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An important group of nonlinear processes in optical fibre involves the mixing of four 

waves due to the intensity dependence of the refractive index. It is customary to distinguish 

between nonlinear effects that require external/pumping waves (cross-phase modulation 

and parametric processes such as four-wave mixing) and self-action of the propagating 

optical field (self-phase modulation and modulation instability). Here, we present a new 

nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as 

optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation 

with a distinctive spectral distribution. The narrowing results from an inverse four-wave 

mixing, resembling an effective parametric amplification of the central part of the 

spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear 

spectral propagation with random temporal waveform can find applications in optical 

communications and high power fibre lasers with nonlinear intra-cavity dynamics. 
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Introduction 

Nonlinear fibre optics is a research field at the two-way interface of fundamental 

nonlinear physics and fibre-optic engineering that encompasses diverse areas of science and 

technology. Nonlinear effects in optical fibre are critically important for various practical 

applications ranging from telecommunications to medical fibre lasers (see e.g. [1-6] and 

references therein). However, nonlinear fibre optics is also a remarkable and versatile test-bed 

for experimental probing of ideas and concepts of fundamental nonlinear science [5, 7-13]. This, 

in turn, means that fibre optics is an ideal platform for the invention and development of novel 

devices based on nonlinear design concepts with functionality not available in linear science 

engineering. Due to the relatively low threshold for the occurrence of nonlinear effects in fibre, 

they may adversely impact signal propagation in optical communications, or be positively 

exploited for the development of all-optical devices for optical networks, fibre lasers, signal 

processing components and in many other applications. 

Typically, fibre nonlinear effects are subdivided into two main categories: phenomena 

induced by the nonlinearities that arise from scattering (stimulated Brillouin scattering (SBS) and 

stimulated Raman scattering (SRS)) and the nonlinear effects due to the Kerr effect, the intensity 

dependence of the refractive index (self-phase modulation (SPM), cross-phase modulation 

(XPM), four-wave mixing (FWM), modulation instability (MI) and parametric processes based 

on FWM [2, 4]). The interaction of two or more waves with different frequencies may lead to 

power transfer between them, according to the corresponding stimulated scattering or parametric 

processes. A subclass of such phenomena occurs in the degenerate case, when a single wave 

affects itself through the nonlinear response of the medium.  This is called a self-action effect. 

Although the differentiation between various manifestations of the Kerr nonlinearity is 

somewhat artificial (as all elementary nonlinear processes resulting from the cubic nonlinearity 

formally can be treated as a mixing of four waves), from the practical view point, it is convenient 

to distinguish between nonlinear interactions of the optical field under consideration with 



external fields (e.g. pumping waves) co-existing from the very outset (for instance, cross-phase 

modulation and parametric processes) and self-action of the propagating light wave (e.g. self-

phase modulation and modulation instability).  

In general, optical nonlinear self-action effects may be both spatial (self-focusing, self-

phase modulation, spatial modulation instability) and temporal (self-phase modulation, temporal 

modulation instability). Self-action occurs when a propagating electromagnetic wave induces a 

refractive index change in the medium. The modified index of refraction in a fibre in turn affects 

the overall propagating field, producing effective self-action of the wave. 

Optical parametric amplification (OPA) in fibres, pioneered by R. Stolen [14], is 

traditionally considered as a process of energy transfer from pumping wave(s) to a signal wave. 

Recently, fibre OPA has become a booming area of research with impressive demonstrations of 

the feasibility of low-noise parametric amplification in high-capacity optical communications 

[15-22]. These breakthroughs are greatly supported by recent progress in the development of 

efficient highly-nonlinear fibres with a large ratio of the nonlinear coefficient to the attenuation 

parameter. 

