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A fuzzy expected value approach under generalized data
envelopment analysis

A B S T R A C T
Fuzzy data envelopment analysis (DEA) models emerge as another class of DEA models to account for imprecise inputs and

outputs for decision making units (DMUs). Although several approaches for solving fuzzy DEA models have been

developed, there are some drawbacks, ranging from the inability to provide satisfactory discrimination power to simplistic

numerical examples that handles only triangular fuzzy numbers or symmetrical fuzzy numbers. To address these drawbacks,

this paper proposes using the concept of expected value in generalized DEA (GDEA) model. This allows the unification of

three models – fuzzy expected CCR, fuzzy expected BCC, and fuzzy expected FDH models – and the ability of these models

to handle both symmetrical and asymmetrical fuzzy numbers. We also explored the role of fuzzy GDEA model as a ranking

method and compared it to existing super-efficiency evaluation models. Our proposed model is always feasible, while

infeasibility problems remain in certain cases under existing super-efficiency models. In order to illustrate the performance

of the proposed method, it is first tested using two established numerical examples and compared with the results obtained

from alternative methods. A third example on energy dependency among 23 European Union (EU) member countries is

further used to validate and describe the efficacy of our approach under asymmetric fuzzy numbers.

Keywords: Data envelopment analysis; Generalized data envelopment analysis; Fuzzy expected value; Super-efficiency;

Symmetric & asymmetric fuzzy numbers

1. Introduction

Data envelopment analysis (DEA) was first proposed by Charnes, Cooper, & Rhodes (1978) and later

become known as the CCR model. BCC model (Banker, Charnes, & Cooper, 1984) extends the CCR

model  by accommodating for  variable returns to scale.  Concurrently,  the Free Disposal  Hull  (FDH)

model (Deprins, Simar, & Tulkens, 1984) was developed as an alternative DEA model which benefits

from a mixed integer programming to calculate the relative efficiencies of decision making units

(DMUs).  In  order  to  treat  basic  CCR,  BCC and  FDH models  in  a  unified  way,  a  generalized  DEA

model (GDEA) was proposed by Yun, Nakayama, & Tanino (2004). Since traditional DEA models do

not account for subjective input and output values, another class of DEA models emerged; that is,

fuzzy DEA models (Emrouznejad & Tavana, 2014; Hatami-Marbini, Emrouznejad, & Tavana,

2011a).

Several solution approaches have been developed for fuzzy DEA models, which include: 1) the

defuzzification approach (Ghasemi, Ignatius, & Davoodi, 2014a; Hasuike, 2011; Wang & Chin,

2011), 2) the α-level based approach (Azadeh, Moghaddam, Asadzadeh, & Negahban, 2011; Azadeh,

Sheikhalishahi, & Asadzadeh, 2011; Muren, Ma, & Cui, 2012; Puri & Yadav, 2012; Zerafat Angiz L,

Emrouznejad, & Mustafa, 2010), 3) fuzzy ranking (Bagherzadeh valami, 2009; Guo & Tanaka, 2001;

Hatami-Marbini, Saati, & Tavana, 2011b; Hatami-Marbini, Tavana, & Ebrahimi, 2011c; Soleimani-

damaneh, 2009), 4) the possibility approach (Khodabakhshi, Gholami, & Kheirollahi, 2010;

Lertworasirikul,  Fang,  Joines,  &  Nuttle,  2003),  5)  fuzzy  arithmetic  (Wang,  Greatbanks,  &  Yang,

2005; Wang, Luo, & Liang, 2009), and 6) the fuzzy random/type-2 fuzzy set (Qin & Liu, 2010; Qin,
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Liu, & Liu, 2011; Qin, Liu, Liu, & Wang, 2009). Fuzzy ranking and α-cut approaches are the most

popular as outlined in a survey on fuzzy DEA literature (Hatami-Marbini et al., 2011a). However,

existing fuzzy DEA models exhibit some drawbacks.

The first major drawback of existing fuzzy DEA in the literature is the significant computational

effort in solving the efficiency values. Guo and Tanaka’s fuzzy ranking approach (Guo & Tanaka,

2001) needs two linear programming problems to obtain the efficiency value for any given DMU. The

process involves feeding the optimal solution of the primary linear programming problem as

coefficients of some fuzzy constraints into the second linear programming problem. The same

computational complexity is also inherent in the fuzzy possibilitic approach proposed by

Lertworasirikul et al. (2003), where fuzzy constraints and objective function are defined across

different possibility levels or α-cut. In the case of n DMUs and five levels of possibility, there are 5n+2

linear programming problems to be solved, which remains computationally expensive. This problem

also arises in α-level based approaches; it requires solving a sequence of linear programming models,

thus leading to an increase in computational effort for obtaining fuzzy efficiencies of DMUs. Since

there are different optimal solutions for each α-level, the decision maker (DM) is left to decide on

which solution is the best for the scenario under his or her interpretation. In most cases, the decision

analyst would decide based on the number of efficiencies that are generated across all α-cuts before

deciding on the final ranking solution.

The second limitation in existing fuzzy DEA models is the focus on triangular fuzzy membership

functions (see León, Liern, Ruiz, & Sirvent, 2003) or symmetrical triangular fuzzy membership

functions (see Guo & Tanaka, 2001). There is much left unexplored for inputs and outputs that are

imprecise and do not conform to the said fuzzy membership functions.

The third drawback in existing fuzzy DEA models is its limited scope and much emphasis placed

on the CCR model (see Wang & Chin, 2011). The unification of CCR, BCC and FDH comes under

the category of GDEA model. Considering imprecision, Jahanshahloo, Hosseinzadeh-Lotfi,

Malkhalifeh, & Ahadzadeh-Namin (2009) are among the first authors to formulate the GDEA model

with interval data (IGDEA); such that the upper bound efficiency value is obtained considering that

the DM is optimistic for the DMU under evaluation (DMUo), while pessimistic with the

remaining DMUs in the evaluation set. Contrastingly, the lower bound efficiency values is obtained

by considering that the DM is pessimistic for the DMU under evaluation (DMUo), while optimistic

with the remaining DMUs in the evaluation set. This is achieved by selecting only the extreme points

in an interval for the input and output measures. It does not derive information using the form of a

particular function, such as one expressed in fuzzy or possibilitic manner.  In other words, the mid-

values as appear in a fuzzy numbered dataset are effectively ignored and the results of efficiency

covers a range comprising of an interval made up off overly optimistic and pessimistic in the

proposed IGDEA model. Unlike previous models, our proposed fuzzy expected generalized DEA

(FEGDEA) model solves both symmetrical and asymmetrical fuzzy numbers and requires less
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computational effort than competing models. We further propose a ranking method for efficient

DMUs by adapting the FEGDEA and illustrate that our approach does not suffer from infeasibility

issues as may be the case for existing methods.

In order to tackle the existing drawbacks in the fuzzy DEA literature, we propose the use of

expected value approach for unifying all three models – fuzzy CCR, fuzzy BCC and fuzzy FDH

models. In particular, our research process entails the following objectives. First, we investigate the

performance of our method with existing method that handles symmetrical data. Second, we show

that integrating the fuzzy expected value approach into the GDEA model outperforms integrating the

fuzzy expected value in classical DEA models. Third, when efficient cases are to be ranked such as in

super-efficiency analysis, the use of Andersen and Petersen (1993) approach in FEGDEA model

removes the issue of infeasibility, which occurs when it is applied to classical DEA models in certain

cases. Fourth, we further show that having addressed all the above objectives, our proposed model is

able to generate results under the CCR, BCC and FDH forms including ranking efficient units for both

symmetrical and asymmetrical data.

The rest of the paper is structured as follows. Section 2 provides the preliminaries on the

pertinent mathematical concepts on fuzzy DEA. Section 3 gives a brief description of the basic DEA

models and GDEA model. Section 4 outlines the development of the proposed model. Section 5

illustrates a ranking method for the proposed model and suggests ways to discriminate those efficient

DMUs. Section 6 describes the proposed method with two established numerical examples and a third

example on an energy dependency case among 23 European Union (EU) member countries. The

performance of our proposed model is compared to other existing methods for performance

validation. Section 7 concludes the study.

