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Abstract—This paper considers the problem of low-
dimensional visualisation of very high dimensional information
sources for the purpose of situation awareness in the maritime
environment. In response to the requirement for human decision
support aids to reduce information overload (and specifically,
data amenable to inter-point relative similarity measures) appro-
priate to the below-water maritime domain, we are investigating
a preliminary prototype topographic visualisation model. The
focus of the current paper is on the mathematical problem of
exploiting a relative dissimilarity representation of signals in a
visual informatics mapping model, driven by real-world sonar
systems. A realistic noise model is explored and incorporated
into non-linear and topographic visualisation algorithms building
on the approach of [9]. Concepts are illustrated using a real
world dataset of 32 hydrophones monitoring a shallow-water
environment in which targets are present and dynamic.

I. INTRODUCTION

SONAR (sound navigation and ranging) is used extensively
in underwater acoustics. The fundamental issues commonly
encountered in the SONAR domain include low signal-to-
noise ratio, multipath reflections from targets, sea surface and
floor and the high volume of data for analysis. Large sonar
systems can produce hundreds to thousands of beams worth
of data, the display of which can easily result in data overload
for sonar operators when presented in conventional lofargram
displays. The multi-beam time series signals are considered
as a set of time-dependent vectors in a high dimensional
observation space (where the dimensionality is the number of
beams being recorded), and this set of observation vectors is
the result of an unknown latent generative model consisting
of multiple signals mixed with noise. The desire is to find
a low-dimensional latent space representation of the high
dimensional data which preserves structure in the original data
which would be useful to an operator for anomoly detection.
Such ‘topographic’ (structure-preserving) projections need to
be generically nonlinear and ideally capable of mapping the
projection of new data without being ‘re-trained’ for each
block of new data. Additionally, since the observation data
is always subject to uncertainty, if there is a framework and
information to represent uncertainty in the observation data, the
projection method should accommodate the uncertainty in the
latent space construct. Finally, since each observation vector
(sonar beam scan) only has significance in the context of its
relative information content compared to the context of a large
number of other scans (e.g., human operators perceptually
‘integrate’ lofargrams to smooth out noise, spot anomalous

behaviour, and occluded tracks) we are interested in methods
which use relative measures of dissimilarity between pairs of
observations, rather than assuming the observed values of a
single isolated observation vector are the fundamental entities.
In this paper we introduce one such nonlinear topographic
visualisation approach which is flexible enough to use different
measures for representing ‘similarity’ between observations
vectors.Results are presented on a real-world trial for 32
hydrophones samples in a shallow-water environment with
active targets.

A. Methodology

The modelling philosophy adopted in this paper assumes
that the ‘information is in the fluctuations’. That is, rather than
regarding the noise in observed sensor data as a nuisance to
be removed, we prefer to characterise the noise processes and
hence any fluctuations from this noisy state must by definition
be informative, interesting and possibly a signal of relevance.
Therefore we will be characterising the residuals once we have
constructed models for possible stationary signal sources. This
noise process will typically be in high dimensions and hence
we then need a mechanism to compare the relative fluctuations
of the noise processes over time, or over beams. This motivates
the focus of the paper, to develop the use of high-to-low
dimensional projection methods which preserve the relative
dissimilarities in the high dimensional space.

II. SIGNAL MODELLING

The dynamic signal vector, sb, observed in a beam b can
be thought of as primarily sensing a noise process, εb, plus a
set of additive target tonals, ub; where a target may be present.

sb = ub + εb. (1)

The sensor array across all beams can be considered either as
a set of one-dimensional time series or groups of vector time
series processes. Firstly we consider the case of a beam-by-
beam analysis.

A. Beam-by-beam analysis

Our approach involves approximating beam-formed signals
with a non-linear auto-regressive model and fitting the residu-
als with a realistic mixture model, as follows.

When present, an observed dynamic signal can be rep-
resented by an auto-regressive process. We have found that



a linear autoregressive process is not capable of sufficiently
capturing the dynamics of a signal in this environment. We
therefore seek a nonlinear auto-regressive process for the mod-
elled target signal. ie for the time series of beam b, an estimate
of the signal is provided by a deterministic function which
depends on delayed time series components of the observed
signal, (ûb)t = fb[st; Λ] where st = (st−1, st−2, . . . , st−L−1)
is a standard delay vector. We choose L = 14 here to minimise
the mean square error over all beams in a similar fashion
to the linear partial autocorrelation function method. The
parameterised nonlinear function fb[st; Λ] is taken generically
to be a linear-output Radial Basis Function (RBF) neural
network where Λ denotes the set of parameters in the network,
ie the set of weights λ and the set of centres µ used to define
the network, ie

fb[st; Λ] =

N∑
j=0

λjφ(||st − µj ||).