In this work, we introduce a new nonlinear self-action effect in optical fibre, inverse FWM 

or self-parametric amplification (SPA), which occurs in normal dispersion optical fibres under 

certain conditions described below. Note that the term "parametric amplification" is employed 

here in a context different from the standard usage. Traditional parametric amplification is 

typically defined for monochromatic waves, while here we use this term for the relatively broad 

spectrum of a multi-longitudinal-mode Raman fibre laser. Moreover, here the term 

"amplification" means only a re-distribution of the energy due to inverse FWM and is applied 

only to the central part of the spectrum that is “gaining” power at the expense of the energy 

decrease in the spectral tails of the field. However, we believe that this terminology helps to 

explain the underlying elementary processes and physics of the unusual nonlinear process 

demonstrated. We observed experimentally and confirm through comprehensive numerical 



modelling that the spectral width of a signal produced by a Raman fibre laser becomes narrower 

after propagation in a sufficient length of normal dispersion fibre. The resulting state, featuring a 

narrow spectrum and random temporal field distribution, propagates with remarkable stability, 

showing potential for applications in fibre lasers and optical communications. We present a basic 

theory of self-parametric amplification that is confirmed by extensive numerical modelling and 

experimental observations.  

 

Figure 1. Experimental observation of spectrum evolution in normal and anomalous 

dispersion fibres. (a) Experimental setup. (b) Initial spectrum and spectrum after propagation in 

100 km of LEAF and SMF-28 fibres. The power launched into each fibre was 1.5 W.  

 

Results 

Experimental setup. We start from the description of the experiment that initiated this 

study. The experimental setup is shown in Fig. 1(a). In the first set of experiments, the Raman 

fibre laser (RFL) [23] operated at ~1425 nm while, in the set of cross-check experiments 

presented at the end of the paper, an RFL operating at 1276 nm was used. Both Raman lasers 

operated in the continuous wave (CW) regime with a maximum output power up to 2W. The 



outputs were randomly polarized with a degree of polarization < 5%. It is widely known in fibre-

optics that nonlinear effects such as four-wave mixing and self-phase modulation typically 

manifest themselves as a spectrum broadening when relatively high-power CW fields propagate 

in optical fibres [23-29]. A characteristic feature of the Raman fibre laser, related to high in-

resonator power and the resulting in-cavity spectral broadening, is that its output spectrum has 

two peaks with a separation of 0.2 – 1 nm (Fig. 1b). The double-peaked structure of the output 

spectrum is the result of the FWM-induced spectral broadening inside the Raman converter 

cavity which leads to a spectral breadth which exceeds the reflection bandwidth of the fibre 

Bragg grating (FBG) output coupler and therefore to radiation “overflowing” the FBG reflector 

[23-29, 33]. 

The laser radiation generated at 1424.5 nm was launched into the 100-km long LEAF (Large 

Effective Area Fibre) or SMF-28 (Single Mode Fibre) fibres, with a zero-dispersion wavelength 

around 1490 nm for LEAF and 1310 nm for SMF-28. Thus, light propagates in the region of 

normal dispersion for the first and anomalous dispersion for the latter. The spectra at the input 

and output of the 100-km lengths of fibre were measured with an Optical Spectum Analyzer 

(OSA) with a resolution of 0.01 nm. 

 

Narrowing of the optical spectra. The measured optical spectrum at the end of LEAF fibre 

shows significant narrowing (see Fig. 1(b) - LEAF), in sharp contrast to the typical nonlinear 

spectral broadening in SMF-28 (see Fig. 1(b) - SMF) caused by four-wave mixing which has 

been observed and studied in a  number of experimental and theoretical publications [23, 24, 27–

31]. The explanation of this atypical narrowing effect is the aim of our work. 

Extensive numerical modelling of light generation in the Raman fibre laser and its further 

propagation in the LEAF fibre fully confirms the observed unusual spectral behavior of a 

nonlinear wave in a long fibre with normal dispersion. Signal evolution inside the laser cavity 

was modelled by the set of coupled modified nonlinear Schrödinger equations taking into 



account dispersion, Kerr nonlinearity, Raman gain, depletion of the Raman pump wave and fibre 

losses with all details of modelling presented, e.g. in [2, 32] (see also Methods section below). 

Signal evolution in the LEAF fibre was computed using the standard nonlinear Schrödinger 

equation [2].  

 

Figure 2. Spectrum shape after signal propagation in LEAF fibre. (a) experiment and (b) 

simulation. P0(0) = 1.5 W, L = 100 km. 

