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Dimensioning BCH Codes for Coherent DQPSK

Systems with Laser Phase Noise and Cycle Slips
Miu Yoong Leong, Knud J. Larsen, Gunnar Jacobsen, Sergei Popov, Darko Zibar, and Sergey Sergeyev

Abstract—Forward error correction (FEC) plays a vital role
in coherent optical systems employing multi-level modulation.
However, much of coding theory assumes that additive white
Gaussian noise (AWGN) is dominant, whereas coherent optical
systems have significant phase noise (PN) in addition to AWGN.
This changes the error statistics and impacts FEC performance.
In this paper, we propose a novel semi-analytical method
for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH)
codes for systems with PN. Our method involves extracting
statistics from pre-FEC bit error rate (BER) simulations. We
use these statistics to parameterize a bivariate binomial model
that describes the distribution of bit errors. In this way, we
relate pre-FEC statistics to post-FEC BER and BCH codes. Our
method is applicable to pre-FEC BER around 10

−3 and any
post-FEC BER. Using numerical simulations, we evaluate the
accuracy of our approach for a target post-FEC BER of 10

−5.
Codes dimensioned with our bivariate binomial model meet the
target within 0.2 dB signal-to-noise ratio (SNR).

Index Terms—Forward error correction (FEC), Bose-
Chaudhuri-Hocquenghem (BCH) codes, coherent communica-
tions, phase noise, cycle slips.

I. INTRODUCTION

C
OHERENT optical systems using multi-level modulation

have attracted great interest due to their potential to

increase capacity. However, such systems are more suscep-

tible to noise and distortions e.g. additive white Gaussian

noise (AWGN), laser phase noise (PN), fiber nonlinearities,

chromatic dispersion, implementation losses, etc. Depending

on the impairment, digital signal processing (DSP) may or

may not be suitable to compensate it. For example, chromatic

dispersion lends itself well to DSP compensation [1], whereas

polarization-dependent gain of Raman amplifiers does not [2],

[3]. In the case of laser PN, older analog amplitude shift

keying (ASK) systems compensate this by adjusting receiver

bandwidth [4], whereas modern coherent systems use DSP.

The use of DSP in coherent systems means that a structure
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exists, into which forward error correction (FEC) can be easily

incorporated.

We consider FEC for coherent systems with laser PN.

Traditionally, FEC codes are designed for AWGN channels [5],

[6]. In the case of laser PN, various methods for estimating and

compensating PN have been investigated [7]–[10]. However,

all methods have a non-zero probability of cycle slips. These

affect system performance differently, depending on whether

or not differential encoding is used. Typically, differential

encoding is used when cycle slips occur frequently, and not

used when cycle slips occur infrequently.

When differential encoding is not used (e.g. Quadrature

Phase Shift Keying (QPSK)), cycle slips give catastrophic

burst errors after demodulation. The task is then to mitigate

these burst errors. In [11], the authors propose a method

to detect the occurrence of cycle slips. Once detected, the

direction of the cycle slip (+π/2 or −π/2) is determined

from the subsequent phase trajectory, and a correction is

applied to the affected symbols. In [12], pilot symbols are

periodically inserted in order to limit the length of burst errors.

A FEC code is then used to correct the errors. Alternatively,

instead of performing demodulation and decoding separately,

joint coding and modulation can be used. In [13], a coded

modulation scheme using low-density parity-check (LDPC)

codes is proposed for coherent optical systems with PN.

When differential encoding is used, differential decoding in

the receiver corrects the subsequent errors, leaving a single

symbol error at the position of each cycle slip. However, the

drawback with differential decoding is that each AWGN error

gives two symbol errors instead of one. The presence of single-

and double-errors changes the error statistics and thereby FEC

performance. This is considered for coherent optical systems

using LDPC codes in [14]–[16]. In [17], we present semi-

analytical methods for dimensioning binary Bose-Chaudhuri-

Hocquenghem (BCH) and Reed-Solomon (RS) codes for sys-

tems with PN. These codes are well-understood, systematic to

construct, and highly predictable. Decoding is straightforward,

making them particularly suitable for low-complexity imple-

mentations. Furthermore, unlike LDPC codes, BCH codes do

not have an error floor. The method for dimensioning binary

BCH codes in [17] assumes that bit errors have a univariate

binomial distribution.

