232 109 241 33

Min # vertices 10 3 2 72 4

Ave # vertices 17.93 109.60 25.60 144.90 13.16

# graphs 188 86 344 360 150

# classes 2 2 2 5 10

hard for graph classification.

Shock: The Shock dataset consists of graphs from the Shock 2D shape database. Each graph is a

skeletal-based representation of the differential structure of the boundary of a 2D shape. There are

150 graphs divided into 10 classes. Each class contains 15 graphs.

4.2. Evaluations on the von Neumann entropy with Time t

We commence by investigating the von Neumann entropy associated with the graphs as the

time t varies. In this experiment, we use the testing graphs in the MUTAG, PPIs, PTC and COIL5

datasets, while we do not perform the evaluation on the Shock dataset. For each graph, we allow a

continuous-time quantum walk to evolve with t = 0, 1, 2, . . . , 50. As the walk evolves from time

t = 0 to time t = 50 we compute the corresponding density matrix using Eq.(15). Thus, at each

time t we can compute the von Neumann entropy of the corresponding density matrix associated

with each graph. The experimental results are shown in Fig.1. The subfigures of Fig.1 show

the mean von Neumann entropies for the graphs in the MUTAG, PPIs, PTC and COIL5 datasets

separately. The x-axis shows the time t from 0 to 50, and the y-axis shows the mean value of the

von Neumann entropies for graphs belonging to the same class. Here the different lines represent

the entropies for the different classes of graphs. These plots demonstrate that the von Neumann

entropy can be used to distinguish the different classes of graphs present in a dataset.
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entropy_vs_t_mutag-eps-converted-to.pdf

(a) On the MUTAG Dataset.

entropy_vs_t_ppis-eps-converted-to.pdf

(b) On the PPIs Dataset.

entropy_vs_t_ptc-eps-converted-to.pdf

(c) On the PTC(MR) Dataset.

entropy_vs_t_coil5-eps-converted-to.pdf

(d) On the COIL5 Dataset.

Figure 1: Evaluations on the von Neumann entropy with Time t.
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4.3. Experiments on Standard Graph Datasets from Bioinformatics

4.3.1. Experimental Setup

We now evaluate the performance of our quantum Jensen-Shannon kernel using both the

aligned density matrix (QJSA) and the unaligned density matrix (QJSU). Furthermore, we com-

pare our kernel with several alternative state of the art graph kernels. These kernels include 1)

the Weisfeiler-Lehman subtree kernel (WL) [5], 2) the shortest path graph kernel (SPGK) [4], 3)

the Jensen-Shannon graph kernel associated with the steady state random walk (JSGK) [14], 4)

the backtrackless random walk kernel using the Ihara zeta function based cycles (BRWK) [6], and

5) the random-walk graph kernel [3]. For our quantum kernel, we decide to let t → ∞. For the

Weisfeiler-Lehman subtree kernel, we set the dimension of the Weisfeiler-Lehman isomorphism

as 10. Based on the definition in [5], this means that we compute 10 different Weisfeiler-Lehman

subtree kernel matrices (i.e., k(1), k(2), . . . , k(10)) with different subtree heights h (h=1,2,. . . ,10),

respectively. Note that, the WL and SPGK kernels are able to accommodate attributed graphs. In

our experiments, we use the vertex degree as a vertex label for the WL and SPGK kernels.

For each kernel and dataset, we perform a 10-fold cross-validation using a C-Support Vector

Machine (C-SVM) in order to evaluate the classification accuracies of the different kernels. More

specifically, we use the C-SVM implementation of LIBSVM [43]. For each class, we use 90% of

the samples for training and the remaining 10% for testing. The parameters of the C-SVMs are

optimized separately for each dataset. We repeat the evaluation 10 times and we report the average

classification accuracies (± standard error) of each kernel in Table 2. Furthermore, we also report

the runtime of computing the kernel matrices of each kernel in Table 3, with the runtime measured

under Matlab R2011a running on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m). Note that, for

the WL kernel the classification accuracies are the average accuracies over all the 10 matrices, and

the runtime refers to that required for computing all the 10 matrices (see [5] for details).

