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1 History and context

he radial basis function (RBF) network is an adaptive
T network model introduced by Broomhead and Lowe [1]
which was motivated by the mathematics of approximat-
ing arbitrary continuous functions. This essay presents a personal
recollection and reflection of key ideas in the introduction, moti-
vation and evolution of the RBF network. The original article was
slow to be taken up by the community, but has now passed over
3,000 citations. Its popularity probably stems from its simplic-
ity combined with fundamental insights it offers in diverse and
difficult problem domains which has allowed it to transcend its
original motivation and be applied widely and successfully. For
detailed reviews with extensive references see [2] and [3].

In 1986 Dave Broomhead and I were working at the Royal
Signals and Radar Establishment in Malvern, UK. He was in the
Signal Processing and I was part of the Speech Research Unit.
It was at the time an intense environment of stimulating intellec-
tual activity on curiosity- as well as project-driven research, and
we were surrounded by many people across the speech, signal
and pattern processing domains who have since been responsi-
ble for world-leading major advances in these fields. It was an
exciting place to work rivalling the best university departments.
Although we were in different groups, we had known each other
since our time in the Physics Department at Warwick University,
and we were unofficially working together on our mutual desire to
understand the fundamental science behind the resurgent interest
in artificial neural networks. In fact, we were actually working
on another pet topic of Dave’s — non-linear dynamics. Specif-
ically, exploring a model of interactions between more conven-
tional neuron abstractions of coupled processing nodes using a
master-slave decomposition, and Haken’s synergetics framework.
However, after a typically serendipitous meeting, we were about
to drop that direction of work, always intending to revisit it at a
later time (unfortunately, we never did).

At that time, the artificial neural network field was strug-
gling with issues of inefficient implementations, and the optimi-
sation (learning, training) and generalisation of these intercon-
nected non-linear pattern processing machines. It was the time of
the popularisation of backpropagation — the recursive use of the
chain rule to evaluate the local function gradient coupled with a
simple steepest descent algorithm for reducing an error function
by iteratively modulating the many parameters (weights) in these
multilayer perceptrons. We were seeking an alternative viewpoint
to the empiricism dominating the field.

It was around this time that Dave had returned from one of his
overseas research visits excited about a talk he had attended on
function interpolation over infinite regular lattices. The talk that
inspired Dave was by M.J.D. Powell of the Cambridge Numeri-
cal Analysis Group. Regular readers of Mathematics Today will
recall Mike Powell as a recipient of the Catherine Richards Prize
for best article in Mathematics Today in 2007 [4]. To complete
the cycle of coincidence, it was Mike Powell visiting the RSRE
Speech Research Unit in the mid 1980s who made us aware of
more appropriate non-linear optimisation approaches for optimis-
ing the multilayer neural models, including the conjugate gradient
and quasi-Newton algorithms, which we developed and adapted,
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and that we still use today, and are distributed freely as part of
the Aston Netlab software [5]. It is with sadness we note that
Professor Powell also recently passed away on 19 April 2015.

Dave’s serendipitous attendance at Mike Powell’s talk on in-
terpolating functions over lattices, gave us the insight on neural
networks that we had been seeking. The formal summary of this
thesis was publicly published in Complex Systems in 1988 [1]
(also released as RSRE Memorandum no. 4148).

2 The radial basis function: strict interpolation
and function approximation

The primary motivation was the ongoing fundamental mathemat-
ical work into the theory of approximating continuous functions
by interpolating across known lattice points, principally driven by
Powell [6] and Micchelli [7]. In the case of scattered data inter-
polation where the lattice points are replaced by distinct observed
data points, the formal mathematical question addressed by this
activity was:

Problem: Given a set of m distinct vectors (data points),
{x;;0 = 1,2,...,m} in R™ and m real numbers {f;;i =
1,2,...,m}, find a function s : R™ — R which satisfies the
interpolation conditions: s(x;) = fi,i=1,2...m.