2. Preliminary concepts

Definition 1. If X is a collection of objects denoted by x, called the universe, then a fuzzy set A%  in X

is a set of ordered pairs:

( ){ }, AA x x Xm= Î%
% ,

in which ( )A xm %  is called the membership function of x in A%  that [ ]( ) : 0,1A x Xm ®% .

Definition 2. The α-level (or α-cut) set of a fuzzy set A%  is a crisp subset of X and is denoted by:

{ }( ) ( )AA x X xa m a= Î ³% .

Definition 3. A fuzzy set A%  of set X is convex if

( )( ) { }1 2 1 11 min ( ), ( ) ,A A Ax x x xm l l m m+ - ³% % % [ ]1 2, , 0,1x x X lÎ Î .
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Definition 4. A fuzzy number A%  is a convex normalized fuzzy set A%  of real line ¡ , in which there

exists at least one ox Î¡ , with ( ) 1oA xm =%  and ( )A xm %  is piecewise continuous. A fuzzy number

( )1 2, , ,m ml uA a a a a=%  is a trapezoidal fuzzy number if

1

1

1 2

2

2

, ,

1, ,( )

, ,

0, .

l
ml

m l

m m

A u
m u

mu

x a a x a
a a

a x ax
a x a x a

a a
otherwise

m

ì -
£ <ï

-ï
ï £ £ï= í

-ï < £ï -ï
ïî

%

The α-level set of the trapezoidal fuzzy number A% can be denoted as an interval, ( ), ( )l uf fa aé ùë û , in

which 1( ) ( )ml l lf a a aa a= + - and 2( ) ( )mu u uf a a aa a= - - where [ ]0,1a Î .

Remark 1. By assuming 1 2m mma a a= =  in a trapezoidal fuzzy number ( )1 2, , ,m ml uA a a a a=%  we

obtain a triangular fuzzy number as ( ), ,l m uA a a a¢ =% . If we assume 1 2m ml ua a a a- = -  in  the

trapezoidal fuzzy number A%  and m l u ma a a a- = -  in the triangular fuzzy number A¢%  we have

symmetrical trapezoidal and triangular fuzzy numbers, respectively.

Definition 5 (Heilpern, 1992). The expected interval (EI) and the expected value (EV) of a fuzzy

number A%  are defined as follows:

( ) 1 1
1 2 0 0

, ( ) , ( )A A l uEI A E E f d f da a a aé ùé ù= =ë û ê úë ûò ò% ; ( ) 1 2

2

A AE EEV A +=% .

If we assume that ( )1 2, , ,m ml uA a a a a=%  is a trapezoidal fuzzy number then

( )
1 2

,
2 2

m ml ua a a aEI A
é ù+ +

= ê ú
ë û

%  ; ( )
1 2

4

m ml ua a a aEV A + + +
=% .

If we further assume that is a triangular fuzzy number then

( ) ,
2 2

l m m ua a a aEI A
é ù+ +

= ê ú
ë û

%  ; ( ) 2
4

l m ua a aEV A + +
=% .

3. Background

Consider we are interested in evaluating the relative efficiency	 of n DMUs which use m inputs to

produce s outputs. The m-input-s-output data can be expressed as ( )1,..., , 1,...,ijx i m j n= =  and

( )1,..., , 1,...,rjy r s j n= = .
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3.1. Basic DEA models

The envelopment form and dual (multiplier) form of input-oriented BCC model can be formulated in

a linear programming framework as follows (Cooper, Seiford, & Tone, 2007):

The envelopment form of BCC model: The dual (multiplier) form of BCC model:

omin q 1

s

o r ro o
r

max u y cq
=

= -å

s.t.
1

, 1,..., ,
n

j ij o io
j

x x i ml q
=

£ =å s.t.
1

1,
m

i io
i

v x
=

=å

1
, 1,..., ,

n

j rj ro
j

y y r sl
=

³ =å (1)
1 1

0, 1,..., ,
s m

r rj i ij o
r i

u y v x c j n
= =

- - £ =å å (2)

1
1,

n

j
j
l

=
=å

0, 1,..., ,ru r s³ =
0, 1,..., ,iv i m³ = 	

0, 1,..., ,j j nl ³ = oc free in sign,

where λ1, …, λn	are non-negative variables in model (1), and ur (r = 1,…, s) and vi (i = 1,…, m) are the

input and output weights assigned to input i and output r, respectively in model (2). The input-

oriented CCR model can be easily obtained by removing the condition 1jjl =å  in model (1) and by

assuming co = 0 in model (2). FDH model is derived when condition { }0,1jl Î  is added to the BCC

model (1).

Definition 6 (Cooper et al., 2007). DMUo is efficient if the optimal value of the objective function ( *
oq

) is equal to 1, and is considered inefficient if * 1oq < . However, DMUo is fully (or Pareto-Koopmans)

efficient if * 1oq =  and there exists at least one optimal solution (u*, v*), with u* > 0 & v* > 0, where *
oq

and (u*, v*) are the optimal value of the objective function and values with non-negative constraints

given in model (1), respectively. By considering model (2), the values of the input excesses ( is- ) and

the outputs shortfalls ( rs+ ) for any i & r can be defined as follows:

( )
1

n

i o io j ij
j

s x x iq l-

=
= - "å & ( )

1

n

r j rj ro
j

s y y rl+

=
= - "å ,

where is- (i = 1,…, m) and rs+  (r = 1,…, s) are identified as slack variables for any feasible solution

(θ, λ) of model (1). Then DMUo is fully (or Pareto-Koopmans) efficient if * 1oq =  and all optimal slack

values are zero.

All efficient DMUs register efficiency values of 1. In order to discriminate between efficient

DMUs, Andersen & Petersen (1993) proposed the super efficiency method. The technique enables an

extreme efficient DMUo to achieve an efficiency value greater than one by excluding the DMUo from

the reference set in the DEA model.

The super-efficiency model for an efficient DMUo in model (1) can be written as follows:
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omin q

s.t.
1,

, 1,..., ,
n

j ij o io
j o

x x i ml q
= ¹

£ =å

1,
, 1,..., ,

n

j rj ro
j o

y y r sl
= ¹

³ =å (3)

1,
1,

n

j
j o

l
= ¹

=å
	

0, 1,..., ,j j nl ³ =

3.2.  Generalized DEA (GDEA) model

The GDEA model proposed by Yun et al. (2004) unifies the CCR, BCC, and FDH models, which can

be formulated as follows:

max D
s.t. ( ) ( )

1 1
, 1,..., ,

s m

j r ro rj i io ij
r i

d u y y v x x j na
= =

é ùD £ + - - - + =ê úë û
å å

1 1
1,

s m

r i
r i

u v
= =

- =å å

0, 0, 1,..., , 1,..., ,r iu v i m r s³ ³ = =

(4)

where 0a > is the user-specified value and appropriately given according to the specified problems

(see definition 6) and ( ) ( ){ }
,

max ,j r ro rj i io iji r
d u y y v x x= - - +  and the optimal value of objective

function (�*) are always non-positive.

Definition 7 (Yun et al., 2004). For a given positive α value, DMUo is  said to be α-efficient  if  and

only if the optimal value of GDEA model (4) is equal to zero, otherwise it is defined as α-inefficient.

It was also proved by Yun et al. (2004) that

(i) DMUo is FDH-efficient if DMUo is α-efficient for some sufficiently small positive value of α.

(ii) DMUo is BCC-efficient if DMUo is α-efficient for some sufficiently large positive value of α.

(iii) DMUo is CCR-efficient if DMUo is α-efficient for some sufficiently large positive value of α

when the condition,
1 1

0
s m

r ro i io
r i

u y v x
= =

- =å å , is added to model (4).