N = 100 centres randomly chosen from a training set of
delay vectors were used in this paper to perform adequate
interpolation and the nonlinear basis functions were taken to
be splines, φ(z) = z ln z. A separate RBF model is trained on
each separate beam.

Once an approximation of the target signal, ûb, is obtained
we then need to model the estimated noise characteristics of the
signal, ε̂b = |sb − ûb|. This is important as the characteristics
of certain stealthy undersea contacts such as submarines may
only be apparent in the background noise. The residual noise
process could be approximated with a Gaussian Mixture Model
if no prior knowledge of the domain were known. However
we choose to build a more appropriate mixture model incor-
porating known domain-relevant noise characteristics for the
analysis, including:

• Residual signal characteristics ∼ Laplace distribution,

• Thermal noise characteristics ∼ Rayleigh distribution,

• Surface wave scatter ∼ K distribution,

• Rain characteristics ∼ Gamma distribution,

• Miscellaneous characteristics ∼ Normal distribution.

Thermal, rain and surface scatter have all been shown to have
significant impact on target detection and sensor performance
[11]. It is popular in the literature to use a Poisson distribution
to model rain characteristics, however we choose to use a
Gamma distribution in order to ensure all mixture components
are continuous distributions. The problematic issue with this
mixture comes when trying to optimise the hyper-parameters
of the mixture since some of the variables within the log-
likelihood derivatives are transcendental or non-invertible,
preventing an EM approach. We therefore seek to optimise
the hyper-parameters using scaled conjugate gradients. As is
discussed in the literature, e.g. [2], optimising parameters from
the K distribution using gradient descent from a maximum
likelihood approach typically result in unrealistic parameters
and convergence issues. We therefore use a bayesian approach
for the parameter selection following [1] prior to optimising the
remaining hyper-parameters using scaled conjugate gradients.
This optimisation is repeated over all beams analysed with the
weight for each mixture component ranging between 0 and 1.
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Fig. 1. A representative example of a fit of our compound noise mixture
mode to the residual noise in beam 26 in the 16th second. The non-gaussian
and multi-peaked nature of the residual noise is evident.

The result of this modelling process is an optimised noise
model for a separate noise process in each of the beams.
The fit of our compound noise mixture model against the
actual residuals over a 1 second interval using beam 26 as
an exemplar from the real data we used later is shown in
figures 1. The non-Gaussian nature of the residuals is evident.
The shape and scale of this distribution varies over each beam.
This combination of an NAR signal and noise mixture process
takes 1.014 seconds to fit each beam on a 1.7GHz core i5
processor with 8GB of RAM and can be run in parallel.

After discussing the multi-beam case, we will subsequently
explain how these high-dimensional noise distributions are
then visualised in 2D. It is expected that any anomalous
behaviour in the environment would then be apparent as a
significant departure from this expected noise model, and
hence such a departure should be evident in a low dimensional
visualisation of this noise space.

B. Beam grouping

As an alternative to treating each beam signal separately,
we can choose to combine groups of beams into neighbouring
clusters to create a set of vector autoregressive models. For
the purposes of the data in this paper, we choose to analyse
the beams in overlapping groups of 5 beams via a shifting
window, i.e. for the 32 beams analysed there are 28 groups.
Using a nonlinear Vector AR process we seek to find the
weight matrix,B, corresponding to the matrix of signal delays,
U , and the nonlinear function, f which matches the observed
vector signal, S, as closely as possible in a mean-squared error
sense. There is assumed additive noise, ε in the vector process.

Sg = f(BgUg) + εg = Ŝg + εg (2)

where g is the group index. We again use an RBF net-
work with 100 centres randomly chosen from the interpo-
lated signal with an 8th order delay used for the nonlinear
vector auto-regression. We choose an ‘r log(r)’ activation
function for interpolation and train a new network on each
group.Unfortunately the noise model specified for the single
beam case does not generalise to vector processes. So as an
alternative to seeking dissimilarities between noise models, we
use the covariance of the approximations in order to compute
the dissimilarity between groupings. ie for each group we use



the covariance as a proxy for the noise model:

Σg =
1

M − 1
(Sg − Ŝg)T (Sg − Ŝg) (3)

where M is the number of approximated points.