4.3.2. Results and Discussion

a) On the MUTAG dataset, the accuracies for all of the kernels are similar. The SPGK kernel

achieves the highest accuracy. Yet, the accuracies of our QJSA and QJSU quantum kernels are

competitive with that of the SPGK kernel and outperform those of other kernels. b) On the PPIs
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dataset, the WL kernel achieves the highest accuracy. The accuracies of our QJSA and QJSU

quantum kernels are lower than that of the WL kernel, but outperform those of other kernels.

c) On the PTC dataset, the accuracies for all of the kernels are similar. Our QJSA quantum

kernel achieves the highest accuracy. The accuracy of our QJSU quantum kernel is competitive

or outperforms that of other kernels. d) On the COIL5 dataset, the accuracies of all the kernels

are similar with the exception of the WL, RWGK and BRWK kernels. Our QJSA quantum kernel

achieves the highest accuracy. The accuracy of our QJSU quantum kernel overcomes that of other

kernels. e) On the Shock dataset, our QJSA quantum kernel achieves the highest accuracy. The

accuracy of our QJSU quantum kernel overcomes that of other kernels.

Overall, in terms of classification accuracy our QJSA and QJSU quantum Jensen-Shannon

graph kernels outperform or are competitive with the state of the art kernels. Especially, the clas-

sification accuracies of our quantum kernel are significantly better than those of the graph kernels

using the classical Jensen-Shannon divergence, the classical random walk and the backtrackless

random walk. This suggests that our kernel, which makes use of continuous-time quantum walks

to probe the graphs structure, is successful in capturing the structural similarities between differ-

ent graphs. Furthermore, we observe that the performance of our QJSA quantum kernel is better

than that of our QJSU quantum kernel. The reason for this is that the aligned density matrix

computed through the Umeyama’s matching method can reflect the precise correspondence infor-

mation between pairs of vertices in these graphs, while the unaligned density matrix ignores the

correspondence information, and it is not permutation invariant to the vertex order.

In terms of the runtime, all the kernels can complete the computation in polynomial time on

all the datasets. The computation efficiency of our QJSU is lower than that of the WL, SPGK and

JSGK kernels, but it is faster than that of the BRWK and RWGK kernels (i.e., the kernels using

the classical random walk and the backtrackless random walk). The computational efficiency of

our QJSA kernel is lower than any alternative kernel. The reason for this is that the QJSA kernel

requires extra computation for the alignment of the density matrices.
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Table 2: Accuracy Comparisons (In % ± Standard Errors) on Graph Datasets abstracted from Bioinformatics.

Datasets MUTAG PPIs PTC(MR) COIL5 Shock

QJSU 82.72± .44 69.50± 1.20 56.70± .49 70.11± .61 40.60± .92

QJSA 82.83± .50 73.37± 1.04 57.39± .46 69.75± .58 42.80± .86

WL 82.05± .57 78.50± 1.40 56.05± .51 33.16± 1.01 36.40± 1.00

SPGK 83.38± .81 61.12± 1.09 56.55± .53 69.66± .52 37.88± .93

JSGK 83.11± .80 57.87± 1.36 57.29± .41 69.13± .79 21.73± .76

BRWK 77.50± .75 53.50± 1.47 53.97± .31 14.63± .21 0.33± .37

RWGK 80.77± .72 55.00± .88 55.91± .37 20.80± .47 2.26± 1.01

Table 3: Runtime Comparisons on Graph Datasets abstracted from Bioinformatics.

Datasets MUTAG PPIs PTC COIL5 Shock

QJSU 20” 59” 1′46” 18′20” 14”

QJSA 1′30” 23′25” 16′40” 8h29′ 32”

WL 4” 13” 11” 1′5” 3”

SPGK 1” 7” 1” 31” 1”

JSGK 1” 1” 1” 1” 1”

BRWK 2” 14′20” 3” 16′46” 8”

RWGK 46” 1′7” 2′35” 19′40” 23”

4.4. Computational Evaluation

In this subsection, we evaluate the relationship between the computational overheads (i.e., the

CPU runtime) of our kernel and the structural complexity or the number of the associated graphs.