4. Fuzzy GDEA Model Using Fuzzy Expected Value

Suppose there are n DMUs to be evaluated, which use m inputs to produce s outputs. According to

definition 4, assume that data of inputs and outputs are uncertain and can be expressed by fuzzy

trapezoidal numbers with bounded support ( )1 2, , ,m ml u
ij ij ij ij ijx x x x x=% , i  = 1,…,m, j  = 1,…,n,

( )1 2, , ,m ml u
rj rj rj rj rjy y y y y=% , r = 1,…,s, j = 1,…,n.
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We use the GDEA model (4) to evaluate the relative efficiencies of a set of DMUs. The GDEA

model can be transformed into the following LP form of the fuzzy expected value model.

max D

s.t. ( ) ( )
1 1

( ) , 1,..., ,
s m

j r ro rj i io ij
r i

E d E u y y v x x j na
= =

æ öD £ + - - - + =ç ÷è ø
å å% % % % %

1 1
1,

s m

r i
r i

u v
= =

- =å å

0, 0, 1,..., , 1,..., ,r iu v i m r s³ ³ = =

(5)

where 0a > is defined as in the model (4) and ( )( ) ( )( ){ },
max ,j r ro rj i io iji r

d E u y y E v x x= - - +% % % % % .

In GDEA model (4), for any given positive α value, we use the optimal value of the objective

function to estimate whether DMUo is α-efficient or α-inefficient. Similarly, in the proposed model

(5), the value of α is applied to characterize DMUo as α-efficient or α-inefficient. If �* = 0, we consider

DMUo as α-expected-efficient; otherwise, it is mentioned as α-expected-inefficient.

The above fuzzy expected LP problem is able to transform into its crisp equivalent form. Let us

continue by considering the following proposition:

Proposition 1 (Liu & Liu, 2003). Let λ and γ be fuzzy numbers. Then for any non-negative numbers a

and b, we have

( ) ( ) ( )E a b aE bEl g l g+ = + .

According to definition 5 and proposition 1, the FEGDEA model (5) can be transformed as

follows:

max D

s.t.
( )1 2 1 2

1

1
4

s
m m m ml u l u

j r ro ro ro ro ro rj rj rj
r

d u y y y y y y y ya
=

ìD £ + + + + - - - -í
î
å%

( )1 2 1 2

1

1 , 1,..., ,
4

m
m m m ml u l u

i io io io io ij ij ij ij
i

v x x x x x x x x j n
=

ü- - - - - + + + + =ý
þ

å

1 1
1,

s m

r i
r i

u v
= =

- =å å

0, 0, 1,..., , 1,..., ,r iu v i m r s³ ³ = =

(6)

where 0a > is appropriately assigned to the problem and

( )1 2 1 2

,
max ,

4
m m m ml u l ur

j ro ro ro ro ro rj rj rji r

ud y y y y y y y yì= + + + - - - -í
î

%

( )1 2 1 2

4
m m m ml u l ui

io io io io ij ij ij ij
v x x x x x x x x ü- - - - + + + + ý

þ
.

Definition 8. Similar to the GDEA model (4), the above model (6) exhibits the following properties:

(i) DMUo is fuzzy FDH-expected-efficient if DMUo is α-efficient for some sufficiently small positive

value of α.

(i) DMUo is fuzzy BCC-expected-efficient if DMUo is α-efficient for some sufficiently large positive

value of α.
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(ii) DMUo is fuzzy CCR-expected-efficient if DMUo is α-efficient for some sufficiently large positive

value of α when the following condition	is added to model (6).

( ) ( )1 2 1 2

1 1
0

s m
m m m ml u l u

r ro ro ro ro i io io io io
r i

u y y y y v x x x x
= =

+ + + - + + + =å å .

In the same manner, the basic DEA models (1) and (2) can be adapted to the fuzzy expected LP

form. This means that the fuzzy expected LP form can be transformed into its crisp equivalent, while

preserving the fuzzy values. Interested readers are referred to Wang and Chin’s method (Wang &

Chin, 2011). Hence, the BCC-DEA model (1) can be transformed as follows:

omin q

s.t.
( ) ( )1 2 1 2

1
, 1,..., ,

n
m m m ml u l u

j ij ij ij ij o io io io io
j

x x x x x x x x i ml q
=

+ + + £ + + + =å

( )1 2 1 2

1
, 1,..., ,

n
m m m ml u l u

j rj rj rj rj ro ro ro ro
j

y y y y y y y y r sl
=

+ + + ³ + + + =å

1
1,

n

j
j
l

=
=å

0, 1,...,j j nl ³ = .

(7)

By removing the condition
1

1
n

j
j
l

=
=å  in model (7), the above fuzzy expected BCC model can be

converted to the fuzzy expected CCR model.

Definition 9. DMUo is fuzzy expected-efficient in the above model (7) if the optimal value of the

objective function ( *
oq ) is equal to 1, and is considered fuzzy expected-inefficient if * 1oq < .

5. Proposed Ranking Method for Fuzzy Expected GDEA

In the standard DEA models, inefficient DMUs have scores less than one. However, efficient DMUs

are identified by an efficiency score equal to 1, so these DMUs cannot be ranked. One problem that

has been discussed frequently in the literature is the lack of discrimination in DEA weights and

efficiency values. To overcome the discrimination power problems, a procedure for ranking efficient

units; that is, the super-efficiency model is first proposed by Andersen and Petersen (1993), hereon

referred to as the AP model. The method enables an extreme efficient DMUo to achieve an efficiency

value greater than one by excluding the DMUo under  evaluation from the reference set  in  the DEA

models (i.e. model 3). However, by considering the super-efficiency DEA model (AP model) under the

variable return-to-scale (VRS), the infeasibility of the related linear program is very likely to occur.

More details on this infeasibility problem can be found in the following literature (Chen, 2005; Cook,

Liang, Zha, & Zhu, 2008; Lee, Chu, & Zhu, 2011).

Similar to the basic DEA models, there is also a need to discriminate and rank efficient DMUs in

GDEA model (4) and FEGDEA model (6). For ranking efficient DMUs  in  GDEA  model  (4),  we
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adapted the approach by Andersen and Petersen (1993). The AP method excludes the DMUo under

evaluation from the reference set when ranking efficient DMUs. The AP model can be applied to the

GDEA model (4) as follows:

max D

s.t.
( ) ( )

1 1
, 1,..., , ,

s m

j r ro rj i io ij
r i

d u y y v x x j n j oa
= =

é ùD £ + - - - + = ¹ê úë û
å å

1 1
1,

s m

r i
r i

u v
= =

- =å å

0, 0, 1,..., , 1,..., ,r iu v i m r s³ ³ = =

(8)

where α and is defined as in model (4) and ( ) ( ){ }
,

max , ,j r ro rj i io iji r
d u y y v x x j o= - - + ¹ .

Proposition 2. The above model (8), in which the AP technique is applied to GDEA model (4) is

always feasible.

Proof. Let 1 1u = , 0( , 1)ru r r= " ¹ , and 0( )iv i= "  in model (8). The values of ,ij rjx y ,  and  α are

determinate; therefore, the right hand side of the following constraint would be a determinate value

for any amount of ( 1,..., , )j j n j o= ¹ ,

( ) ( )
1 1

s m

j r ro rj i io ij
r i

d u y y v x xa
= =

é ùD £ + - - - +ê úë û
å å .

By choosing,

( ) ( )
1 1

min
s m

j r ro rj i io ijj r i
d u y y v x xa

= =

ì üé ùD = + - - - + =í ýê úë ûî þ
å å ( ){ }1 1min ,( )j o jj

d y y j oa+ - ¹ ,

a feasible solution can be obtained for the model, which proves Proposition 2.

In order to highlight the essential difference between model (8) and model (3), we show in

Appendix A, an analytical example of 5 DMUs with single input and single output.