 

 

 

Figure 3.  Evolution of the signal spectrum and temporal shape along the fibre. (a) 

Computed power spectrum density evolution along the LEAF fibre, demonstrating a transition to 

very stable propagation with a distinctive asymptotic spectrum. (b) The corresponding spatio-

temporal dynamics is shown over an interval of 800 ps. Here the fluctuating CW power ( , )P t z  is 

normalized by the distance-dependent factor ( ) = (0) ( )normP z P exp z , where = 0.25  dB/km is 

the fibre loss. The two figures illustrate that while the temporal field structure is irregular, the 

spectrum propagation demonstrates remarkable stability. 

 

The results of experiments and numerical simulations presented in Figs. 2 and 3 demonstrate 

spectral narrowing of CW radiation with simultaneous temporal fluctuations. The initial 

spectrum is converted to the double-scale distribution (a bell-shaped peak in the centre but with 

exponentially decaying spectral tails introducing a second scaling parameter in the spectral 

distribution) at the LEAF output both in experiment and in simulation (Fig. 2). A stable spectrum 

evolution (after approximately 50 km) along the LEAF fibre is shown in Fig. 3(a). We would 



like to stress that the observed stabilization of the spectrum is a nontrivial nonlinear process. 

Intensive numerical modeling shows that this happens both in a fibre span with loss and in the 

corresponding lossless system. Spatio-temporal dynamics of the signal feature highly irregular 

intensity fluctuations (Fig. 3(b)). Despite visible irregularities of the temporal field distribution 

shown in Fig. 3 (b), in the spectral domain, this statistical steady state is very stable and may 

evolve without major changes over long distances. Due to the fact that multiple modes are 

involved in building this statistical equilibrium through nonlinear FWM interactions, the process 

calls for a kinetic description [13, 27]. We believe that this is an interesting and practically 

important experimental observation of the kinetic equilibrium in optical fibre [8, 10, 12, 13, 27].  

We have performed a number of experiments with various fibres at different wavelengths 

along with extensive numerical modeling and conclude that we were able to observe the effect of 

nonlinear spectral narrowing only in the case of normal fibre dispersion (see Supplementary 

Note 1).  

 

Qualitative analysis. First, let us try to explain qualitatively the physical mechanism 

underlying the spectral narrowing of a high-power field containing many longitudinal modes in 

normal dispersion fibre. The key idea came from the observation that the Raman laser output 

(with its double-peaked spectrum) being launched into the LEAF fibre resembles a 2-pump 

optical parametric amplifier with two spectrally separated pumps. Of course, there are no 

separate "pumps" and "signal" in this case; instead, the input field self-acts in re-distributing 

energy from the peripheral wavelengths - "pumps" to the central region - "signal". This is 

obviously only a qualitative picture that helps in understanding the main elementary mechanism 

of such self-pumping of the central wavelength region at the expense of the tails. Consider those 

effective "pumps" to be at frequencies 1  and 2  at the fibre input. Such effective "pumps" 

would amplify "signal" and "idler" with frequencies 3  and 4 , respectively. Consider, 1 < 2  

and 3  < 4 . Evidently, here “signal” and “idler” represent just two spectral components of the 



same wave-packet that through FWM get energy from the tails of the spectrum (“pumps"). 

Notice that 3  and 4  are symmetric with respect to the center 

frequency
1 2 3 4= ( ) / 2 = ( ) / 2c      , which is halfway between the two pump frequencies. 

As a matter of fact, the self-parametric amplification effect does not require a two-pump 

structure of the input field; similar spectral narrowing can be observed for input waves having a 

bell-shaped spectrum. This was conclusively confirmed by additional experiments and modeling 

(see discussion below). The particular example considered here is very useful for understanding 

the underlying principle, i.e. the two spectral peaks in the Raman laser output could be 

associated with the "pumps", whereas the spectral narrowing of the laser output as it propagates 

in the normal dispersion fibre could be associated with the "signal" and "idler" (or just "signal" if 

3 4 
) amplification in an effective fibre OPA. 

In this qualitative analysis, consider first the un-depleted pump case when signal and idler 

are small compared to the pumps 
3 0 1 2=P P P P  (for simplicity, as the analysis in this section is 

only qualitative, formulae here are given for the case when the idler is absent at z=0). The 

unsaturated single pass gain for signal 3G may be written as [15, 17]: 
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with the idler gain being 
4 3= 1G G  . Here, g is a parametric gain coefficient given by 

2 2 2= ( / 2)g r k , 
0=r P ,   is nonlinearity coefficient. The gain coefficient reaches its 

maximum value when = = 0NLk    , where k  is the total propagation constant, 

3 4 1 2( ) ( ) ( ) ( )              is the propagation constant mismatch and 
0NL P    is the 

nonlinear contribution to the wavevector mismatch. The corresponding single pass signal gain is 

equal to: 

 
2

3, 0=1 sinh( ) ,maxG P L                                (2) 

and for the idler:  



                                         
2

4, 0= sinh( )maxG P L . 

