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1. Abstract

This paper considers the global synchronization of a stochastic version of coupled map lattices networks
through an innovative stochastic adaptive linear quadratic pinning control methodology. In a stochastic
network, each state receives only noisy measurement of its neighbors states. For such networks we derive
a generalized Riccati solution that quantifies and incorporates uncertainty of the forward dynamics and
inverse controller in the derivation of the stochastic optimal control law. The generalized Riccati solution
is derived using the Liapunov approach. A probabilistic approximation type algorithms are employed to
estimate the conditional distributions of the state and inverse controller from historical data and
quantifying models uncertainty. The theoretical derivation is complemented by its validation on a set of
representative examples.

2. Introduction

Current and future emergent systems in nature are
complex systems which can be viewed as complex net-
works consisting of a large number of elements inter-
acting with each other. Numerous fields of science and
engineering have witnessed new research and interest
in regulating complex networks including energy ef-
ficient controller of wireless sensor networks, control
mechanisms of cell cycles [13], and the control of the
respiratory rhythm [21]. Pinning control has been pro-
posed in the literature to control lattices and complex
networks of coupled dynamical systems [23,27–29]. In
pinning control, control actions are applied on a lim-
ited subset of the dynamical system placed at a frac-
tion of the network nodes. The effect of these actions
is then propagated to the rest of the network through
the coupling among the network nodes.
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Previous pinning control methodologies are based
mainly on linear feedback control theory. In [13], lin-
ear control theory was proposed to develop an im-
proved localized control scheme for spatiotemporally
chaotic systems which was then applied to a coupled
map lattice (CML). The result that a network under
a typical framework can realize synchronization sub-
ject to any linear feedback pinning scheme by using
adaptive tuning of the coupling strength was proved
in [31]. The stabilization problem of complex dynam-
ical networks with general coupling topology by pin-
ning a small fraction of nodes with local negative feed-
back controllers was discussed in [30]. However linear
feedback control theory relies on the availability of a
model that characterizes the dynamics of the system
to be controlled. Thus the model of the plant whether
obtained a priori or during control is a key feature
to pinning control design. Previous work on pinning
control on the other hand has always used the exact
model of the network to calculate the various control
actions. This represents the control solution by assum-
ing that the system is certainty equivalent [2, 7, 9, 12]
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even when this is not the case. Therefore, if the dy-
namics of the actual network are unknown a priori the
certainty equivalent control is likely to perform unsat-
isfactorily [8, 9, 16, 17]. Another assumption of previ-
ous work on pinning control is that the networks could
be chaotic but not stochastic. Stochastic networks with
noise components affecting the overall dynamics of the
network have not been considered. This assumption is
rather restrictive since noise plays a significant role in
all real world complex systems.

This paper is concerned with the problem of uncer-
tainty propagation through a network of complex dy-
namical systems by exploiting a new control method-
ology that takes randomness and functional uncertain-
ties into consideration. We consider a stochastic lin-
earized version of complex coupled map lattice Net-
works with fixed structure and coupling strength de-
scribed by the following linear state space model:

xt+1 = f(xt, uop
t , η̃t+1),

= G̃xt + H̃uop
t + η̃t+1 (1)

whereG̃ and H̃ aren × n andn × m matrices re-
spectively,uop ∈ Rm is the input vector,x ∈ Rn

is the state vector and̃η is random independent noise
with zero mean and covarianceΣ̃. During the past two
decades, a number of theories have been developed for
linear systems given in (1) that is related to the prob-
lem of identification [5], control [32], model reduc-
tion and filtering [1, 14]. In optimal linear quadratic
(LQ) control theory, the Ricatti equation approach
has been widely used to provide an optimal feedback
control for deterministic and stochastic control sys-
tems [3, 25, 26]. The optimal control of linear systems
with uncertain parameters and quadratic cost functions
has then been formulated in the context of guaranteed
cost control [4, 6]. For these uncertain systems, lin-
ear constant gain feedback controllers which depend
on the solution of generalized Ricatti equations are de-
signed. Generalized Ricatti equations are Ricatti equa-
tions with additional terms that take into account the
effect of uncertainties in the control design. Various
forms of the generalized Riccati equations appeared in
the literature [22, 24]. Each form corresponds to a dif-
ferent uncertainty description and to a specific choice
of upper bounding functions.