There is also a need to discriminate efficient DMUs  in  FEGDEA  (6).  We  adapted  the  AP

approach (Andersen & Petersen, 1993) for the FEGDEA (6). Therefore, by excluding the DMUo

under evaluation from the reference set of efficient DMUo in model (6), the model can be represented

as the following LP problem.

max D

s.t.
( )1 2 1 2

1

1
4

s
m m m ml u l u

j r ro ro ro ro ro rj rj rj
r

d u y y y y y y y ya
=

ìD £ + + + + - - - -í
î
å%

( )1 2 1 2

1

1 , 1,..., , ,
4

m
m m m ml u l u

i io io io io ij ij ij ij
i

v x x x x x x x x j n j o
=

ü- - - - - + + + + = ¹ý
þ

å

1 1
1,

s m

r i
r i

u v
= =

- =å å

0, 0, 1,..., , 1,..., ,r iu v i m r s³ ³ = =

(9)

where α  is defined as in model (6) and
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( )1 2 1 2
( ) ,

max ,
4

m m m ml u l ur
j j o ro ro ro ro ro rj rj rji r

ud y y y y y y y y¹
ì= + + + - - - -í
î

%

( )1 2 1 2

4
m m m ml u l ui

io io io io ij ij ij ij
v x x x x x x x x ü- - - - + + + + ý

þ
.

Proposition 3. The above model (9), when applying the AP approach to FEGDEA model (6) is

always feasible.

Proof. Analogous to the proof of proposition 2.

According to proposition 3, the related fuzzy linear program (i.e. model 9) when subjected to the

AP approach is always feasible for the FEGDEA model.

In the same manner, the super-efficiency model for an efficient DMUo in model (7) can also be

formulated as

omin q

s.t.
( ) ( )1 2 1 2

1,
, 1,..., ,

n
m m m ml u l u

j ij ij ij ij o io io io io
j o

x x x x x x x x i ml q
= ¹

+ + + £ + + + =å

( )1 2 1 2

1,
, 1,..., ,

n
m m m ml u l u

j rj rj rj rj ro ro ro ro
j o

y y y y y y y y r sl
= ¹

+ + + ³ + + + =å

1,
1,

n

j
j o

l
= ¹

=å

0, 1,..., ,j j n j ol ³ = ¹ .

(10)

6. Illustration and validations: three numerical examples

In this section, three numerical examples are presented to describe the proposed models. The purpose

is to test out conclusively the performance of our proposed model against similar methods that have

been used in two established examples. We later provide a third example on an energy dependency

case among 23 EU-member countries to demonstrate the applicability of the proposed method under

asymmetrical fuzzy numbers, which has yet to be addressed in present literature.

6.1. The validity of the proposed model under symmetrical fuzzy numbers

The first example is taken from Guo & Tanaka (2001) (see Table 1). The data of the example consists

of two fuzzy inputs and two fuzzy outputs. In this example, symmetrical triangular fuzzy inputs and

outputs are used, although it can be extended to any form of fuzzy number.
Table 1
DMUs with two fuzzy inputs and two fuzzy outputs
DMU Inputs Outputs

x1 x2  y1 y2

1 (3.5, 4.0, 4.5) (1.9, 2.1, 2.3) (2.4, 2.6, 2.8) (3.8, 4.1, 4.4)
2 (2.9, 2.9, 2.9) (1.4, 1.5, 1.6) (2.2, 2.2, 2.2) (3.3, 3.5, 3.7)
3 (4.4, 4.9, 5.4) (2.2, 2.6, 3.0) (2.7, 3.2, 3.7) (4.3, 5.1, 5.9)
4 (3.4, 4.1, 4.8) (2.2, 2.3, 2.4) (2.5, 2.9, 3.3) (5.5, 5.7, 5.9)
5 (5.9, 6.5, 7.1) (3.6, 4.1, 4.6) (4.4, 5.1, 5.8) (6.5, 7.4, 8.3)
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From Table 1, let us compute the fuzzy expected-efficiencies and super-efficiencies based on

models 6, 7, 9 and 10 for the DMUs. The results for the expected-efficiencies and super-efficiencies

of the five DMUs are provided in Table 2 and Table 3.

The results can be described in the following way. From Table 2, the fuzzy expected-efficiencies

of DMU 1 and DMU 3 are 0.855 and 0.861 in the basic DEA-CCR form and 0.889 and 0.935 in the

basic DEA-BCC form, respectively. This means that DMU 1  and DMU 3 according to definition 9,

are fuzzy expected-inefficient in both basic DEA-CCR and DEA-BCC forms. On the other hand, the

values of DMU 2, DMU 4  and DMU 5  are  1,  thus they are fuzzy expected-efficient  in  basic  DEA-

CCR and DEA-BCC forms. The relationship between CCR and BCC is such that if DMUo was found

to be efficient in the former, it will also be efficient in the latter (Ahn, Charnes, & Cooper, 1988); thus

one expects the same for the relationship between fuzzy expected CCR and fuzzy expected BCC

models because they have been transformed into their crisp equivalent forms. The expected-

efficiencies in basic DEA-CCR and DEA-BCC forms validate this claim (see Table 2). The adapted

fuzzy expected model (10) by the super-efficiency approach is further used to rank efficient DMUs in

model (7) for both CCR and BCC techniques. However, the infeasibility of the related linear program

occurs for DMU 5 under the BCC technique (see Table 2), which is the drawback of using the AP

super-efficiency ranking method for fuzzy basic DEA models.
Table 2
Results of efficiency in fuzzy expected basic DEA model (7)
DMU CCR form  BCC form

Eff.   Super-Eff. Rank  Eff. Super-Eff.
1 0.855     ̶ 5  0.889     ̶
2 1 1.163 1  1 1.400
3 0.861     ̶ 4  0.935     ̶
4 1 1.152 2  1 1.290
5 1 1.034 3  1 infeasible

Let us continue by exploring the results of efficiency and super-efficiency values using

FEGDEA models (6) and (9), which are listed in Table 3. By considering definition 8 and adding the

constraint, 1 2( )m ml u
r ro ro ro ror u y y y y+ + + -å ( )1 2m ml u

i ro ro ro roi v x x x x+ + +å =  0  to  model  (6),  the α-

efficiencies of DMU 1 and DMU 3 are obtained as -1.532 and -1.502, respectively when solving for α

= 10 (see Table 3). This means DMU 1 and DMU 3 are expected-inefficient under FEGDEA (6) in the

CCR form. Contrastingly, the α-efficiencies of DMU 2, DMU 4 and DMU 5 are 0, and therefore they

are considered expected-efficient in the FEGDEA model (6) of the CCR form. In the same manner, by

setting α = 10 in model (6), DMU 1 and DMU 3 are determined to be fuzzy expected-inefficient and

DMU 2, DMU 4 and DMU 5 are determined to be expected-efficient for the BCC form. Subsequently,

model (9) was utilized to rank those DMUs which are efficient, as shown in Table 3. According to

proposition 3, the proposed ranking model (9) is always feasible and this is the advantage of the

proposed model (9) over the super-efficiency DEA model.
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Table 3
Results of efficiency and super-efficiency in FEGDEA model
DMU (α = 10) in CCR form (α = 10) in BCC form

Eff. Super-Eff. Rank Eff. Super-Eff. Rank
1 -1.532 ̶ 5 -1.219 ̶ 5
2  0 1.918 2  0 12.096 2
3 -1.502 ̶ 4 -0.832 ̶ 4
4  0 3.144 1  0 5.462 3
5  0 0.569 3  0 21.419 1
Note: The results of FDH are not shown here as the DMUs are all efficient when applying
the  FEGDEA  model  (6). The ability of the proposed model to run all three forms (i.e.
CCR, BCC and FDH) is best demonstrated in the third numerical example in Table 10.

