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1. Abstract

This paper considers the global synchronization of a s&ighaersion of coupled map lattices networks
through an innovative stochastic adaptive linear quadi@tining control methodology. In a stochastic
network, each state receives only noisy measurement atigbibors states. For such networks we derive
a generalized Riccati solution that quantifies and incafssr uncertainty of the forward dynamics and
inverse controller in the derivation of the stochastic i control law. The generalized Riccati solution
is derived using the Liapunov approach. A probabilisticragpnation type algorithms are employed to
estimate the conditional distributions of the state andris® controller from historical data and
quantifying models uncertainty. The theoretical dermatis complemented by its validation on a set of
representative examples.

2. Introduction Previous pinning control methodologies are based
mainly on linear feedback control theory. In [13], lin-

Current and future emergent systems in nature are €ar control theory was proposed to develop an im-
complex systems which can be viewed as complex net- Proved localized control scheme for spatiotemporally
works consisting of a large number of elements inter- chaotic systems which was then applied to a coupled
acting with each other. Numerous fields of science and Map lattice (CML). The result that a network under
engineering have witnessed new research and interest@ typical framework can realize synchronization sub-

in regulating complex networks including energy ef- Ject to any linear feedback pinning scheme by using
ficient controller of wireless sensor networks, control 2daptive tuning of the coupling strength was proved

mechanisms of cell cycles [13], and the control of the in [31]. The stabilization problem of complex dynam-

respiratory rhythm [21]. Pinning control has been pro- |c_al networllﬁ W'i.h ge?ere::li couptlrl]r]g tolpolog3:. byfpm(;
posed in the literature to control lattices and complex ning a smatf fraction ot nodes with focaj hegative reed-

. back controllers was discussed in [30]. However linear
networks of coupled dynamical systems [23,27-29]. In ) oo
- . . ; feedback control theory relies on the availability of a
pinning control, control actions are applied on a lim- X .
: . model that characterizes the dynamics of the system
ited subset of the dynamical system placed at a frac-

) . to be controlled. Thus the model of the plant whether
tion of the network nodes. The effect of these actions P

is th ted 1o th ¢ of th work th h obtained a priori or during control is a key feature
IS then propagated to the rest of the hetwork through pinning control design. Previous work on pinning
the coupling among the network nodes.

control on the other hand has always used the exact

model of the network to calculate the various control

* actions. This represents the control solution by assum-
Corresponding author. E-mail: r.herzallah@aston.ac.uk. ing that the system is certainty equivalent [2,7,9, 12]
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even when this is not the case. Therefore, if the dy- timated models. Models uncertainty are estimated by
namics of the actual network are unknown a priori the on-line computation of the conditional probability dis-
certainty equivalent control is likely to perform unsat- tributions of the forward model and the inverse con-
isfactorily [8,9, 16, 17]. Another assumption of previ- troller [18]. A generalized steady state Ricatti equation
ous work on pinning control is that the networks could that minimizes a predefined quadratic cost function is
be chaotic but not stochastic. Stochastic networks with then derived using the Liapunov approach. The effect
noise components affecting the overall dynamics of the of functional uncertainties on the stability of complex
network have not been considered. This assumption is networks will also be investigated. Compared with ex-
rather restrictive since noise plays a significant role in isting results on the topic, this paper has the following
all real world complex systems. distinct features: A probabilistic rather than determin-

This paper is concerned with the problem of uncer- istic control algorithm is derived via the Liapunov ap-
tainty propagation through a network of complex dy- proach, The derived control algorithm takes into con-
namical systems by exploiting a new control method- siderations models uncertainty in forward and inverse
ology that takes randomness and functional uncertain- dynamics, and the conditional distribution rather than
ties into consideration. We consider a stochastic lin- deterministic models of the network dynamics are es-
earized version of complex coupled map lattice Net- timated on-line.
works with fixed structure and coupling strength de-
scribed by the following linear state space model:

3. Problem Formulation and Preliminaries
Xt+1 = f(xt) ng)ﬁtﬂ ))

—Gx, + Hugv A Consider the coupled map lattice consistind. ¢t-

tice nodes with periodic boundary conditions [10, 13,

1)

whereG andH aren x n andn x m matrices re-
spectively,u®? € R™ is the input vectorx € R™
is the state vector angl is random independent noise

20], and whose dynamics are driven by stochastic com-
ponents as follows,

with zero mean and covarianze During the past two zi1 =Flz Lz
decades, a number of theories have been developed for
linear systems given in (1) that is related to the prob-
lem of identification [5], control [32], model reduc- @

tion and filtering [1, 14]. In optimal linear quadratic ~ wherei = 1,2,...,L are the lattice sites]. is the
(LQ) control theory, the Ricatti equation approach system sizefét+1 is an additive noise signal assumed
has been widely used to provide an optimal feedback to have zero mean Gaussian distribution of covariance
control for deterministic and stochastic control sys- T, and the periodic boundary conditions are given by
tems [3, 25, 26]. The optimal control of linear systems zi*L = zi. The local magf(z) is defined to be a non-
with uncertain parameters and quadratic cost functions linear function of the following form

has then been formulated in the context of guaranteed
cost control [4, 6]. For these uncertain systems, lin-
ear constant gain feedback controllers which depend
on the solution of generalized Ricatti equations are de- This coupled map lattice exhibits chaotic characteris-
signed. Generalized Ricatti equations are Ricatti equa- tics in the regime3.57 < a < 4.0 and has a homoge-
tions with additional terms that take into account the neous steady statg = 1 — 1/a. The goal in pinning
effect of uncertainties in the control design. Various control is then to stabilize the homogeneous state by
forms of the generalized Riccati equations appeared in applyingM periodically control actions placed at sites

=f[(1—2e)zl +e(zi" + 21

~i
+ Kiyts

f(z) = az(1 —z). 3)

the literature [22, 24]. Each form corresponds to a dif- {i1,...,im} in the following way
ferent uncertainty description and to a specific choice M
of upper_boundm_g func'uo_ns. _ zb o =Fzi 2 2+ Z (i —im)u™
The aim here is to estimate the forward dynamics e
of a linearized stochastic class of CML network spec- i
+ Ky (4)

ified by the general form (1) as function of the con-
nectivity strength and positions of control laws in the where u,, is the control action applied at site.
network and to estimate the uncertainty of these es- To calculate the feedback control actions, the theory
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of linear quadratic control is used [13]. For that pur- optimal control actions if the additive noise of the sys-
pose Equation (4) is linearized about the homogeneous tem is input independent. This framework, which con-

steady state, = (z},...,z}) to become as follows siders exact known systems, has always been assumed
. _ in the pinning control literature. It is equivalent to the
Xt+1 = GX¢ + Hug + Keq1, (5) well known certainty equivalent assumption in conven-

tional control theory.
in whichx = z — z* represents the state vector, the The pinning control problem for systems with un-
L x L Jacobian matrixz, is given by known state and control parameters however, should
be formulated in an adaptive control framework which

] _626 1 _626 2 g is shown to have functional uncertainty. The theory of
- 0 e 1-2e 0 linear quadratic control W|_II be extended in this paper
G=« , (6) such that models uncertainty are taken into consider-
: : T ation in the feedback control. The generalized Riccati
€ 0 0 ...1-2e solution will then be derived using the Liapunov ap-
ot (2) . proach, hence a stabilizable stochastic control law is
wherex = == [.—.., andH is anL x M control obtained. The stochastic feedback control will be in-
matrix withHi; = 3 8(j —m)8(i —1im). Thus,the  troduced soon, but first we give a brief discussion on
pinning controlled network can be described by estimation of the conditional response of the coupled
L. map lattice network.
Xt+1 = (G — HK)x¢, (7)
in which the control action is defined to be of the fol- 4. Conditional Distribution of Linearized Coupled
lowing form, Map Lattice
U = —KXq. ®) In adaptive and optimal control, researchers usually

estimate the parameters of the forward dynamics of
the system and use these estimates to represent the un-
known parameters of the system model. This implicitly
implies that an accurate identification for the param-
1 & eters of the system model can be obtained. However,
] = 3 Z[xtht + Ui Ruy], 9) in most cor_ltrol applications it is prac_:tlcally impossi-
t=0 ble to obtain an accurate mathematical model of the
dynamics. Therefore, researchers have recently con-
whereQ andR are positive definite matrices. If the  sidered modeling the conditional distributions of the

state matrix(G and control matrixH were known and  stochastic systems rather than relying on the single es-
the network was noiseless then the feedback gain that timate of their parameters [9, 17—19].