The aim here is to estimate the forward dynamics
of a linearized stochastic class of CML network spec-
ified by the general form (1) as function of the con-
nectivity strength and positions of control laws in the
network and to estimate the uncertainty of these es-

timated models. Models uncertainty are estimated by
on–line computation of the conditional probability dis-
tributions of the forward model and the inverse con-
troller [18]. A generalized steady state Ricatti equation
that minimizes a predefined quadratic cost function is
then derived using the Liapunov approach. The effect
of functional uncertainties on the stability of complex
networks will also be investigated. Compared with ex-
isting results on the topic, this paper has the following
distinct features: A probabilistic rather than determin-
istic control algorithm is derived via the Liapunov ap-
proach, The derived control algorithm takes into con-
siderations models uncertainty in forward and inverse
dynamics, and the conditional distribution rather than
deterministic models of the network dynamics are es-
timated on–line.

3. Problem Formulation and Preliminaries

Consider the coupled map lattice consisting ofL lat-
tice nodes with periodic boundary conditions [10, 13,
20], and whose dynamics are driven by stochastic com-
ponents as follows,

zit+1 = F(zi−1
t , zit, z

i+1
t )

= f[(1− 2ǫ)zit + ǫ(zi−1
t + zi+1

t )]

+ κ̃it+1, (2)

where i = 1, 2, . . . , L are the lattice sites,L is the
system size,̃κit+1 is an additive noise signal assumed
to have zero mean Gaussian distribution of covariance
Γ̃ , and the periodic boundary conditions are given by
zi+L
t = zit. The local mapf(z) is defined to be a non-

linear function of the following form

f(z) = az(1− z). (3)

This coupled map lattice exhibits chaotic characteris-
tics in the regime3.57 < a ≤ 4.0 and has a homoge-
neous steady statez⋆ = 1 − 1/a. The goal in pinning
control is then to stabilize the homogeneous state by
applyingM periodically control actions placed at sites
{i1, . . . , iM} in the following way

zit+1 = F(zi−1
t , zit, z

i+1
t ) +

M∑

m=1

δ(i− im)um
t

+ κ̃it+1, (4)

where um is the control action applied at sitem.
To calculate the feedback control actions, the theory
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of linear quadratic control is used [13]. For that pur-
pose Equation (4) is linearized about the homogeneous
steady statezt = (z⋆1, . . . , z

⋆

L) to become as follows

xt+1 = G̃xt + H̃ut + κ̃t+1, (5)

in which x = z − z⋆ represents the state vector, the
L× L Jacobian matrix̃G, is given by

G̃ = α















1− 2ǫ ǫ 0 . . . ǫ

ǫ 1− 2ǫ ǫ . . . 0

0 ǫ 1− 2ǫ . . . 0
...

...
...

. . .
...

ǫ 0 0 . . . 1− 2ǫ















, (6)

whereα =
∂f(z)
∂z

|z=z⋆ , andH̃ is anL × M control
matrix with H̃ij =

∑
m δ(j−m)δ(i − im). Thus, the

pinning controlled network can be described by

xt+1 = (G̃− H̃K)xt, (7)

in which the control action is defined to be of the fol-
lowing form,

ut = −Kxt. (8)

HereK is the feedback gain that is evaluated such that
the following cost functional is minimized

J =
1

2

∞∑

t=0

[x∗

tQxt + u∗

tRut], (9)

whereQ andR are positive definite matrices. If the
state matrix,G̃ and control matrix,̃H were known and
the network was noiseless then the feedback gain that
minimizes equation (9) is shown to be given by

K = (R + H̃∗PH̃)−1H̃∗PG̃, (10)

whereP is the Riccati equation which can be calcu-
lated as follows

P = Q+G̃∗PG̃−G̃∗PH̃[R+H̃∗PH̃]−1H̃∗PG̃. (11)

Since the coupled map lattice has parity symmetry,
the eigenvalues of its Jacobian (6) are doubly degener-
ate. Therefore, the minimal number of controllers that
yield a controllable system in this case is two [13]. The
feedback gain of the two pinning sites is then com-
puted from (10), which yields the optimal control ac-
tions of the deterministic known systems. It also yields

optimal control actions if the additive noise of the sys-
tem is input independent. This framework, which con-
siders exact known systems, has always been assumed
in the pinning control literature. It is equivalent to the
well known certainty equivalent assumption in conven-
tional control theory.