If  we  were  to  compare  the  efficiency  values  of  the  proposed  model  (see  Table  3)  against  the

efficiency values derived from Guo and Tanaka’s (2001) model (see Table 4), it can be noted that

DMUs 2, 4 and 5 are found to be efficient in both models.
Table 4
The fuzzy efficiencies by Guo & Tanaka's model
α DMU1 DMU2 DMU3 DMU4 DMU5
0 (0.66, 0.81, 0.99) (0.88, 0.89, 1.09) (0.60, 0.82, 1.12)   (0.71, 0.93, 1.25)  (0.61, 0.79, 1.02)
0.5 (0.75, 0.83, 0.92) (0.94, 0.97, 1.00) (0.71, 0.83, 0.97) (0.85, 0.97, 1.12) (0.72, 0.82, 0.93)
0.75 (0.80, 0.84, 0.88) (0.96, 0.99, 1.02) (0.77, 0.83, 0.90) (0.92, 0.98, 1.05) (0.78, 0.83, 0.89)
1 (0.85, 0.85, 0.85) (1.00, 1.00, 1.00) (0.86, 0.86, 0.86) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)

6.2. The advantage of fuzzy expected value approach in GDEA vs. fuzzy expected value in classical
DEA models

In the following example of ranking 12 flexible manufacturing systems adapted from Wang & Chin

(2011)., we illustrate that our proposed model of fuzzy expected value approach performs better when

applied to GDEA as compared to when the former is applied to classical DEA models. In addition,

our proposed model can break ties in ranking DMUs, do not face infeasibility problems when applied

to super efficiency methods for ranking, and able to handle asymmetric triangular fuzzy numbers

The description of the inputs and 4 outputs of are provided in Table 5 and the corresponding data

from Wang & Chin (2011) is shown in Table 6.
Table 5
Description of the variables
Variable Name Unit Data type
x1 Capital & operating cost $100,000 Triangular fuzzy number
x2 Floor space requirement Thousand ft2 Crisp value
y1 Qualitative benefits % Crisp value
y2 Work-in-process 10 Triangular fuzzy number
y3 Average number of tardiness % Triangular fuzzy number
y4 Average yield 100 Triangular fuzzy number
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 Table 6
12 flexible manufacturing systems dataset
DMU Inputs Outputs

 x1 x2  y1   y2  y3  y4

1 (16.17, 17.02, 17.87) 5 42 (43, 45.3, 47.6) (13.5, 14.2, 14.9) (28.6, 30.1, 31.6)
2 (15.64, 16.46, 17.28) 4.5 39 (38.1, 40.1, 42.1) (12.4, 13, 13.7) (28.3, 29.8, 31.3)
3 (11.17, 11.76, 12.35) 6 26 (37.6, 39.6, 41.6) (13.1, 13.8, 14.5) (23.3, 24.5, 25.7)
4 (9.99, 10.52, 11.05) 4 22 (34.2, 36, 37.8) (10.7, 11.3, 11.9) (23.8, 25, 26.3)
5 (9.03, 9.5, 9.98) 3.8 21 (32.5, 34.2, 35.9) (11.4, 12, 12.6) (19.4, 20.4, 21.4)
6 (4.55, 4.79, 5.03) 5.4 10 (19.1, 20.1, 21.1) (4.8, 5, 5.3) (15.7, 16.5, 17.3)
7 (5.9, 6.21, 6.52) 6.2 14 (25.2, 26.5, 27.8) (6.7, 7, 7.4) (18.7, 19.7, 20.7)
8 (10.56, 11.12, 11.68) 6 25 (34.1, 35.9, 37.7) (8.6, 9, 9.5) (23.5, 24.7, 25.9)
9 (3.49, 3.67, 3.85) 8 4 (16.5, 17.4, 18.3) (0.1, 0.1, 0.1) (17.2, 18.1, 19)
10 (8.48, 8.93, 9.38) 7 16 (32.6, 34.3, 36) (6.2, 6.5, 6.8) (19.6, 20.6, 21.6)
11 (16.85, 17.74, 18.63) 7.1 43 (43.3, 45.6, 47.9) (13.3, 14, 14.7) (29.5, 31.1, 32.7)
12 (14.11, 14.85, 15.59) 6.2   27 (36.8, 38.7, 40.6) (13.1, 13.8, 14.5) (24.1, 25.4, 26.7)

By using the dataset in  Table 6 and employing the fuzzy expected basic DEA model (7) in CCR

and BCC forms, the results of the fuzzy expected-efficiency values are obtained (see Table 7). The

fuzzy expected-efficiency values of DMU 3, DMU 8, DMU 10, DMU 11,  and DMU 12 are 0.983,

0.961, 0.954, 0.983, and 0.801 respectively and the fuzzy expected-efficiencies of the remaining

DMUs; DMU 1, DMU 2, DMU 4, DMU 5, DMU 6, DMU 7 and DMU 9  are  1 in basic  DEA-CCR

form. This means DMUs  1,  2,  4,  5,  6,  7  and  9  are  expected-efficient  and  the  rest  of DMUs are

expected-inefficient in basic DEA-CCR form. With the exception of DMU 8 (0.990) and DMU 12

(0.893), the other DMUs  are  considered  to  be  fuzzy  expected-efficient  in  the  basic  DEA-BCC (see

Table 7).

When we compared the results of fuzzy expected-efficiency in different CCR and BCC forms in

Table 7, we found that the fuzzy expected basic DEA-BCC form has three additional efficient DMUs

as compared to the DEA-CCR form. It seems reasonable because fundamentally, it is expected that a

fuzzy DEA model based on CCR model to have lesser number of efficient DMUs as compared to a

BCC derived model. This is because the relationship between classical CCR and BCC is such that if

DMUo was found to be efficient in the former, it will also be efficient in the latter (see Ahn, Charnes,

& Cooper, 1988). Additionally, in the case of the fuzzy expected CCR and BCC models, they have

been transformed into their crisp equivalent forms. The ranking results using the adapted fuzzy

expected model (10) by the super-efficiency approach for evaluating the efficient DMUs are also

presented in Table 7, which revealed 2 infeasible solutions for DMU 1 and DMU 11 (see Table 7).

This highlights the drawback of using the AP super-efficiency ranking method for fuzzy basic DEA

models.
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Table 7
Efficiency results of the 12 flexible manufacturing systems in  fuzzy expected basic DEA model (6)
DMU CCR form BCC form

Eff. Super-Eff. Rank Eff. Super-Eff.
1 1 1.046 6 1 infeasible
2 1 1.093 4 1 1.098
3 0.983      ̶ 8 1 1.276
4 1 1.136 3 1 1.175
5 1 1.159 2 1 1.178
6 1 1.028 7 1 1.204
7 1 1.060 5 1 1.122
8 0.961      ̶ 10 0.989      ̶
9 1 1.432 1 1 1.499
10 0.954      ̶ 11 1 1.066
11 0.983      ̶ 9 1 infeasible
12 0.801      ̶ 12 0.893      ̶

Let  us  continue  by  using  the  dataset  in   Table 6 to obtain the fuzzy expected-efficiencies and

super-efficiencies based on the FEGDEA models 6 and 9. The results for the expected-efficiencies

and super-efficiencies of the 12 DMUs are provided in  Table 8. By adding the constraint

1 2( )m ml u
r ro ro ro ror u y y y y+ + + -å ( )1 2m ml u

i ro ro ro roi v x x x x+ + +å = 0 to model (6) and assuming that α = 25

in this model, the α-efficiencies of DMU 3, DMU 8, DMU 10, DMU 11 and DMU 12 are obtained as

follows: -2.590, -4.579, -5.357, -4.561, and -27.030, respectively (see  Table 8). This means DMU 3,

DMU 8, DMU 10, DMU 11 and DMU 12 are expected-inefficient under the FEGDEA model (6) in

the CCR form. Contrastingly, the α-efficiency of DMU 1, DMU 2, DMU 4, DMU 5, DMU 6, DMU 7,

and DMU 9 are 0, and therefore they are expected-efficient under the FEGDEA model (6) in the CCR

form. Also, by setting, α = 25 in the FEGDEA model (6) in the BCC form, DMU 8 and DMU 12 are

determined to be fuzzy expected-inefficient, while the rest are determined to be fuzzy expected-

efficient (see  Table 8).