HereK is the feedback gain that is evaluated such that
the following cost functional is minimized

minimizes equation (9) is shown to be given by To estimate the conditional distribution of the lin-
e earized CML, a generalized linear model is optimized
K= (R+H*PH)" "H"PG, (10) in this paper such that its output approximates the con-

ditional expectation of the state. According to Theo-
whereP is the Riccati equation which can be calcu- rem 4.2.1 in [11], the conditional expectation of the
lated as follows system state defined in (5) can be estimated using a
. e . . generalized linear network such that the mean square
P =Q+G*PG—G*PH[R+H*PH] 'H*PG. (11) error between the measured state from the C¥ML.;
and the estimated state values,. ; is minimized.
Since the coupled map lattice has parity symmetry, Once the output of the generalized network has been
the eigenvalues of its Jacobian (6) are doubly degener- gptimized, the stochastic model of the coupled map

ate. Therefore, the minimal number of controllers that |attice network defined in Equation (5) can then be de-
yield a controllable system in this case is two [13]. The gcribed as follows:

feedback gain of the two pinning sites is then com-
puted from (10), which yields the optimal control ac-
tions of the deterministic known systems. It also yields = GX¢ + HUg? + ey, (12)

Xer1 =K1 +Meg1,
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wheref 1 = ?(xt, ut, 0) is the parameterized linear
model that provides prediction for the expected values
of the stateG, andH are the estimated state and con-
trol matrices respectively, ang . ; represents an input
and state dependent zero mean random noise.

To estimate the probability density function of the

the system (5) is called the response of the admissi-
ble control, and the paiu,, x,) is called an admissi-
ble pair. The objective of the optimal control problem
is then to minimize the cost function (14) for a given
(to,Xt,), overallug € U, subjectto (5).

Under the assumption of exact model parameters

state, another generalized linear network,which has the and the positive definiteness of the matri€zsndR,
same structure and same inputs as that of the predictedthe minimization of (14) subject to the linear model of

value of the state model, is then used to provide an
estimate for the state and control dependent npise
as follows,

Nyt = Dx¢ + Eug?, (13)

where here the elements of the matrieg2sindE are

equation (5) reduces to the standard linear quadratic
control problem discussed in Section 3.

However, when models’ parameters are unknown
the linear quadratic control problem should be formu-
lated in an adaptive control framework. Here the con-
ditional distribution of the linear systems (5) should be
estimated as discussed in Section 4. The minimization

adapted such that they have zero mean and a covari-of (14) is then subjected to the constraint equations

ance matrix< ny1m+1+ >. Further details about es-
timating the conditional distributions of the systems
dynamics can be found in [15].

5. Stochastic Feedback Control

The conventional solution of the linear quadratic

control discussed in Section 3 assumes that exact mod-

els of the coupled map lattice network are available.
However, since the models of most real world appli-
cations are usually unknown, this assumption is gen-
erally not realistic in practice, therefore an appropri-
ate method for estimating the network models should
be used. This is known to have functional uncertainty
which should be considered when deriving the optimal
control law. Hence, for the derivation of the stochastic
feedback control algorithm proposed in this paper, this
assumption is relaxed by estimating the conditional
distribution of the predicted states of the CML. The es-
timation of the conditional distribution rather than the
deterministic model of the system dynamics allows the
quantification and incorporation of models uncertainty
in the derivation of the optimal control law.