Note that in this problem the function s(x) is constrained to
exactly fit the given data points. This is known as strict function
interpolation. The method of solution to this problem taken by
Powell et al. using RBFs was to construct a weighted linear com-
bination of non-linear basis functions ¢;(x) which were functions
of « but centred on the set of specific discrete points, x;, and thus
could be expressed as ¢(||x — x;||). The vectors @; were con-
sidered to be the centres of the basis functions. In terms of these
basis functions, a class of interpolating functions was constructed
of the following form:

s@) =) No(le —ll), =R
j=1

The unknown parameters \; need to be determined by optimis-
ing the model to the data points. Intuitively, around each data
point we place a basis function overlapping with all other ba-
sis functions, weighted by an adaptable parameter to recreate the

Figure 1: A pictorial representation of the RBF network revealing
its role as a feed-forward adaptive network structure.



unknown function assumed to have generated the data points. In
other words, a flexible fitting surface has been generated using
a finite set of random functions, tunable to a given finite set of
data points.

The advantage of this approach was that the solution of the
above (generally non-linear!) interpolation problem is specified
using simple linear optimisation. We can see this by inserting the
above defined radial basis interpolation function into the interpo-
lation conditions (i.e. the requirements that s(x;) = f;), to give
a set of linear (in the unknown parameters \;) equations:
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or, in matrix form: AX = f, where A is a square matrix
with elements A;; = o(|x; — x;),4,5 = 1,2,...,m, A =
(M,---sAm) and f = (f1,..., fm). For a very broad class
of basis functions and very general conditions, the interpolating
matrix A is non-singular and hence its inverse exists. Thus, the
equation can be simply solved to determine the unknown mixing
parameters as A = A~Lf.

This framework easily extends to functions which map into
more than one dimension where the desired interpolated points
are in n’ dimensions instead, i.e. f; € R”', sothat s : R" — R™ .
This now means that we need a different weighting parameter for
each one of the n’ dimensions as well. The only difference to the
above is that the output values are now vectors instead of scalars,
and there is now a vector of parameters to fit each kth dimen-
sion as
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Again, as a matrix equation this can be written as AA = F,
where A is defined as before, and now A is a square matrix of
fitting parameters (instead of a vector) Ajr = A, and F' =
(f1,..., fm) is the set of m vectors to be interpolated. Again,
the unknown parameters can be obtained by matrix inverse tech-
niques: A = A~'F.

However, even though the set of training patterns
{(z;, fi),7 = 1,...,m} determines the fitting parameters di-
rectly, this approach has several disadvantages, conceptually and
computationally. Note that its complexity increases linearly with
the volume of data since there is one RBF centre used for each in-
put data point, and so for larger networks the computational cost
increases non-linearly (due to the increased cost of computing

an inverse matrix). However the main disadvantage arises when
this approach is used to analyse real data, for which we need the
machine learning version of the RBF network.

3 The radial basis function network model:
approximate interpolation

A significant conceptual downside of the approach is that the re-
quirement to exactly fit a finite set of data points, also means that
any noise fluctuations in the observations would distort the fitting
surface to unreasonably pass through all the data points, includ-
ing all the random noise fluctuations. Therefore, to accommodate
noise and uncertainty in observations, the strict interpolation con-
ditions needed to be relaxed, since otherwise the fitting function
will exactly fit all the noise fluctuations rather than approximate
the data generator of interest.

So the suggestion was to distinguish the centres from the
m observed data points and thus allow a different number, ng
of centres than data points (y;,7 = 1,...,no, where typically
nog < m). These ng centres could now be selected or optimised
at convenient positions in data space to represent the data distri-
bution. This has the effect of regularising the fitting function pro-
ducing a smoother interpolation surface in the data space. Now
the interpolating problem becomes over specified, the interpolat-
ing matrix A above is no longer square and the previous unique
exact matrix inverse solution becomes an approximate linear op-
timisation problem.

An additional useful modification was to introduce a set of
constant offsets to compensate for the bias in each output dimen-
sion, Aok, into the framework. These compensate for the differ-
ence between the average value over the data set of the RBF net-
work outputs and the corresponding average value of the targets.

This led to the machine learning version of the RBF network
in the form

se(@) =Y Apo(lz—y,ll), k=1,...,n", (D)

Jj=0

where © € R", y; are the selected basis function centres
(fixed, and now generically distinct from the data points &) and
(]l — yo||) = 1 and is visually represented in Figure 1.