In this paper, we extend our previous publication on BCH

codes for PN in two significant ways: 1) we propose a novel

method for dimensioning binary BCH codes based on a bivari-

ate binomial distribution, and 2) we present numerical simu-

lations to compare the accuracy of our bivariate model with

the univariate model in [17]. Our approach involves extracting
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Fig. 1. System model. A random bit sequence is BCH encoded, differentially
encoded, and QPSK modulated, yielding signal s[k]. Channel impairments
are transmitter laser PN θT [k], AWGN n[k], and local oscillator (LO) laser
PN θR[k]. Phase estimation on the received signal r[k] is by Viterbi-Viterbi
(VV). Finally, the signal is QPSK demodulated, differentially decoded, and
BCH decoded.

parameters from pre-FEC simulations. With these estimates

and a given post-FEC bit error rate (BER) target, we determine

a suitable code analytically. We aim to correct a pre-FEC BER

of around 10−3. In this paper, we use Differential Quadrature

Phase Shift Keying (DQPSK) modulation. Nevertheless, the

principles are general and we expect to extend our method to

differential M -ary Quadrature Amplitude Modulation (QAM)

in the future. Ours is a straightforward method, based on a

simple model, that enables us to calculate the performance of a

low-complexity binary BCH coding scheme for any post-FEC

BER with little simulation effort. Compared to our method, the

approaches presented in [15], [16] achieve better performance

by using soft information. However, those schemes are far

more complex to implement, and require extensive simulations

for low post-FEC BERs.

This paper is organized as follows: the system model and

method for code selection are described in Sec. II. Simulation

results and discussion are presented in Sec. III, and the

conclusion is in Sec. IV.

II. SYSTEM MODEL AND CODE SELECTION

We consider a single-polarization coherent optical system

with baseband-equivalent model shown in Fig. 1. The trans-

mitted signal s[k] is DQPSK modulated, where “00” maps to

a phase shift of 0 radians, “01” to π/2, “11” to π, and “10”

to −π/2. The received signal r[k] is

r[k] = s[k]e(jθT [k]+jθR[k]) + n[k] , s[k]ejθN [k] + n[k], (1)

where θT [k] is transmitter phase noise (PN), θR[k] is local

oscillator (LO) PN, n[k] is AWGN, and j =
√
−1. The

total laser PN θN [k] , θT [k] + θR[k] is a Wiener process

θN [k] = θN [k − 1] + ∆θN [k]. The phase changes ∆θN [k]
are independent identically distributed (i.i.d.) Gaussian random

variables with zero mean and variance 2π∆νNTS . The total

linewidth ∆νN = ∆νT +∆νR, where ∆νT and ∆νR are the

Lorentzian power spectrum full width half maximum (FWHM)

linewidths of the transmitter and LO lasers. Symbol time is

TS and initial phase θN [0] is uniformly distributed [−π, π).
In the receiver, a commonly-used phase estimation algo-

rithm is Viterbi-Viterbi (VV) [18]. Several variations of the

algorithm exist [19], including the use of Wiener filtering [10]
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Fig. 2. “Ideal PE pre-FEC” means PN is ideally removed. This is the
theoretical BER for coherently demodulated DQPSK with AWGN only. There
are no cycle slips; all errors are due to AWGN. “Poor PE pre-FEC” is an
example when PN is not ideally removed. Errors are a combination of AWGN
and cycle slips. The SNR is for symbols r[k] in Fig. 1.

and the low-complexity Barycenter approximation [20]. In this

paper, we choose the original VV [18] as a reasonable starting

point for our investigations, and leave detailed comparison of

the influence of other VV-based algorithms for future studies.