The pinning control problem for systems with un-
known state and control parameters however, should
be formulated in an adaptive control framework which
is shown to have functional uncertainty. The theory of
linear quadratic control will be extended in this paper
such that models uncertainty are taken into consider-
ation in the feedback control. The generalized Riccati
solution will then be derived using the Liapunov ap-
proach, hence a stabilizable stochastic control law is
obtained. The stochastic feedback control will be in-
troduced soon, but first we give a brief discussion on
estimation of the conditional response of the coupled
map lattice network.

4. Conditional Distribution of Linearized Coupled
Map Lattice

In adaptive and optimal control, researchers usually
estimate the parameters of the forward dynamics of
the system and use these estimates to represent the un-
known parameters of the system model. This implicitly
implies that an accurate identification for the param-
eters of the system model can be obtained. However,
in most control applications it is practically impossi-
ble to obtain an accurate mathematical model of the
dynamics. Therefore, researchers have recently con-
sidered modeling the conditional distributions of the
stochastic systems rather than relying on the single es-
timate of their parameters [9,17–19].

To estimate the conditional distribution of the lin-
earized CML, a generalized linear model is optimized
in this paper such that its output approximates the con-
ditional expectation of the state. According to Theo-
rem 4.2.1 in [11], the conditional expectation of the
system state defined in (5) can be estimated using a
generalized linear network such that the mean square
error between the measured state from the CML,xt+1

and the estimated state values,x̂t+1 is minimized.
Once the output of the generalized network has been
optimized, the stochastic model of the coupled map
lattice network defined in Equation (5) can then be de-
scribed as follows:

xt+1 = x̂t+1 + ηt+1,

= Gxt +Huop
t + ηt+1, (12)
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wherex̂t+1 = f̂(xt, ut, θ) is the parameterized linear
model that provides prediction for the expected values
of the state,G, andH are the estimated state and con-
trol matrices respectively, andηt+1 represents an input
and state dependent zero mean random noise.

To estimate the probability density function of the
state, another generalized linear network,which has the
same structure and same inputs as that of the predicted
value of the state model, is then used to provide an
estimate for the state and control dependent noiseηt+1

as follows,

ηt+1 = Dxt + Euop
t , (13)

where here the elements of the matricesD andE are
adapted such that they have zero mean and a covari-
ance matrix< ηt+1ηt+1∗ >. Further details about es-
timating the conditional distributions of the systems
dynamics can be found in [15].

5. Stochastic Feedback Control

The conventional solution of the linear quadratic
control discussed in Section 3 assumes that exact mod-
els of the coupled map lattice network are available.
However, since the models of most real world appli-
cations are usually unknown, this assumption is gen-
erally not realistic in practice, therefore an appropri-
ate method for estimating the network models should
be used. This is known to have functional uncertainty
which should be considered when deriving the optimal
control law. Hence, for the derivation of the stochastic
feedback control algorithm proposed in this paper, this
assumption is relaxed by estimating the conditional
distribution of the predicted states of the CML. The es-
timation of the conditional distribution rather than the
deterministic model of the system dynamics allows the
quantification and incorporation of models uncertainty
in the derivation of the optimal control law.

For the discrete time stochastic model of the CML
defined in (5), the expected value of the cost functional
defined in Equation (9) should be minimized,

J(t0, xt0 ; ua) = E

(

1

2

∞∑

t=t0

[x∗

tQxt+u∗

tRut]

)

(14)

where we have now made the dependency of the cost
function on the initial timet0, the initial statext0 and
admissible control valuesua explicit. The set of all ad-
missible control is denoted byUa. The solutionxa of

the system (5) is called the response of the admissi-
ble control, and the pair(ua, xa) is called an admissi-
ble pair. The objective of the optimal control problem
is then to minimize the cost function (14) for a given
(t0, xt0), over allua ∈ Ua subject to (5).

Under the assumption of exact model parameters
and the positive definiteness of the matricesQ andR,
the minimization of (14) subject to the linear model of
equation (5) reduces to the standard linear quadratic
control problem discussed in Section 3.