The results of the fuzzy expected CCR and BCC models (in Table 7) can be compared with the

proposed fuzzy expected GDEA models in the equivalent CCR and BCC forms (in  Table 8). The

same DMUs that are efficient in the fuzzy expected CCR and BCC models are also efficient in the

proposed FEGDEA model in CCR and BCC forms, and the latter possess an added advantage – DMU

1 and DMU 11 are still feasible under the proposed ranking model (9) in the BCC form. Thus, the

adapted GDEA model (8) and FEGDEA model (9) using the AP super-efficiency technique are always

feasible as compared to using the AP super-efficiency ranking method for basic DEA models

(specifically VRS model).
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 Table 8
Efficiency and super-efficiency results of the 12 flexible manufacturing systems in  FEGDEA model
DMU (α = 25) in CCR form (α = 25) in BCC form

Eff. Super-Eff. Rank Eff. Super-Eff. Rank
1  0 11.924 4  0 34.726 1
2  0 8.958 5  0 9.191 10
3 -2.590      ̶ 8  0 23.219 6
4  0 14.730 3  0 23.894 5
5  0 18.200 2  0 19.287 7
6  0 3.418 7  0 26.761 3
7  0 5.980 6  0 14.661 8
8 -4.579      ̶ 10 -0.380      ̶ 11
9  0 30.239 1  0 32.267 2
10 -5.357      ̶ 11  0 11.223 9
11 -4.561      ̶ 9  0 25.983 4
12 -27.030      ̶ 12 -5.411      ̶ 12
Note: The results of FDH are not shown here as the DMUs are all efficient when applying the FEGDEA model
(6). The ability of the proposed model to run all three forms (i.e. CCR, BCC and FDH) is best demonstrated in
the third numerical example in Table 10.

Using Wang and Chin’s (2011) model, the optimistic and pessimistic efficiencies of DMUs are

measured and the two efficiencies are then geometrically averaged for ranking the DMUs (see Table

9). Wang and Chin’s optimistic efficiency results in Table 9 is based on a fuzzy expected approach as

applied to the CCR model. Thus, the same number of DMUs in their model will be present in our

proposed FEGDEA model when discussing CCR form ( Table 8). This is where the similarity ends

given that Wang and Chin (2011) did not extend their method for BCC and FDH techniques. Our

proposed model provides the fuzzy expected-efficiency values and the ranking of DMUs not only in

CCR form but also in the BCC ( Table 8) and FDH forms.

In Wang and Chin’s (2011) model, for optimistic point of view they suggested to run the fuzzy

expected approach for the CCR model. This means that the optimistic and pessimistic efficiency of

each DMU is achieved by maximizing the range of the constraint of less than or equal to one and

minimizing the range of the constraint of greater than or equal to one, respectively. This poses a slight

problem which can be observed from Table 9  as there can be more than 1 DMUs sharing the same

ranking position. For example, DMU 2 and DMU 9 are efficient in the optimistic point of view and

the efficiency values of these two DMUs are also equal to 1 in the pessimistic point of view. Thus, the

geometric average efficiency of DMU 2 and DMU 9 is 1 and both DMUs are ranked as number 8 (see

Table 9). Therefore, Wang and Chin’s proposed method is unable to discriminate between these two

DMUs. Furthermore, DMU 3 and DMU 8 are both inefficient in the optimistic point of view but they

are assigned a final better rank than DMU 2  and DMU 9 which are both efficient in the optimistic

point of view (which is essentially the same as the CCR model) (see Table 9). Hence, it can be noted

that the proposed ranking method by Wang & Chin (2011) suffers from some difficulties in obtaining

a better ranking results. Based on our proposed method of fuzzy expected approach, we were able to

discriminate the DMUs and provide a more reasonable ranking result (see Table 7).
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Table 9
Efficiency results of the 12 flexible manufacturing systems using Wang and Chin's model
DMU Optimistic efficiency Pessimistic efficiency  Geometric average efficiency Rank
1 1.000 1.015 1.007 7
2 1.000 1.000 1.000 8
3 0.983 1.119 1.049 5
4 1.000 1.192 1.092 2
5 1.000 1.222 1.106 1
6 1.000 1.152 1.073 4
7 1.000 1.159 1.076 3
8 0.961 1.076 1.017 6
9 1.000 1.000 1.000 8
10 0.954 1.000 0.977 11
11 0.983 1.000 0.992 10
12 0.801 1.000 0.895 12

6.3. The applicability of the proposed method under asymmetrical fuzzy numbers

Next, the third example of an energy dependency case is also used to validate our proposed model,

given that it is a real application of energy dependency among EU member countries (except

Bulgaria, Luxembourg, Malta and Romania). The 2-input-3-output dataset comprising 23 EU member

countries is presented in Appendix B. Data were based on the EU Emissions Trading Scheme of more

than 10,000 installations that generate an excess of 20MW each within the country. This is believed to

capture about half of the CO2 emissions within EU. Researchers have focused on some techniques to

assess the efficiency level of carbon emissions associated with higher productivity. However, curbing

carbon emissions will result in productivity reduction, and this will not be fair when one evaluates

developing country. Hence, our model (named as the energy dependency model) avoids this problem

as the choices of inputs are based on a set of resources that generate carbon emissions and the output

will be the extent of those resources in limiting the carbon effects.

The operational definition of the 3 inputs and 2 outputs are as follows:

x1 Allocated carbon allowances (it is an allowance distributed each year for free to installations
according to the national allocation plan, measured in tonnes of carbon dioxide equivalent).

x2 Gross inland energy consumption (GIC is the quantity of energy, expressed in oil equivalents,
consumed within the borders of a country. It is calculated as total domestic energy production
plus energy imports and changes in stocks minus energy exports.

y1 Electricity generated from renewable sources (Percentage of gross electricity consumed from
year 2006 - 2009).

y2 Verified emissions (The average annual emissions per emitting installation).

y3 Share of renewable energy in gross final energy consumption (the degree to which conventional
fuels have been substituted by biofuels in transportation, 2009).

The simpler energy dependency model using only crisp data can be found in Ghasemi, Ignatius,

& Emrouznejad (2014b).
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Input variables (x1 and x2) and output variables (y1 and y2) are estimated as asymmetrical fuzzy

triangular form for the period 2005-2008 and 2006-2009 respectively, whereas output variable y3 is a

crisp number taken for year 2009. The left and right side of the 4 variables (i.e. x1, x2, y1, y2) are the

lower and upper bound forming the asymmetrical fuzzy triangular numbers. The middle values for the

fuzzy triangular numbers are averaged vakyes within the chosen data interval. We provided a year lag

between the input and output data in order to account for the necessary time gap needed for realising

the effect.

The results of our analysis are provided in Table 10. The 3-step procedure to our analysis is as

follows: First, by adding the condition, 1 2( )m ml u
r ro ro ro ror

u y y y y+ + + -å ( )1 2m ml u
i ro ro ro roi v x x x x+ + +å =  0,  to

model (6) and assuming that α =  10,  the  FEGDEA  model  in  CCR  form  determines  that  countries

Germany, Latvia, and Sweden are expected-efficient in terms of energy dependency. Second, by

setting α = 10 in model (6), the FEGDEA model in BCC form determines that countries Austria,

France, Germany, Italy, Latvia, Poland, Sweden, and UK are expected-efficient in terms of energy

dependency. Third, we move to the FEGDEA model in FDH form by setting α = 0.01 in model (6).