As such, our phase estimate is

θ̂[k] =

(

unwrap

[

arg

(

k+N
∑

i=k−N

r4[i]

)])

/

4. (2)

Unwrapping keeps phase jumps within [−π, π) by adding

integer multiples of 2π. The signal r[k] exp(−jθ̂[k]) is then

coherently demodulated and differentially decoded. The model

in Fig. 1 is easily extended to dual-polarization by duplicating

all blocks. These operate independently for each polarization

except transmitter PN and LO PN, which are the same for

both polarizations.

To relate pre- and post-FEC BER to binary BCH codes, we

first use pre-FEC simulations to define an operating range.

For a given laser linewidth-symbol time product, ∆νNTS ,

there is an optimum N in (2) that yields performance closest

to “ideal phase estimate (PE) pre-FEC” in Fig. 2. However,

after optimization, any increase in ∆νN degrades performance.

Based on the ∆νN variations that we want to accommodate,

we simulate a worst-case “poor PE pre-FEC” curve. For a

point on this curve, we record error statistics and dimension

codes based on those statistics to achieve a target post-FEC

BER.

We record the following error statistics: 1) probability

of AWGN error pG, 2) probability of cycle slips pC , and

3) correlation coefficient ρ. The rest of this paragraph describes

how we estimate pG, pC , and ρ. For a code of block length

nB,S bits, we divide the pre-FEC bit error sequence into blocks

of that length. For the m-th block, we extract the probability

of AWGN error pG[m] and probability of cycle slips pC [m] by

classifying errors based on their error patterns. For gray-coded

DQPSK, an AWGN error of ±90o gives bit error patterns
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{11, 101, 1001} with probability
[

0.25 0.5 0.25
]

. A cycle

slip of ±90o gives one bit error. The mean probability of the

AWGN error is

pG =
1

M

M
∑

m=1

pG[m], (3)

where M is the number of blocks used in pre-FEC BER

simulations. Similarly, the mean probability of cycle slips is

pC =
1

M

M
∑

m=1

pC [m]. (4)

This gives pre-FEC BER ppre = 2pG + pC . The sample

correlation coefficient is [21]

ρ =

∑M
m=1 (pG[m]− pG) (pC [m]− pC)

√

∑M
m=1 (pG[m]− pG)

2∑M
m=1 (pC [m]− pC)

2
. (5)

To relate these error statistics to binary BCH codes, we

adopt the following model. Let the number of AWGN error

patterns that occur in a block be represented by the random

variable YG, and the number of cycle slips in a block by the

random variable YC . We assume that the occurrence of AWGN

error patterns can be modeled as a sequence of Bernoulli trials

(biased coin tosses) with probability pG. Then YG is binomial

distributed with probability pG and number of trials nB,S .

Similarly, YC is binomial distributed B(nB,S , pC). Further-

more, due to the influence of AWGN on phase estimation

((1)–(2)), YG and YC are correlated. The joint probability

density function (PDF) of random variables YG and YC , with

correlation ρ, and marginal distributions B(nB,S , pG) and

B(nB,S , pC) is given by [22]

Pr(YG = yG, YC = yC)

=

(

nB,S

yG

)

pyG

G (1− pG)
nB,S−yGf(yC |yG),

(6)

where

f(yC |yG) =
∑

(γG,γC)∈Γ

(

yG
γG

)(

nB,S − yG
γC

)

· {pC + α(pC − pG) + α}γG

· {1− pC − α(pC − pG)}yG−γG

· {pC + α(pC − pG)}γC

·
[

1− pC − α(pC − pG) + α

1 + α

]nB,S

· {1− pC − α(pC − pG) + α}−yG−γC ,

(7)

Γ is the set of (γG, γC) such that

Γ ={(γG, γC) :
γG + γC = yC ;

γG = 0, 1, . . . , yG;

γC = 0, 1, . . . , nB,S − yG},

(8)

and

α =

[

1

ρ

√

pG(1− pG)

pC(1− pC)
− 1

]−1

. (9)
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Fig. 3. Joint PDF Pr(YG = yG, YC = yC) (6) at “poor PE pre-FEC” circle
in Fig. 4. Block length nB,S = 8190 bits. The volume under the filled balls
is the probability of a non-decodable word (10) for a code that can correct
τ = 19 bit errors.