In this form the RBF approach maps over to an adaptive net-
work model in which the centres form the (fixed) parameters of
the first layer of the network, the weights and biases A form
the parameters of the final layer weights, and the basis function
o(...) represents the non-linearity on each hidden node. Instead
of a scalar product between the input data pattern and the first-
layer weights as would typically be used in a multilayer percep-
tron neural network, the RBF network used a distance function
|lz — y|| which has often been assumed to be Euclidean, but
this is not essential and indeed it need not even be a positive-
definite metric. Similarly, the basis function has often been as-
sumed to be local and Gaussian. However, this assumption is
incorrect and indeed can be a bad choice due to its very poor
numerical convergence properties in dense systems. In the orig-
inal paper we demonstrated analytic solutions to classically hard
problems using non-local basis functions, as well as the Gaus-
sian non-linearity. Using non-local (and non positive definite)
basis functions still allows the network response as a whole to
locally interpolate the data space and with improved numerical
convergence.
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One of the advantages of the RBF network is that the first-
layer weights {y;,7 = 1,...,n¢} may often be determined or
specified by a judicious use of prior knowledge, or estimated
by simple techniques permitting the linear optimisation of the
model.

Figure 2 depicts a simple example of the interpolation prop-
erties of the RBF network which illustrates a set of 20 data points
sampled from a sine wave and corrupted by additive noise. Using
just these data samples, the output of the optimised RBF for differ-
ent numbers of randomly chosen spline basis functions is shown
for different network complexities. For 20 centres the RBF fits
exactly all the data points, which includes all the random noise
fluctuations as well. For just three centres selected, the fit is
almost a straight line, and for seven centres the RBF is closely
approximating the original generating function. The complexity
of the network is one way used to regularise the RBF network
solution.

> data
==function
RBF 7 centres
RBF 3 centres
= RBF 20 centres
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Figure 2: Simple illustration of interpolating a function (a sine
wave) using a RBF network based on 20 noisy observations gen-
erated from the sine wave. The figure shows under- and over-

fitting as the complexity of the model is varied.
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Figure 3: The RBF network interpolation function on the clas-
sical XOR problem. ‘X’ (#) denotes even parity class and are
contained within the 0.1 blue-spectrum contour lines, and ‘O’ (e)
represents the odd parity class contained within the 0.9 red-
spectrum contour boundary lines. This is not linearly separable,
but is separable by the RBF as shown by the contour lines.

In our original paper we analytically derived the interpolat-
ing problem appropriate for the XOR problem. The XOR prob-
lem is a classic example of a non-linearly separable problem.
However, Figure 3 depicts a RBF interpolating surface which
correctly separates out the even and odd parity points, showing
both its capacity for clustering as well as its mode of solution
of using interpolating surfaces constructed from random non-
linear functions. In this figure the interpolating function exactly
passes through the four data points with a value of 0 on the sur-
face if the input points are even parity, and a value of 1 if the
two input values are of odd parity. The interpolating surface rep-
resents a continuous generalisation of the binary XOR problem.
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So, as an adaptive network model, the RBF network provided
insight at several levels. Learning by neural networks became
curve fitting to a high-dimensional surface generating the ob-
served data. Thus, the awkward issue of generalisation in such
learning machines was then posed as interpolation between the
known data points along the surface defined by the RBF network.
Moreover, the tricky problem of multiple local minima in the gra-
dient descent algorithms of training multilayer perceptron models
leading to unsatisfactory solutions, was instantly circumvented
in the class of RBF networks since, although it could univer-
sally approximate arbitrary non-linear functions, its optimisation
algorithm had the known convergence properties of linear least
squares optimisation.

The amazing thing is that this simple RBF approach to func-
tion interpolation is computation universal [8] (and in fact any
non-pathological function on a bounded domain may be interpo-
lated using a finite number of such basis functions), has known
mathematical convergence properties, and is amenable to ef-
ficient computational techniques with known globally optimal
properties.

4 Conclusion

This brief article has provided a personal view on the original mo-
tivations and introduction of the RBF network, with some histori-
cal perspective and context. Its longevity is not due to its capabil-
ity, but more to the fundamental insights and interpretations that
the overall framework provides. This has allowed it to evolve be-
yond its original motivations from deterministic function fitting,
to include statistical perspectives, machine learning insights, to-
pographic visualisation and, more recently, as a cascaded model
for deep layer big data classification [9]. The RBF network still
has insights to deliver.

Would Dave Broomhead have been surprised? I suspect not.
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