It is convenient to introduce the following notations: 
3 1 2= , = =s c p c c            . 

To understand the effect of dispersion, we can expand the propagation constant mismatch in a 

standard power series in terms of 
s  and 

p  [15, 17]: 2 22
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where 
2m are even derivatives of ( )   at 

c . Consider only the main term in this expansion 

assuming that 24   , i.e. 2 2

2 ( ) ( )s p         
. The shape of the gain spectrum and 

location of the gain maximum in the spectral domain are given by the condition of phase 

matching: 

2 2

0 2= 0 ( ) ( ) = /s pk P         
                   (3) 

Equation (3) provides a reasonable qualitative explanation of why the sign of the dispersion 

does matter in the considered experiment: when fibre dispersion is normal
2 > 0 , the gain 

maximum is located between the pumps, <s p   . On the other hand, when fibre dispersion is 

anomalous
2 0  , the gain maximum is located outside the area between the pumps, in the 

frequency domain >s p    as illustrated by Fig. 4(a). Figure 4(a) depicts the signal parametric 

gain 3G [dB] as a function of distance   between the pumps and signal wavelength. Black 

lines show the wavelengths of the pumps. As one can see, in the normal dispersion regime, the 

gain spectrum is bell-shaped with the maximum amplification in its central part. When 

dispersion is anomalous, symmetric gain maxima are always located outside the area between 

the pumps, which effectively leads to significant spectrum broadening. 



  

Figure 4. Signal gain spectra as a function of pumps wavelengths spacing. (a) 4-wave model, 

P0(0) = 1.5 W, L = 1 km. The unsaturated single pass gain for signal 3G  is shown. Black lines 

show the corresponding wavelengths of the pumps. (b) NLSE model, P0(0) = 1.5 W, P3(0) = 300 

mW, P4(0) = 0, L = 1 km. The projection at the top is related to the normal dispersion case: black 

solid line – deterministic phases of waves; grey circles – averaging over 600 sets of random 

phases.  

 

Note that, for a central frequency gain, when signal coincides with idler 0s  , we deal with 

degenerate OPA and signal amplification should be considered in the framework of the 

degenerate OPA model. The qualitative analysis presented in this section explains the difference 

between normal and anomalous dispersion propagation regimes. However, this simple model 

does not take into account pump depletion and the generation of additional waves through FWM. 

This changes the quantitative characteristics of the SPA process and requires a more accurate 

analysis that is presented in the following section. 



Gain analysis in the nonlinear Schrödinger equation model. Certainly, the 4-wave model 

above gives only a qualitative picture; many other frequency components are generated and 

interact with each other due to four-wave mixing in the process under consideration. Some of 

these waves may be well phase-matched and so may reach levels comparable with the "signal". 

To give a more realistic evaluation of the self-parametric amplification, we now use the 

nonlinear Schrödinger equation (NLSE) to obtain the signal amplification spectrum in the 

presence of parasitic FWM components depleting the effective gain. Figure 4(b) shows the 

signal gain spectrum corresponding to the two-pump fibre OPA with varying distance between 

the pumps. Here the total pump power is 1.5 W, the signal CW power at the fibre input equals to 

300 mW and the idler is absent at z = 0. The gain spectrum is still bell-shaped if the distance 

between the pumps is properly chosen (see Fig. 4(b), inset) and maximum amplification is 

achieved in the frequency band between the pumps. 

Note that previously we considered an ideal case - a phase-insensitive parametric amplifier. 

The real laser output has the form of a multimode light field without phase locking; thus, self-

parametric amplification of such a field is phase-sensitive. To study the impact of the effect of 

random initial phases, we have performed additional simulations. We considered signal and idler 

with equal powers (300 mW total power) at the fibre input and the relative phase difference 

between the four involved light waves at the fibre input 
3 4 1 2(0) (0) (0) (0) (0)         was 

assumed to be a random value with a uniform probability distribution bounded between  and 

 . Statistical analysis was done with 600 different sets of the random phases. A statistical signal 

gain spectrum averaged over the 600 sets is shown by dashed line grey circles in Fig. 4 right top. 