The countries Austria, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Poland,

Portugal, Spain, Sweden, and UK are characterized as expected-efficient in terms of energy

dependency (see Table 10). In each step, the super-efficiency values are also provided by using model

(9) and these are reported in Table 10.
Table 10
Efficiency and super-efficiency results of 23 EU member countries in  FEGDEA model
Countries (α = 10) in CCR form (α = 10) in BCC form (α = 0.01) in FDH form

Eff. Super-Eff. Rank  Eff. Super-Eff. Rank   Eff. Super-Eff. Rank
Austria -2.599       ̶ 6  0 10.953 4 9.627 9.627 1
Belgium -36.432       ̶ 23 -18.001       ̶ 23 -0.033      ̶ 21
Cyprus -35.254       ̶ 22 -4.238       ̶ 12 -0.007      ̶ 15
Czech Republic -26.644       ̶ 19 -14.114       ̶ 21 -0.062      ̶ 23
Denmark -14.651       ̶ 12 -9.154       ̶ 16 -0.013      ̶ 16
Estonia -15.871       ̶ 14 -9.2334       ̶ 17 -0.058      ̶ 22
Finland -17.910       ̶ 15 -8.084       ̶ 15 0.123 0.123 12
France -2.770       ̶ 7  0 1.479 7 0.293 0.293 8
Germany 0 6.485 2  0 23.827 1 1.214 1.214 4
Greece -18.530       ̶ 16 -5.003       ̶ 14 0.144 0.144 11
Hungary -24.482       ̶ 18 -4.136       ̶ 11 0.071 0.071 13
Ireland -32.364       ̶ 21 -11.347       ̶ 20 -0.016      ̶ 18
Italy -1.971       ̶ 5  0 0.754 8 0.310 0.310 7
Latvia 0 15.952 1  0 14.015 3 1.688 1.688 3
Lithuania -13.042       ̶ 11 -4.485      ̶ 13 0.026 0.026 14
Netherlands -31.274       ̶ 20 -15.038      ̶ 22 -0.026      ̶ 20
Poland -3.022       ̶ 8  0 3.755 5 0.341 0.341 6
Portugal -5.026       ̶ 10 -2.714       ̶ 10 0.205 0.205 10
Slovakia -22.030       ̶ 17 -9.803       ̶ 19 -0.025      ̶ 19
Slovenia -14.964       ̶ 13 -9.739       ̶ 18 -0.016      ̶ 17
Spain -4.690       ̶ 9 -2.456       ̶ 9 0.473 0.473 5
Sweden 0 0.620 3  0 14.291 2 8.698 8.698 2
United Kingdom -1.096       ̶ 4    0 2.154 6   0.287 0.287 9
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Using Wang and Chin’s method (Wang & Chin, 2011), the countries (DMUs) Germany, Latvia,

and Sweden are determined to be efficient in the optimistic point of view. They remain the same as

those countries that were determined efficient using the CCR form of the FEGDEA model (6) as seen

in Table 10. Also, the efficiencies of Belgium, Cyprus, Estonia, Latvia, Netherlands, and UK are

equal to one in the pessimistic point of view (see Table 11). The country Latvia is efficient in the

optimistic point of view (or classical DEA form) but is ranked lower than Denmark and Poland which

are  both  inefficient  in  the  classical  DEA  form  (or  optimistic  of  view)  (see  Table  11).  In  Wang  &

Chin’s method, the two efficiencies (optimistic and pessimistic efficiency values) are geometrically

averaged for ranking the DMUs. It can be concluded that their proposed ranking method would be

invalid in certain cases and it has a drawback in terms of discrimination power.
Table 11
Efficiency results of 23 EU member countries using Wang and Chin's model
Countries Optimistic efficiency Pessimistic efficiency Geometric average efficiency Rank
Austria 0.761 3.557 1.646 4
Belgium 0.147 1.000 0.383 22
Cyprus 0.121 1.000 0.349 23
Czech Republic 0.251 1.096 0.525 19
Denmark 0.385 3.050 1.083 9
Estonia 0.333 1.000 0.577 18
Finland 0.300 2.474 0.861 12
France 0.833 3.118 1.613 5
Germany 1.000 2.073 1.440 6
Greece 0.359 1.576 0.752 13
Hungary 0.238 1.971 0.685 15
Ireland 0.183 1.005 0.429 21
Italy 0.894 3.228 1.698 3
Latvia 1.000 1.000 1.000 10
Lithuania 0.395 1.118 0.665 17
Netherlands 0.234 1.000 0.484 20
Poland 0.832 1.725 1.198 8
Portugal 0.681 5.574 1.948 1
Slovakia 0.287 1.893 0.737 14
Slovenia 0.385 1.160 0.668 16
Spain 0.752 4.455 1.830 2
Sweden 1.000 1.756 1.325 7
United Kingdom 0.916 1.000 0.957 11

When we compared the results in Table 10 and Table 11, we found that our model has some

extra abilities as compared to Wang and Chin’s model. The proposed model is able to provide the

expected-efficiency values and the ranking of DMUs not only in the CCR form but also in the BCC

and FDH forms. In addition, according to proposition 3, our proposed FEGDEA model when

incorporated with the super-efficiency technique is always feasible. In addition, the proposed ranking

method avoids DMUs being pushed higher in the ranking position due to the geometric averaging

procedure used in Wang and Chin’s model. For example, in Wang and Chin’s method, the optimistic

efficiency value of Latvia (i.e. in CCR form) is equal to 1. This means that Latvia is efficient in the

classical DEA form, but it is eventually ranked lower than Denmark and Poland, after taking a
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geometric average with the pessimistic efficiency values. This is despite the fact that Denmark and

Poland are found to be inefficient in the initial optimistic efficiency evaluation (see Table 11).

Since  the  dataset  in  this  example  consists  of  asymmetrical  fuzzy  triangular  numbers  (see

Appendix B) and the data structure in Guo and Tanaka’s fuzzy ranking approach (Guo & Tanaka,

2001) is only limited to symmetrical fuzzy triangular numbers, the proposed method in Guo & Tanaka

(2001) is not able to provide the efficiency values of DMUs (countries) in the current example.

Besides, the proposed model is able to provide the efficiency scores for not only the fuzzy CCR

model but also the fuzzy BCC and fuzzy FDH models by only using one linear programming

problem.

If one were to observe the proposed FEGDEA model across the forms, the CCR form registers

the lowest number of efficient DMUs, followed by the BCC and FDH forms (see Table 10). This has

its policy implications and depending on the level of scrutiny given to the model based on certain

impetus, such as a budgeting constraint, the DM may choose the appropriate form for his

implementation.  The  results  across  all  forms  can  also  be  interpreted  as  a  range  of  pessimistic  to

optimistic, with CCR being the former followed by FDH in the other extreme of optimism.

Furthermore, the proposed ranking method based on the proposed FEGDEA model provides the

super-efficiency values for those DMUs (countries) that they are efficient in each step and the adapted

FEGDEA model (9) using super-efficiency method is always feasible. These are the abilities of the

proposed method vs. Guo and Tanaka’s model (Guo & Tanaka, 2001).

7. Conclusion

In this paper, we show that it is more reasonable to integrate fuzzy expected value approach into the

GDEA as compared to integrating the fuzzy expected value in classical DEA models. The results of

our validation and model comparisons showed that the proposed model is able to handle asymmetric

fuzzy numbers, discriminate efficient DMUs better and avoid infeasibility problems when combined

with the super-efficiency method. In addition, our fuzzy expected GDEA model requires solving only

one linear programming problem, which would generate results for fuzzy expected CCR, fuzzy

expected BCC, and fuzzy expected FDH models in a unified way. Two numerical examples were used

to demonstrate the ability of the proposed model under both symmetrical and asymmetrical fuzzy

numbers. A third example on an energy dependency case was also used to demonstrate the

applicability of the proposed method under asymmetrical triangular fuzzy numbers. In short, it can be

concluded that the proposed method performs better than the other methods in terms of ease in

formulation, requiring less computational effort and sensibility in its discriminant and ranking

performance.



  

21

Acknowledgements

The  first  author  would  like  to  express  his  gratitude  for  the  Post-Doctoral  Fellowship  received  from

Universiti Sains Malaysia. The second author would like to acknowledge the research university

funding received under grant no. 1001/PMATHS/811261 which made this research possible.

Appendix A. The applicability of super efficiency technique in the adapted GDEA model as
compared to the DEA-BCC model

We  intend  to  show  in  the  following  example  that  the  efficient  DMUs  from  GDEA  models  can  be

discriminated better with the super-efficiency method as compared to if the later was applied to the

DEA-BCC model.