For the discrete time stochastic model of the CML
defined in (5), the expected value of the cost functional
defined in Equation (9) should be minimized,

o0

J(to,XeosUa) = E(% Z [xthtJru;‘Rut]) (14)

t=to

specified by (12) and (13), repeated here

Xe1 = GX¢ + HULP + 11, (15)

Nir1 = Dx¢ + EU{P, (16)
This leads to the stochastic optimal feedback control
law specified in the following theorem.

Theorem 1. The feedback control law minimizing
performance index of (14) subject to the system model
of (15) and the error model of (16)

u°? = —KiXy, a7
with
K¢ = [R + H*PH+ < E*PE >] !
x [H*PG+ < E*PD >], (18)
is a stabilizing control law and
JXe] = XTPXy, (29)

with
P=Q —[G*PH+ < D*PE >][R+ H*PH+ < E*PE >
x [H*PG+ < E*PD >] + G*PG+ < D*PD >  (20)

is the quadratic cost function.

Proof. The proof of this theorem is based on the Li-
apunov method. It is given in the Appendix.

A generalized linear model is also proposed in this

where we have now made the dependency of the cost paper to estimate the optimal control laws as calcu-

function on the initial timety, the initial statex;, and
admissible control valuas, explicit. The set of all ad-
missible control is denoted By, . The solutionx, of

lated from (17). Once this model is trained and opti-
mized such that it provides prediction for the control
law, it can be used at any time to predict control sig-
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nals as long as the system under consideration is time where

invariant. Thus the stochastic optimal control law (17)
is used as the target for the generalized linear model
of the inverse controller. The output of this generalized
linear model is the estimated control law, and the
stochastic model of the controller can be formulated
as,

(o]
ug? =ug + ey,

= AX¢ + ex. (21)
The probability density function of the inverse con-
troller, is then estimated following the same method as
that of the forward model. Hence another generalized
linear network is used to estimate the control eregr,

as follows,

et = BXt, (22)

where here the elements of the matBixare adapted

[—0.34-0.33 0 0 —-0.33
—0.33 -0.34 -0.33 © 0
0 —-033-034-033 © ,
0 0 -0.33-0.34 -0.33
|—0.33 0 0 —0.33-0.34

o

T

Elk* T (k")) = 0.011545.

S O O o —
— O O OO

For the two control methods: conventional and stochas-
tic optimal control, the network models are assumed
to be unknown. They are estimated on line using gen-
eralized linear models as discussed in Section 4, con-
currently with the calculation of the optimal feedback
control. For the stochastic optimal control method, un-
certainties represented by the errors in the forward and
inverse dynamics are also estimated on line using an-
other generalized linear models as described by Equa-
tions (13) and (22) respectively. Moreover, the initial

such that they have zero mean and covariance matrix Values of the state is taken to ) = 10~ '* in both

< eiey >.

6. Numerical Results

In this section, by following the two control ap-

of the control methods. Figure 1 provides a compari-
son between the synchronized state values and control
efforts as obtained from the conventional controller (8)
and the stochastic controller (17).

The same experiment above is repeated for larger
size of coupled map lattice with0 sites, i.eL = 10.
The control results are shown in Figure 2. The two fig-
ures show that the performance of the stochastic feed-

proaches discussed above, we give numerical evidenceback control is superior to its counterpart of conven-

of the advantages of incorporating knowledge of un-
certainty when deriving the optimal control for com-
plex systems characterized by functional uncertainty.

6.1. Non Chaotic Map Lattice

tional feedback control for networks characterized by
functional uncertainty. The conventional controller ini-

tially responds crudely with large transient overshoot
reflecting the fact that models of the network have not
converged to the true network dynamics yet. This is
expected since no knowledge of uncertainty is taken
into consideration in the optimal control law. However,

The example considered here is for the logistic cou- since the stochastic feedback controller knows that the

pled map latticef(z) = az(1 — z) in its non—chaotic
regime witha = 3.0, ¢ = 0.33 andL = 5. The pos-
itive weighting matrices of the state and control are
taken to beQ = Is«s5 andR = I,«». The two control

actions are placed next to each other at the sides of the

lattice. Hence the equation of the coupled map lattice
becomes:

Xei1 = Gxt + ﬂut + Ket1, (23)

network models have not converged during the initial
period of control it reacts more cautiously with signifi-
cant reduction in the overshoot during that period. Fig-
ure 1.e and 2.e show the estimated and actual values of
ea where it can be seen that the estimated value con-

verges to the actual value after a few time steps.