4.4.1. Experimental setup

We evaluate the computational efficiency of our quantum kernel on randomly generated graphs

with respect to two parameters: a) the graph size n, and b) the graph dataset size N . More

specifically, we vary n = {10, 20, . . . , 300} and N = {1, 2, . . . , 100}, separately.

We first generate 30 pairs of graphs with an increasing number of vertices. We report the

runtime for computing the kernel values for all the pairs of graphs. We also generate 100 graph

datasets with an increasing number of test graphs. Each test graph has 50 vertices. We report the
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runtime for computing the kernel matrices of the graphs from each dataset. The CPU runtime is

reported in Fig.2. The experiments are run in Matlab R2011a on a 2.5GHz Intel 2-Core processor

(i.e., i5-3210m).

4.4.2. Experimental results

Fig. 2 (a) and (c) show the results obtained with the QJSA kernel, when varying the parameters

n and N , respectively. Fig. 2 (b) and (d) show those obtained with the QJSU kernel. Furthermore,

for the parameters n andN , we also plot the log runtime versus 3 log(n) and 2 log(N) respectively.

Fig. 3 (a) and (c) show those obtained with the QJSA kernel. Fig. 3 (b) and (d) show those

obtained with the QJSA kernel. In Fig. 3 there is an approximately linear relationship between the

log runtime and the corresponding log parameters (i.e., 3 log(n) and 2 log(N)).

From Fig. 2 and Fig. 3 we obtain the following conclusions. When varying the number of

vertices n of the graphs, we observe that the runtime for computing the quantum Jensen-Shannon

QJSA and QJSU graph kernels scales approximately cubically with n. When varying the graph

dataset size N , we observe that the runtime for computing the QJSA and QJSU graph kernels

scales quadratically with N . These computational evaluations verify that our quantum Jensen-

Shannon graph kernel can be computed in polynomial time.

Furthermore, we observe that the QJSU kernel is a little more efficient than the QJSA kernel.

The reason for this is that the QJSA kernel requires extra computations for evaluating the vertex

correspondences.

5. Conclusion

In this paper, we have developed a novel graph kernel by using the quantum Jensen-Shannon

divergence and the continuous-time quantum walk on a graph. Given a graph, we evolved a

continuous-time quantum walk on its structure and we showed how to associate a mixed quan-

tum state with the vertices of the graph. From the density matrix for the mixed state we computed

the von Neumann entropy. With the von Neumann entropies to hand, the kernel between a pair of

graphs was defined as a function of the quantum Jensen-Shannon divergence between the corre-

sponding density matrices. Experiments on several standard datasets demonstrate the effectiveness
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qjse_n1-eps-converted-to.pdf

(a) QJSA with Graph Size n.

qjsi_n1-eps-converted-to.pdf

(b) QJSU with Graph Size n.

qjse_dn1-eps-converted-to.pdf

(c) QJSA with Data Size N .

qjsi_dn1-eps-converted-to.pdf

(d) QJSU with Data Size N .

Figure 2: Runtime Evaluation.
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qjse_ln1-eps-converted-to.pdf

(a) Log Runtime vs 3 log(n) using QJSA Kernel.

qjsi_ln1-eps-converted-to.pdf

(b) Log Runtime vs 3 log(n) using QJSU Kernel.

qjse_ldn1-eps-converted-to.pdf

(c) Log Runtime vs 2 log(N) using QJSA Kernel.

qjsi_ldn1-eps-converted-to.pdf

(d) Log Runtime vs 2 log(N) using QJSU Kernel.

Figure 3: Log Runtime Evaluation.
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of the proposed graph kernel.

Our future work includes extending the quantum graph kernel to hypergraphs. Bai et al. [44]

have developed a hypergraph kernel by using the classical Jensen-Shannon divergence, and Ren

et al. [45] have explored the use of discrete-time quantum walks on directed line graphs, which

can be be used as structural representations for hypergraphs. It would thus be interesting to extend

these works by using the quantum Jensen-Shannon divergence to compare the quantum walks on

the directed line graphs associated with a pair of hypergraphs.
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