However, when models’ parameters are unknown
the linear quadratic control problem should be formu-
lated in an adaptive control framework. Here the con-
ditional distribution of the linear systems (5) should be
estimated as discussed in Section 4. The minimization
of (14) is then subjected to the constraint equations
specified by (12) and (13), repeated here

xt+1 = Gxt +Huop
t + ηt+1, (15)

ηt+1 = Dxt + Euop
t , (16)

This leads to the stochastic optimal feedback control
law specified in the following theorem.

Theorem 1. The feedback control law minimizing
performance index of (14) subject to the system model
of (15) and the error model of (16)

uop = −Ktxt, (17)

with

Kt = [R+H∗PH+ < E∗PE >]−1

× [H∗PG+ < E∗PD >], (18)

is a stabilizing control law and

J[xt] = x∗

tPxt, (19)

with

P = Q− [G∗PH+ < D∗PE >][R+H∗PH+ < E∗PE >]−1

× [H∗PG+ < E∗PD >] + G∗PG+ < D∗PD > (20)

is the quadratic cost function.
Proof. The proof of this theorem is based on the Li-

apunov method. It is given in the Appendix.
A generalized linear model is also proposed in this

paper to estimate the optimal control laws as calcu-
lated from (17). Once this model is trained and opti-
mized such that it provides prediction for the control
law, it can be used at any time to predict control sig-



Randa Herzallah / Generalized Riccati Solution and Pinning Control of Complex Stochastic Networks 5

nals as long as the system under consideration is time
invariant. Thus the stochastic optimal control law (17)
is used as the target for the generalized linear model
of the inverse controller. The output of this generalized
linear model is the estimated control law,ut and the
stochastic model of the controller can be formulated
as,

uop
t = ut + et,

= Axt + et. (21)

The probability density function of the inverse con-
troller, is then estimated following the same method as
that of the forward model. Hence another generalized
linear network is used to estimate the control error,et
as follows,

et = Bxt, (22)

where here the elements of the matrixB are adapted
such that they have zero mean and covariance matrix
< ete

∗

t >.

6. Numerical Results

In this section, by following the two control ap-
proaches discussed above, we give numerical evidence
of the advantages of incorporating knowledge of un-
certainty when deriving the optimal control for com-
plex systems characterized by functional uncertainty.

6.1. Non Chaotic Map Lattice

The example considered here is for the logistic cou-
pled map lattice,f(z) = az(1 − z) in its non–chaotic
regime witha = 3.0, ǫ = 0.33 andL = 5. The pos-
itive weighting matrices of the state and control are
taken to beQ = I5×5 andR = I2×2. The two control
actions are placed next to each other at the sides of the
lattice. Hence the equation of the coupled map lattice
becomes:

xt+1 = G̃xt + H̃ut + κ̃t+1, (23)

where

G̃ =













−0.34 −0.33 0 0 −0.33

−0.33 −0.34 −0.33 0 0

0 −0.33 −0.34 −0.33 0
0 0 −0.33 −0.34 −0.33

−0.33 0 0 −0.33 −0.34













,

H̃ =













1 0
0 0

0 0

0 0
0 1













E[κt+1(κt+1)T ] = 0.01I5×5.

For the two control methods: conventional and stochas-
tic optimal control, the network models are assumed
to be unknown. They are estimated on line using gen-
eralized linear models as discussed in Section 4, con-
currently with the calculation of the optimal feedback
control. For the stochastic optimal control method, un-
certainties represented by the errors in the forward and
inverse dynamics are also estimated on line using an-
other generalized linear models as described by Equa-
tions (13) and (22) respectively. Moreover, the initial
values of the state is taken to bex(0) = 10−14 in both
of the control methods. Figure 1 provides a compari-
son between the synchronized state values and control
efforts as obtained from the conventional controller (8)
and the stochastic controller (17).

The same experiment above is repeated for larger
size of coupled map lattice with10 sites, i.eL = 10.
The control results are shown in Figure 2. The two fig-
ures show that the performance of the stochastic feed-
back control is superior to its counterpart of conven-
tional feedback control for networks characterized by
functional uncertainty. The conventional controller ini-
tially responds crudely with large transient overshoot
reflecting the fact that models of the network have not
converged to the true network dynamics yet. This is
expected since no knowledge of uncertainty is taken
into consideration in the optimal control law. However,
since the stochastic feedback controller knows that the
network models have not converged during the initial
period of control it reacts more cautiously with signifi-
cant reduction in the overshoot during that period. Fig-
ure 1.e and 2.e show the estimated and actual values of
ǫα where it can be seen that the estimated value con-
verges to the actual value after a few time steps.