It has a characteristic high peak at the central frequency similar to the simplified 4-wave model.  

Although we have shown that the maximum signal amplification can be achieved near the 

central frequency, new spectral components still could be amplified simultaneously with the 

signal and lead to the broadening of the laser spectrum. To investigate pump energy transfer 

along the fiber, we consider signal amplification at the central frequency (signal coincides with 



idler 3 4c    ). To estimate a value of the FWM product during the signal amplification, 

we introduce the dimensionless function ( , (0))F   , defined as the ratio between pump 

energy transferred to signal at the frequency 3   and pump energy transferred to other 

frequencies due to FWM: /s FWMF P P  , where 3 3( ) (0)sP P L P    

and
0 3 0 3(0) (0) ( ) ( )FWMP P P P L P L    . ( , (0))F    is a figure of merit indicating how 

effectively pump energy transfers to signal, i.e. efficiency of signal amplification.  F=0 

corresponds to G3 =0, i.e. no amplification for the 3 signal, whereas F tends to infinity when the 

only spectral component amplified is the 3 signal.  

  
Figure 5. Estimate of the FWM product during the signal amplification. (Top) Dependence 

of the signal gain G[dB] on relative phase difference (0) and wavelength spacing between two 

pumps  . (Bottom) Dependence of the function /s FWMF P P   on relative phase difference 

(0)  and wavelength spacing between two pumps  . 

 

Figure 5 shows value of the signal gain  1010log ( ) / (0)s sG P L P  and dimensionless function 

F (bottom row) in the plane of parameters (0)   . It can be seen, the FWM product can be 



neglected if the spectral distance between the pumps is properly chosen (undesirable FWM 

product is minimized and all the pump energy transfers to the signal). 

  
 

Figure 6. Theoretical evolution of the spectral broadening factor. Dependence of the 

broadening factor /out in    on (a) initial spectrum width in  after 100 km of LEAF, 0P  = 

1.5 W, lossless fibre. (Inset) Spectrum shapes before and after signal propagation in 100 km of 

LEAF, corresponding to the points marked “1” and “2”; (b) pump power, corresponding to the 

points marked “1” and “2”, L = 100 km; (c) group delay dispersion, corresponding to the points 

marked “1” and “2”, L = 100 km, 0P  = 1.5 W; (d) fibre length, corresponding to the points 

marked “1” and “2”, P0 = 1.5 W. (e) Scaling of NLd LL /  along the propagation distance, 0P  = 

1.5 W. (f,g) Experimentally measured input and output spectra of 1276-nm light propagating in 

100 km of SMF-28 vs. input power (f) 0P  = 0.7 W, (g) 0P  = 1.3 W.  

 

 

Discussion 

An interesting question is: what are the conditions for spectral compression and broadening 

in normal dispersion fibre? In Figure 6 we considered the broadening factor /out in    as a 

function of: initial spectral width, power, fibre dispersion and cavity length. Figure 6(a) depicts 

the evolution of the broadening factor /out in    with an initial spectrum width in  in 

numerical simulations. When the spectrum width at z = 0 is less than 0.5 nm, we still observe 

spectrum broadening in a 100-km long fibre. However, if in  exceeds 0.5 nm, spectrum 



narrowing takes place. We verified that this effect is observed both in lossy and lossless cases 

(see details in Supplementary Note 2). We also studied the impact of dispersion (Supplementary 

Note3) and statistics of the compressing signal (Supplementary Note 4). In Figs. 6(b)-(e) we 

consider in more detail two different points along the line, corresponding to spectrum broadening 

and narrowing (marked as ``1'' and ``2'' in Fig. 6(a)). For in  = 0.23 nm, the broadening factor 

first monotonically increases with the fibre length L as long as it is shorter than 5 km (Fig. 6(d)). 