Comparing Figures 1 and 2 it can be noted that as

the complexity of the network which is represented by
the size of the lattice increases, the time required to
synchronize the state increases. This can be referred to
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Control, u
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epsioln*alpha
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()

Fig. 1. States and control efforts of a non chaotic coupleg raa
tice with, L = 5, a = 3, ande = 0.33: (a) States as a result of
the stochastic linear quadratic controller. (b) Contrdor$ from
the stochastic linear quadratic controller. (c) States assalt of
the conventional linear quadratic controller. (d) Congfiorts from
the conventional linear quadratic controller. (e) Estiedand actual
values ofe .

the following two reasons: firstly, as the size of the net-
work increases the complexity of the network model
increases so the estimated model takes longer time to
converge to the true dynamics of the network which
means larger uncertainty as well. Secondly, since only
two pinning sites are assumed in the control of the net-
work, the feedback control efforts affect those sites far
away from the pinning sites only indirectly through
the coupling to the neighbors. This means that net-
works with higher coupling strength would synchro-
nize quicker.

Our ability to locally control arbitrarily large sys-
tems with a specific number of pinning sites is limited.
This ability is limited further due to the existence of
functional uncertainty. Therefore, further experiments
have been conducted to analyze the effect of functional
uncertainty on systems stability using the conventional
and stochastic control methods. It has been found that
the maximal length of the system that can actually be
stabilized by the conventional linear quadratic control
method is13. For the stochastic linear quadratic con-
trol method, however, this length is found to bé.
This is also expected, due to the ignorance of the con-
ventional linear quadratic control to knowledge of un-
certainty.

6.2. Chaotic Map Lattice

Generally chaotic systems are more difficult to syn-
chronize than non—chaotic systems. For the coupled
map lattice defined in Equation (5) chaos can be ob-
tained wherB.5 < a < 4. In this section we show the
control result in this chaotic regime by taking= 4,

L =6, ande = 0.25.

Figure 3 confirms the result obtained for the non-
chaotic map lattice. The control result, for the chaotic
map lattice, of the stochastic feedback control is bet-
ter than that of conventional feedback control, since
knowledge of uncertainty is taken into consideration
in the former control method. Similarly here for the
chaotic map lattice we numerically estimate the maxi-
mal length of the system that can be stabilized by con-
ventional and stochastic linear quadratic control meth-
ods which are found to bE2 and13 respectively. This
means that our ability to control larger systems with
two pinning sites is improved when knowledge of un-
certainty is taken into consideration.
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Fig. 2. States and control efforts of a non chaotic coupleg raa
tice with, L = 10, a = 3, ande = 0.33: (a) States as a result
of the stochastic linear quadratic controller. (b) Conafbbrts from
the stochastic linear quadratic controller. (c) States assalt of
the conventional linear quadratic controller. (d) Conefiorts from
the conventional linear quadratic controller. (e) Estiedand actual

values ofex.
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Fig. 3. States and control efforts of a chaotic coupled méjzda
with, L = 6, a = 4, ande = 0.25: (a) States as a result of the
stochastic linear quadratic controller. (b) Control afofrom the
stochastic linear quadratic controller. (c) States as altre$ the
conventional linear quadratic controller. (d) Controbets from the
conventional linear quadratic controller. (e) Estimated actual

values ofex.
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7. Conclusion where we made use of the fact that the expected value
of the random variable) is zero. Now using (13)