Comparing Figures 1 and 2 it can be noted that as
the complexity of the network which is represented by
the size of the lattice increases, the time required to
synchronize the state increases. This can be referred to
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Fig. 1. States and control efforts of a non chaotic coupled map lat-
tice with, L = 5, a = 3, andǫ = 0.33: (a) States as a result of
the stochastic linear quadratic controller. (b) Control efforts from
the stochastic linear quadratic controller. (c) States as aresult of
the conventional linear quadratic controller. (d) Controlefforts from
the conventional linear quadratic controller. (e) Estimated and actual
values ofǫα.

the following two reasons: firstly, as the size of the net-
work increases the complexity of the network model
increases so the estimated model takes longer time to
converge to the true dynamics of the network which
means larger uncertainty as well. Secondly, since only
two pinning sites are assumed in the control of the net-
work, the feedback control efforts affect those sites far
away from the pinning sites only indirectly through
the coupling to the neighbors. This means that net-
works with higher coupling strength would synchro-
nize quicker.

Our ability to locally control arbitrarily large sys-
tems with a specific number of pinning sites is limited.
This ability is limited further due to the existence of
functional uncertainty. Therefore, further experiments
have been conducted to analyze the effect of functional
uncertainty on systems stability using the conventional
and stochastic control methods. It has been found that
the maximal length of the system that can actually be
stabilized by the conventional linear quadratic control
method is13. For the stochastic linear quadratic con-
trol method, however, this length is found to be14.
This is also expected, due to the ignorance of the con-
ventional linear quadratic control to knowledge of un-
certainty.

6.2. Chaotic Map Lattice

Generally chaotic systems are more difficult to syn-
chronize than non–chaotic systems. For the coupled
map lattice defined in Equation (5) chaos can be ob-
tained when3.5 < a ≤ 4. In this section we show the
control result in this chaotic regime by takinga = 4,
L = 6, andǫ = 0.25.

Figure 3 confirms the result obtained for the non-
chaotic map lattice. The control result, for the chaotic
map lattice, of the stochastic feedback control is bet-
ter than that of conventional feedback control, since
knowledge of uncertainty is taken into consideration
in the former control method. Similarly here for the
chaotic map lattice we numerically estimate the maxi-
mal length of the system that can be stabilized by con-
ventional and stochastic linear quadratic control meth-
ods which are found to be12 and13 respectively. This
means that our ability to control larger systems with
two pinning sites is improved when knowledge of un-
certainty is taken into consideration.
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Fig. 2. States and control efforts of a non chaotic coupled map lat-
tice with, L = 10, a = 3, andǫ = 0.33: (a) States as a result
of the stochastic linear quadratic controller. (b) Controlefforts from
the stochastic linear quadratic controller. (c) States as aresult of
the conventional linear quadratic controller. (d) Controlefforts from
the conventional linear quadratic controller. (e) Estimated and actual
values ofǫα.
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Fig. 3. States and control efforts of a chaotic coupled map lattice
with, L = 6, a = 4, andǫ = 0.25: (a) States as a result of the
stochastic linear quadratic controller. (b) Control efforts from the
stochastic linear quadratic controller. (c) States as a result of the
conventional linear quadratic controller. (d) Control efforts from the
conventional linear quadratic controller. (e) Estimated and actual
values ofǫα.
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7. Conclusion

In this paper, a new stochastic control algorithm that
takes models uncertainty into consideration has been
described for a class of complex coupled map lattice
with spatiotemporal chaos network that is stochastic
as well as chaotic. Since the network is driven by a
stochastic random input, the linear quadratic control
method is used with the conditional stochastic distri-
butions of the network dynamics rather than determin-
istic models. The linear quadratic solution is then ob-
tained via the Liapunov approach and a generalized
Riccati equation is derived. The derived generalized
Ricatti equation is rather now dependent on the es-
timated models uncertainties. The conventional Ric-
cati solution can be regarded as a special case of the
derived generalized Riccati solution by assuming cer-
tainty equivalence principle.