The super efficiency method in DEA-BCC model

Consider  Fig.  1  where  we  have  5 DMUs (A, B, C, D, and E) with single input and single output

(Chen, 2005). When the DEA-BCC model (1) is applied to these DMUs,  the efficiency values of

DMUs A, B, C, and E are equal to 1, whereas the efficiency value of DMU E is 0.273. This means

that DMUs A, B, C, and D are efficient and DMU E is inefficient (see Figure 1).

Fig. 1. Super-efficiency method in DEA-BCC (VRS) model

In order to discrimate among the efficient DMUs, one would run the super-efficiency model. The

super efficiency value ௢ indicates the allowable input savings per unit of cost at a given level ofߠ

output for the DMU under evaluation. For example, from Figure 1, the super efficiency value for ߠ

DMU B is equal to 31
21

, which is the input savings generated per unit of cost based on the difference

beween point  B' and B for the output level of 4. The x-coordinate of B' is 31
7

 and is derived from the
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convex combination of A and C indicating that the input of DMU B has an allowable increase from 3

to 31
7

, while remaining feasible.

The higher the value of ௢, the higher position of thatߠ DMU in the set of efficient DMUs.  The

super-efficiency scores of DMUs A, B, and C are 3, 31
21

, and 13
10

 respectively, but there is no feasible

solution for  the super efficiency model (3) when evaluating DMU D.  As  such, ௢ could not beߠ

computed for any potential cost savings. In addition, since DMU E  is  inefficient,  there  is  no

possibility for a convex combination to be formed to utilize more input for output level 5.

The super efficiency technique in the adapted GDEA model

The results of super-efficiency values for the proposed GDEA model (8) of DMUs A, B, C, and D are

14, 5.16, 1.62, and 3.5 respectively when solving for α = 6. Unlike the previous case of BCC-DEA

(model 3), model (8) is still feasible for DMU D. This is because solving model (8) for a particular

DMU does not depend on the input values of that DMU.

The  problem of  Figure  1  can  be  formulated  as  follow in  model  (8)  when  evaluating  the  super

efficiency of DMU D:

max D

( ). . 6 4 9As t d u vD £ + + ,

( )6 7Bd u vD £ + + ,

( )6 0.5 5Cd u vD £ + + ,

( )6Ed u vD £ + - ,
1u v- = ,

, 0u v ³ ,

where { }max 4 ,9Ad u v= , { }max ,7Bd u v= , { }max 0.5 ,5Cd u v= and { }max ,Ed u v= .

By considering constraint 1u v- = ,  it can be concluded that 1v u= - . Therefore the above LP

problem can be rewritten as follows:

max D
. . 78 54As t d uD £ + - ,

48 42Bd uD £ + - ,
33 30Cd uD £ + - ,
6EdD £ + ,

0u³ ,

where { }max 4 ,9 9Ad u u= - , { }max ,7 7Bd u u= - , { }max 0.5 ,5 5Cd u u= - and { }max ,u 1Ed u= - .

It is obvious that the above problem has a feasible solution. By solving the problem, we obtain the

following solution:
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1u = and 3.5D = .

It is worth noting that there are no input values of DMU D  used  in  the  above  formulation.

Constrastingly, model (3) is dependent on the input of the DMU under evaluation to compute the

super efficiency score, which causes infeasibility problems when there are no close efficient points to

form a convex combination. This is the ability of model (8) against model (3).

Appendix B.
Dataset of 23 European Union (EU) member countries (except Bulgaria, Luxembourg, Malta and Romania)
Countries Inputs Outputs

x1(thousand ton)
CO2 equivalent

x2
quantity of energy

y1
gross electricity (%)

y2( hundred million )
average annual emissions

y3
substituted fuel (%)

Austria (3.853, 3.859, 4.088) (4.105, 4.130, 4.143) (59.038, 61.363, 64.980) (0.3043, 0.3088, 0.3426) 29.7

Belgium (5.482, 5.570, 5.931) (5.501, 5.567, 5.719) (3.960, 4.359, 5.391) (0.5091, 0.5231, 0.5885) 4.6

Cyprus (5.129, 5.168, 5.931) (2.503, 2.544, 2.615) (0.080, 0.105, 0.241) (0.0530, 0.0540, 0.0555) 4.6

Czech Republic (9.118, 9.143, 9.958) (4.384, 4.445, 4.545) (5.278, 5.400, 6.535) (0.7843, 0.8141, 0.8609) 8.5

Denmark (4.127, 5.369, 5.892) (3.575, 3.742, 3.828) (24.109, 26.276, 26.757) (0.2551, 0.2890, 0.2967) 9.9

Estonia (11.869, 12.645, 17.731) (4.195, 4.263, 4.361) (2.744, 2.770, 5.642) (0.1054, 0.1282, 0.1510) 22.8

Finland (8.043, 8.074, 9.179) (6.531, 6.934, 7.151) (25.214, 26.613, 30.189) (0.3793, 0.3940, 0.4073) 30.3

France (2.339, 2.355, 2.595) (4.396, 4.450, 4.468) (12.655, 13.210, 13.641) (1.2194, 1.2219, 1.3136) 12.3

Germany (5.663, 5.681, 6.609) (4.148, 4.173, 4.201) (12.144, 14.079, 15.187) (4.6013, 4.6655, 4.9795) 9.8

Greece (6.153, 6.167, 6.650) (2.807, 2.812, 2.821) (6.221, 9.788, 12.606) (0.6710, 0.6905, 0.7343) 8.2

Hungary (2.867, 2.872, 3.226) (2.698, 2.709, 2.716) (4.447, 5.026, 6.174) (0.2480, 0.2552, 0.2895) 7.7

Ireland (4.510, 4.562, 4.636) (3.664, 3.671, 3.719) (10.202, 10.817, 12.493) (0.1981, 0.2014, 0.2238) 5.0

Italy (3.377, 3.528, 3.618) (3.082, 3.114, 3.162) (15.417, 16.020, 19.090) (2.1412, 2.1485, 2.4016) 8.9

Latvia (1.646, 1.649, 1.985) (1.967, 2.018, 2.063) (40.230, 41.122, 46.793) (0.0269, 0.0276, 0.0293) 34.3

Lithuania (2.495, 3.088, 3.667) (2.594, 2.622, 2.635) (3.890, 4.590, 5.196) (0.0574, 0.0610, 0.0633) 17.0

Netherlands (5.102, 5.122, 5.552) (4.949, 5.065, 5.164) (7.060, 7.440, 8.455) (0.7804, 0.8028, 0.8203) 4.1

Poland (5.981, 5.982, 6.661) (2.449, 2.534, 2.564) (3.632, 4.112, 5.195) (2.0363, 2.0363, 2.1277) 8.9

Portugal (3.326, 3.334, 3.766) (2.349, 2.469, 2.544) (28.999, 29.543, 34.383) (0.2931, 0.3063, 0.3181) 24.5

Slovakia (5.691, 5.694, 5.904) (3.399, 3.424, 3.485) (16.570, 16.609, 18.308) (0.2352, 0.2425, 0.2689) 10.3

Slovenia (4.101, 4.266, 4.285) (3.693, 3.697, 3.836) (26.492, 28.110, 33.534) (0.0856, 0.0870, 0.0927) 16.9

Spain (3.548, 3.683, 3.805) (3.230, 3.260, 3.356) (19.523, 20.841, 24.492) (1.6183, 1.6667, 1.8543) 13.3

Sweden (2.418, 2.421, 2.594) (5.417, 5.544, 5.597) (49.794, 52.610, 53.601) (0.1852, 0.1912, 0.2095) 47.3

United Kingdom (3.453, 3.467, 3.501) (3.671, 3.724, 3.764)   (5.063, 5.356, 6.250) (2.4735, 2.5119, 2.7460) 2.9
Note: Data from x1, y2 are gathered from Carbonmarketdata.com, whereas European commission’s Eurostat is the source for variables x2, y1 and
y3. The data has been scaled for the population size of each country gathered from the United Nations Department of Economic and Social Affairs.
Intelligent Insights International provide a compilation of sources to validate the above variables.
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