In this paper, a new stochastic control algorithm that in (26) yields,
takes models uncertainty into consideration has been . . op
described for a class of complex coupled map lattice AVX(t) =< X{G"PGX, + X{ G"PHu
with spatiotemporal chaos network that is stochastic +U*PH*PGX, + u*CPH*PHULP + x:D*PDx
as well as chaotic. Since the network is driven by a s DEL 0P | kOPEs coprs
stochastic random input, the linear quadratic control ~ TXtD7PEULT + U TETPDX + U™ "E"PEUL >
method is used with the conditional stochastic distri- — < XEPX¢ > . (27)
butions of the network dynamics rather than determin-
istic models. The linear quadratic solution is then ob- By referring to (17) and evaluating expectation of (27),
tained via the Liapunov approach and a generalized it can be modified to
Riccati equation is derived. The derived generalized ok .~
Ricatti equation is rather now dependent on the es- AVIX() =X G"PGX¢ —X; GPHK X
timated models uncertainties. The conventional Ric- —Xx;K{H*PGX; + X*k{H*PHKX¢ +X{ < D*PD > X¢
cat|_ solution can be rggard_ed as a special case of the _x? < D*PE > Kexe — xiKE < E*PD > xq
derived generalized Riccati solution by assuming cer-
tainty equivalence principle. +X{K} < E*PE > Kixe — X§PXe. (28)

Simulation results of the stochastic coupled map lat-
tice have shown that the stochastic controller reacts
more cautiously when the models of the network are AV(X(t)) = X (G — HK)*P(G — HK )X,
not converged to the true dynamics, therefore exhibit-
ing less transient overshoots. Moreover, the largest + < X{(D — EK{)*"P(D — EK{)x¢ > —x{Pxy.(29)
length of_ th.e system that- can actqally be stabilized by SinceV/(x(t))
stochastic linear quadratic control is shown to be larger
than that of conventional linear quadratic control.

Equation (28) can be further modified to

is chosen to be positive definite, it is re-
quired for asymptotic stability that V(x(t)) be nega-
tive definite. Therefore,

AV(X(t)) = —(Q + K{RKy)

Appendix (G — HK{)*P(G — HKy)
Given the assumptions th@tandR are positive def- + < (D —EK{)*P(D — EKy) > —P
inite or positive semi—definite Hermitian matrices then — _(Q + KIRKy) (30)
= : )

a Liapunov function exists that is positive definite and
whose derivative is negative definite. For the uncertain Rearranging (30) so that it reads as,
quadratic optimal control problem, the following Lia-

punov function is set, Q + G*PG — P+ K} (R+ H*PH+ < E*PE >)K¢

V(X¢) = X Pxq. (24) — K} (H*PG-F <E*PD > )+ <D*PD >
The derivative of the Liapunov function is then given  _ (G*pH+ < D*PE > )Kt =0. (31)
by,
AV(X(1)) =< X}, 1PXe1 > — < XIPX¢ > (25) By introducing the following definitions
- +
Substituting (12) into (25) yields, M =H"PG+ < E"PD >,
AV(X(t)) =< [GX¢ + HUP 41 q]*P F=R+ H*PH+ < E*PE >, (32)
x[Gx¢ +HUPP + 1] > — < X{Px¢ > equation (31) can be written as follows
=< X{G*PGX¢ + X{ G*PHULY + u*PH*PGX Q+ G"PG — P + K{FK{ — KiM — M*K;

+Uu* PH*PHULY + 17, Pt > —X{Pxy,(26) + < D*PD >=0. (33)
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This last equation can be modified as follows
Q+G*PG— P+ [F'/2K  —F /2MJ*
x[F1/2K¢ — F1/2M] — M*F "M+ < D*PD >
= 0. (34)

Minimization of ] with respect toK, requires mini-
mization of the left hand side of equation (34) with re-
spect toK;. Since

[F'/2Ky — F'/2MJ*[F'/ 2K, — F1/2M], (35)

is nonnegative, the minimum occurs when it is zero, or
when

F'/2Ky = F/2M. (36)
Hence, we obtain
Ke=F '™
= [R+H*PH+ < E*PE >]!
x [H*PG+ < E*PD >, (37)

where we made use of equations (32). Substitution of
equation (37) into equation (34) gives

P=Q+ G"PG+ < D*PD >
— [G*PH+ < D*PE >][R + H*PH+ < E*PE >] !

x [H*PG+ < E*PD >]. (38)
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