Simulation results of the stochastic coupled map lat-
tice have shown that the stochastic controller reacts
more cautiously when the models of the network are
not converged to the true dynamics, therefore exhibit-
ing less transient overshoots. Moreover, the largest
length of the system that can actually be stabilized by
stochastic linear quadratic control is shown to be larger
than that of conventional linear quadratic control.

Appendix

Given the assumptions thatQ andR are positive def-
inite or positive semi–definite Hermitian matrices then
a Liapunov function exists that is positive definite and
whose derivative is negative definite. For the uncertain
quadratic optimal control problem, the following Lia-
punov function is set,

V(xt) = x∗

tPxt. (24)

The derivative of the Liapunov function is then given
by,

△V(x(t)) =< x∗

t+1Pxt+1 > − < x∗

tPxt > .(25)

Substituting (12) into (25) yields,

△V(x(t)) =< [Gxt +Huop
t + ηt+1]

∗P

×[Gxt +Huop
t + ηt+1] > − < x∗

tPxt >

=< x∗

tG
∗PGxt + x∗

tG
∗PHuop

t + u∗op
t H∗PGxt

+u∗op
t H∗PHuop

t + η∗

t+1Pηt+1 > −x∗

tPxt, (26)

where we made use of the fact that the expected value
of the random variableη is zero. Now using (13)
in (26) yields,

△V(x(t)) =< x∗

tG
∗PGxt + x∗

tG
∗PHu

op
t

+u∗op
t H∗PGxt + u∗op

t H∗PHuop
t + x∗

tD
∗PDxt

+x∗

tD
∗PEuop

t + u∗op
t E∗PDxt + u∗op

t E∗PEut >

− < x∗

tPxt > . (27)

By referring to (17) and evaluating expectation of (27),
it can be modified to

△V(x(t)) = x∗

tG
∗PGxt − x∗

tG
∗PHKtxt

−x∗

tK
∗

tH
∗PGxt + x∗k∗tH

∗PHKtxt + x∗

t < D∗PD > xt

−x∗

t < D∗PE > Ktxt − x∗

tK
∗

t < E∗PD > xt

+x∗

tK
∗

t < E∗PE > Ktxt − x∗

tPxt. (28)

Equation (28) can be further modified to

△V(x(t)) = x∗

t(G−HKt)
∗P(G−HKt)xt

+ < x∗

t(D− EKt)
∗P(D− EKt)xt > −x∗

tPxt.(29)

SinceV(x(t)) is chosen to be positive definite, it is re-
quired for asymptotic stability that△V(x(t)) be nega-
tive definite. Therefore,

△V(x(t)) = −(Q+ K∗

tRKt)

(G −HKt)
∗P(G−HKt)

+ < (D− EKt)
∗P(D− EKt) > −P

= −(Q+ K∗

tRKt). (30)

Rearranging (30) so that it reads as,

Q+G∗PG− P + K∗

t(R +H∗PH+ < E∗PE >)Kt

− K∗

t

(

H∗PG+ < E∗PD >

)

+ < D∗PD >

−

(

G∗PH+ < D∗PE >

)

Kt = 0. (31)

By introducing the following definitions

M = H∗PG+ < E∗PD >,

F = R+H∗PH+ < E∗PE >, (32)

equation (31) can be written as follows

Q+G∗PG− P + K∗

tFKt − K∗

tM−M∗Kt

+ < D∗PD >= 0. (33)
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This last equation can be modified as follows

Q+G∗PG− P + [F1/2Kt − F−1/2M]∗

×[F1/2Kt − F−1/2M] −M∗F−1M+ < D∗PD >

= 0. (34)

Minimization of J with respect toKt requires mini-
mization of the left hand side of equation (34) with re-
spect toKt. Since

[F1/2Kt − F−1/2M]∗[F1/2Kt − F−1/2M], (35)

is nonnegative, the minimum occurs when it is zero, or
when

F1/2Kt = F−1/2M. (36)

Hence, we obtain

Kt = F−1M

= [R+H∗PH+ < E∗PE >]−1

× [H∗PG+ < E∗PD >], (37)

where we made use of equations (32). Substitution of
equation (37) into equation (34) gives

P =Q +G∗PG+ < D∗PD >

− [G∗PH+ < D∗PE >][R+H∗PH+ < E∗PE >]−1

× [H∗PG+ < E∗PD >]. (38)
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