With further increase of propagation distance, the initial rise is followed by a decrease. This kind 

of evolution of a multimode CW field was previously observed in [31]. Scaling of NLd LL /  along 

the propagation distance is shown in Figure 6(e). Spectral broadening occurs when the dispersion 

length at the fibre input is much greater than the nonlinear length. On the other hand, when 

dispersion length becomes comparable with the nonlinear length, we observe nonlinear spectral 

narrowing. The observed nonlinear spectral broadening depends on the ratio of the dispersive 

and nonlinear lengths ./ NLd LL Therefore, light with a broader bandwidth can be also compressed 

provided that after rescaling of parameters the factor NLd LL / is the same as in the studied 

examples. 

We additionally experimentally verified that the RFL spectrum is also narrowing when 

transmitted through other fibres with normal dispersion, as shown in Fig. 6(f,g). The laser 

radiation generated at 1276 nm was launched into the same 100-km length of SMF-28 which has 

normal dispersion at this wavelength (
2 = 3.1 ps

2
/km,  =1.8 W

-1
km

-1
). We observed spectral 

narrowing both in experiment and simulation. In the experiment, a narrow and low power (0.7 

W) RFL spectrum becomes broader after propagation in SMF (Fig. 6(f)); however, when initial 

width and power increases (1.3 W), one can see compression (Fig. 6(g)) and formation of a 

stable spectrum.  

 The remarkable spectral stability of the evolved state (in normal dispersion fibre) despite a 

random temporal behaviour indicates that we observe an asymptotic kinetic regime that resulted 

from the optical wave turbulence of a multitude of elementary waves in the nonlinear system 



considered [8, 10, 12, 13, 35]. It is also worth pointing out that this surprising finding that the 

evolved spectral distribution does not change appreciably with propagation may potentially be 

exploited in fibre lasers and optical telecommunications. In fibre lasers, nonlinear compression 

may lead to increased spectral brightness compared to systems using direct spectral filtering, 

avoiding additional losses inevitable with filters.  In optical communications, spectrally stable 

nonlinear propagation regimes may lead to new techniques of mitigation of nonlinear 

transmission impairments that are a major challenge in modern high-capacity systems. 

 

Conclusion 

We have presented a new self-action effect that may occur during high-power wave 

propagation in normal dispersion fibre - self-parametric amplification or inverse four-wave 

mixing that manifests itself as a spectral compression of light. This is different from compression 

of pre-chirped coherent pulses [36-41]. Observed effect is the result of a nonlinear energy re-

distribution from the tails of signal spectrum to the central region. This can be considered as an 

effective self-parametric amplification of the central part of the wave packet spectrum by the 

peripheral "pumps". The simple theory of self-parametric amplification presented explains all the 

key features observed in the experiments and full numerical modelling. We believe that the 

remarkable stability of the observed spectral field distribution may offer new interesting 

applications in high power fibre lasers and optical telecommunications.  

 

 

Methods  

Propagation in LEAF: Signal propagation down the LEAF fibre has been modelled using the 

NLS equation with losses [2]: 

2
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where ( , )A z t  is the electric field envelope, 
2  is the second-order dispersion coefficient at 

the central frequency 
0 , 2 0 ( )effn cA   is the Kerr nonlinearity coefficient with the nonlinear 

refractive index 
2n  and effective fibre cross-section area effA for the fundamental mode and   is 

the fibre attenuation coefficient. The equation has been solved using the split-step Fourier 

transform method. The following fibre parameters are used in the simulations: 
2 = 4.3 ps

2
/km, 

 =2.16 W
-1

km
-1

,  =0.25 dB/km.  

Raman fibre laser: To model the laser generation, we use a NLSE-based model previously 

reported to be efficient for modeling of RFLs [32]: 
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The boundary conditions describe the pump input and the reflection of the optical field from 

the fibre Bragg gratings: 
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where ( )inR   and , ( )out pR  are the reflectivities (with respect to power) at the left and right 

cavity ends, respectively. 

The model describes spectral broadening during one round trip and the building of a steady 

state over many round trips. We integrated equations (M2) along z using the split-step Fourier 

transform method and an iterative procedure similar to that used for modeling of Brillouin fibre 

lasers [34]. For example, to integrate the equation for , ( , )s pA z t
, we substituted into the equation 

, ( , )s pA z t obtained on a previous iteration and so on. The generation becomes stable after 10
2
–10

4
 

round trips, depending on the power. 
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