Whether we use the single-beam or multi-beam approach,
the output in both cases is a high dimensional representation
of the uncertainty between our signal model and the observed
data. The next phase is to create a low-dimensional representa-
tion of these high-dimensional noise processes. Since we need
to retain the concept of ‘similarity’ (because the aim of this
study is to use departures from what is regarded as normal for
the situation captured by the sensors), we focus on a method
for topographic representations of the noise models.

III. NEUROSCALE: TOPOGRAPHIC DIMENSIONALITY
REDUCTION

We seek a dimension-reducing, topographic transforma-
tion of the noise data for the purposes of visualisation and
analysis. By ‘topographic’, it is implied that the geometric
structure as determined by pairwise relationships of the data
is preserved in the transformation. This is a requirement that
relative ‘dissimilarities’ are preserved on average, if possible.
For this work we consider both deterministic and probabilistic
approaches to the visualisation mechanism called NeuroScale.
Although some alternatives exist, the NeuroScale approach
is most suited to the requirements of this problem domain.
A constrained Gaussian Process model has been proposed as
an alternative topographic visualisation mapping [5], however
these impose a gaussian likelihood over the observations and
do not work directly with dissimilarity data. Another nonlinear
visualisation method using dissimilarity data as input is the
Stochastic Neighbour Embedding model [4], however this does
not create a prototype trained feed-forward mapping which we
need in our problem domain.

A. NeuroScale

The NeuroScale approach [6], [7] employs a nonlinear
transformation {f : IRn → IRm : f(x) = y} from
the original configuration space that maps into the feature
space. We choose the class of nonlinear parameterised trans-
formations provided by RBF networks. This has the advan-
tage that a transformation is obtained, allowing interpolation
which distinguishes this approach to other methods of low
dimensional visualisation. The model parameters are adjusted
to minimise the global STRESS measure analogous to the
classical multidimensional scaling method, (but now with the
advantage that a transformation is provided and not just a
mapping):

E =

P∑
p=1

∑
q<p

[
dn(xp,xq)− dm(yp,yq)

]2
dn(xp,xq)

(4)

where dn(xp,xq) is the ‘similarity’ between data objects
in the original space (often, but not necessarily, taken to
be a Euclidean distance between points ||xp − xq||) and
{dm(yp,yq) = ||yp−yq||} are the distances in the latent visu-
alisation space (which can also be relaxed if prior knowledge
dictates otherwise). The visualisation space dimensionality is
often, but not exclusively, taken to be m = 2. The latent points

y are generated by the RBF network, given the data points
as input. That is, yq = f(xq;Λ), where f is the nonlinear
transformation effected by the Radial Basis Function model
with parameters, i.e. weights and any kernel smoothing factors,
Λ. The (squared) ‘distances’ in the feature space (assuming
euclidean discrepancies) may thus be given by

d2m = ‖f(yq)− f(yp)‖2 =

m∑
l=1

(∑
k

λlk[φk(‖xq − µk‖)− φk(‖xp − µk‖)]

)2

(5)

The topographic nature of the transformation is imposed
by the STRESS term which attempts to match the relative
inter-point dissimilarities in the latent visualisation space with
the dissimilarities in the input space. Note that nowhere is
an isolated point vector needed; only measures of pairwise
dissimilarity. A by-product of this STRESS measure is that
the projected points sit on arbitrarily scaled axes which only
represent the relative dissimilarity between points and have no
bearing on the observed data.

Also, note that central to this transformation is the as-
sumption of provided ‘distance’ functions dn, dm in input
and latent spaces, and also the choice of interpolating basis
spline functions, φ(. . . ). Also. note that this RBF is distinct
to the use of the RBF previously. In both sections the RBF
is used as a convenient nonlinear interpolation tool, but here
its use is explicit for the dimension-reduction aspect, whereas
previously it was used as a mechansism to effect a nonlinear
autoregressive time series prediction method,

B. Probabilistic NeuroScale

The standard pointwise NeuroScale architecture was ex-
tended in [10] to accomodate a restricted level of uncertainty
in a probabilistic framework. The uncertainties in the observed
high-dimensional space, namely the noise models in the single-
beam case, or the covariance matrices in the multi-beam model,
are preserved in the mapping where only the means of the low
dimensional distributions are changed in the mapping phase.
The pointwise dissimilarity measure in the visualisation space,
dm, needs to be altered to incorporate appropriate dissimilar-
ities depending on the objects in the high dimensional space.
The measures of dissimilarity in the data space are similarly
chosen to reflect the noise objects in the high dimensional
space as follows.

For example, for the single-beam case we have 32 explicit
mixture noise models in a given time period. For the multi-
beam case we have 28 full covariance matrices. In each
case we need a measure of (dis)similarity. For probability
distributions the Kullback-Leibler divergence (KL) is often
considered between distributions P and Q:

KL(P‖Q) =

∫
P (x)

(
log(

P (x)

Q(x)
)

)
dx (6)

For mixture distributions there are approximations to the KL
divergence, see [3] for a description of these methods, but
these still require the computation of the KL divergence
between each individual distribution from the mixture. This is
problematic as the KL divergence cannot be computed between
the K distribution and any other and there are problems



with the integrals required when comparing the Laplace and
Rayleigh distributions. There are alternative dissimilarity mea-
sures between probability distributions to the KL divergence
such as the Bhattacharyya or Hellinger distances [8], however
the integrals required are still analytically intractable. For
this reason the dissimilarity measure we chose to represent
divergences between noise distributions in the single-beam
case is the Kolmogorov-Smirnov distance:

dKS(εb1, εb2) = sup
x

(Fb1(x)− Fb2(x)) (7)

where Fb(x) is the cumulative distribution function over beam
b. This measure is tractable since the cumulative distribution
function of a mixture is equivalent to the weighted sum of
the individual cumulative distributions, which are well defined
functions.

For the multi-beam case, the proxy for a noise model
is a covariance matrix for each beam group. Taking this as
representing the uncertainty in a high dimensional Gaussian
noise model, the Kullback-Leibler divergence for such a model
leads to a distance function between two covariance matrices
which can be expressed as

dn(Σ1,Σ2) = 0.5Tr[(Σ−1
1 )Σ2]− 0.5 log(det[Σ1]/det[Σ2])

Note that the mean of the distributions is taken to be zero as
that aspect has already been modelled by the NLVAR RBF
network.

Since the previously mentioned Probabilistic NeuroScale
requires a scalar measure for uncertainty representation in the
visualisation space we chose to use the deterministic approach
to NeuroScale when visualising the dissimilarity between these
multi-beam models.

A simple choice of distribution for the low dimensional
visualisation space for mapping the single-beam noise models
is a set of Normal distributions with identical spherical vari-
ances, allowing for the central limit theorem to govern the high
dimensional space and mapping, as well as being characterised
simply by the first 2 moments. In this case the variances in
the visualisation space are derived from the variances of the
noise models in the data space, whereas the distances between
the means of the Normal distributions reflect the dissimilarities
between the respective noise mixture models.

In effect this approach implies a uniformly weighted gaus-
sian mixture model in the visualisation space. We will use this
interpretation to provide a continuous probability distribution
in the visualisation space later.

IV. RESULTS

A. Data

The real world data used for these experiments was pro-
vided by DSTL. We would like to thank DSTL for making this
data available for this prototype study. The array consisted of
32 hydrophones configured in an approximately linear array
with a target ship transmitting a signal whilst traversing the
length of the array. This is a shallow water scenario with
low levels of rain and thermal noise expected. The frequency
response of the hydrophones was 124 - 249Hz. During the

Fig. 2. Signal energy for scenario at 16 seconds into the exercise. We see
two targets present in beams 1 to 9 and beams 20 to 29.

Fig. 3. Projection of 16th second of data using nonlinear vector autoregressive
process with KL dissimilarities in high dimensional space and a deterministic
NeuroScale mapping into latent space. Shading of beams is white to black
ordered from group 1 (beams 1-5) to 28 (beams 28-32) respectively. We see
the targets are present in beams 1-6 and 21-25 which appear as anomalies.
(The images used are only schematics for the real targets).

scenario another target is present intermittently in the central
section of the array. It should also be noted that some low
frequency (∼ 50Hz) noise is present from an unknown origin.
This 50Hz tonal is fit by the NAR models across all beams. The
results shown in this paper relate to a one second segment (16
seconds into the exercise) in which the two targets are present.
The signal energy from the array at this time is shown in Figure
2.

B. Beam grouping results

First, we illustrate the results of the NLVAR approach
projected using the deterministic approach to Neuroscale in
Figure 3. This projection was created by minimising the
STRESS measure from equation (4) between the 2 dimensional
pointwise Euclidean distances and the KL divergences between
groups of the covariance matrices for the 16th second of
data, each of which is given by equation (3), in the high
dimensional observation space. This visualisation shows the
relative similarity of the groups of beams where each point in
the plot corresponds to one of the beam groups. The axes in
this visualisation space refer only to the relative dissimilarity
of the points and therefore have no significance in contrast with
the observation space. We see that there is a clear cluster of
beams containing only noise and a separate group of ‘outlier’
beams which, as can be verified from the signal energy plot
in Figure 2 contain target signal elements.



Fig. 4. Projection using nonlinear autoregressive process with probabilistic
NeuroScale. We see that areas of high probability (white) density contain
beams with primarily noise events, whereas target-containing beams appear
as outliers in low probability areas (dark grey). Shading of beams is white to
black ordered from beam 1 to beam 32 respectively.

C. Beam-by-beam results

Similarly, the visualisation space for the beam-by-beam
approach is constructed using probabilistic NeuroScale.

Once the noise model specified in section IIA is esti-
mated (using scaled conjugate gradients on each beam), we
compute the dissimilarity between the noise models across
each beam using the KS distance from equation (7). In order
to incorporate the signal into the dissimilarity framework
as well as in the observation space we also compute the
Euclidean distance between the power spectral density of
the predicted target signal characteristics from the computed
NLAR model. These two dissimilarity measures are scaled and
combined equally, providing the high dimensional dissimilarity
measure required for the implementation of NeuroScale. We
compute the variance of the noise distribution after optimising
the hyper-parameters which can then be estimated using the
low dimensional Gaussian distribution used as the probabilis-
tic alternative to the deterministic latent points. This low-
dimensional latent distribution is then equivalent to an equally
weighted 32-component Gaussian Mixture Model. An intensity
plot of this distribution is shown in Figure 4 with the means of
the distributions plotted as points. Again there is a grouping of
noise sources located in regions of higher probability density
with the low probability regions being occupied by target
signal beams.

V. CONCLUSION

We have shown two approaches in which an arbitrary
hydrophone array of signals may be represented in a two-
dimensional form which not only preserves relative informa-
tion between the sensors, but provides a visual analytics in
which anomalous behaviour such as potential targets reveal
themselves as marked deviations away from expected noise
behaviour.

The final stage visual analytics approach was common
across the two approaches (the use of a Neuroscale model), but
the input data analysis was different (either treating the sensors
as a set of one dimensional times series, or as treating them in
groups of nonlinear vector autroregressive models). Common
to both approaches was the ideology that the modelling priority

was to capture the ‘noise’, or more specifically the uncer-
tainty between the predictor models and the observed data.
Visualising these high dimensional noise processes warranted
a modified Neuroscale to map distributions to points (the
deterministic approach) or distributions to distributions (the
probabilistic approach). The probabilistic approach allowed the
detection of ‘signals’ as events occurring in the low probability
regions of the Neuroscale space. The separation of signals
was more apparent in the deterministic approach, although the
probabilistic approach offers the potential for a more intuitive
and user-friendly mechanism for interpretation and anomaly
detection by operators.

Although the primary focus of this paper is on methods,
we demonstrated capability on real world sonar data where
we demonstrated how realistic, compound mixture models for
the noise in the observed data can be used in conjunction
with nonlinear dynamical time series predictors to estimate
and compare observed signals. The real data example used
only 32 beams, but the principle extends to very large sensor
arrays in that the low dimensional Neuroscale space does not
depend on the input data dimensionality, only on the matrix
of relative dissimilarities between the input data channels.

Extensions of this approach currently underway include the
incorporation of generic mixture models to allow easy gener-
alisation to permit varying weather conditions and underwater
thermal profiles and terrain; the use of Fisher Information to
reflect the local information content in the visualisation space;
and the interpretation of this visualisation model within the
framework of a full generative process.
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