The joint PDF of YG and YC is shown in Fig. 3.

A full-length binary BCH code BCH(nB , kB) corrects τ bit

errors with block length nB = 2µ − 1 and nB − kB ≤ µτ
parity-check bits [23]. This is provided that µ ≥ 3 and

τ < 2µ−1, with µ being an integer. The code can be shortened

by lB bits to BCH(nB,S , kB,S), where nB,S = nB − lB ,

kB,S = kB − lB , and nB,S − kB,S ≤ µτ . Full-length

codes are a special case of shortened codes where lB = 0.

The decoding algorithm is assumed to be of the bounded-

distance type correcting up to τ errors and leaving the received

sequence unchanged in the case of more than τ errors. We

neglect the possibility of decoding to a wrong codeword since

this is (1/τ !) Pr(more than τ errors). The first factor is very

small with the relevant τ (cf. Table I) and it is a good

approximation of the ratio between the number of syndromes

needed to correct up to τ errors and the total number of

possible syndromes, 2nB−kB , [24]. Thus, the probability of

a non-decodable word is the area under the tail of (6),

PB,W =
∑

(yG,yC :2yG+yC≥τ+1)

Pr(YG = yG, YC = yC). (10)

A factor of 2 multiplies yG because AWGN error patterns have

2 bit errors.

Assuming nB,Sppre ≪ τ , we may approximate the prob-

ability tail by the terms along the filled/unfilled boundary in

Fig. 3. This yields

PB,W ≈
∑

(yG,yC :τ+3≥2yG+yC≥τ+1)

Pr(YG = yG, YC = yC).

(11)

Three terms are needed to define the boundary in (11) because

the bivariate PDF (Fig. 3) is two-dimensional.

Post-FEC BER is

PB,post ≈
(

τ + 1

nB,S

)

PB,W . (12)

Using pG, pC , and ρ obtained from pre-FEC simulations and

(11)–(12), we calculate the required τ to meet a target post-

FEC BER for a chosen block length nB,S . The combination

nB,S and τ specifies the BCH code.
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Fig. 4. “Poor PE pre-FEC” is the same as in Fig. 2. We dimension codes for
“poor PE pre-FEC” triangle (signal-to-noise ratio (SNR) 10 dB) and circle
(SNR 12 dB). “Bivariate” means codes were dimensioned using the method in
Sec. II, and “univariate” means [17]. The codes used for post-FEC simulations
are listed in Table I.

III. RESULTS AND DISCUSSION

We evaluate our method using Monte-Carlo simulations for

the system in Fig. 1. The symbol rate is 1/TS = 28 Gbaud and

∆νN < 100 kHz works well with VV filter N = 20 (2). For

the limiting case, we simulate “poor PE pre-FEC” in Fig. 4

using laser linewidths ∆νT = ∆νR = 9.8 MHz. Pre-FEC

BER and error statistics (described in Sec. II for the bivariate

model and [17] for the univariate) are calculated using 106

bits. Simulations are modeled in VPI [25].

In our example, we aim for a target post-FEC BER of

10−5 using block length nB,S = 8190 bits. We dimension

codes for two points on the “poor PE pre-FEC” curve, marked

with triangle and circle in Fig. 4. For each point, we apply

1) the bivariate model (Sec. II), and 2) the univariate model

[17] where bit errors are assumed to be a sequence of i.i.d.

Bernoulli trials (biased coin tosses) with bit error probability

ppre = 2pG + pC . This yields four different codes, as listed

in Table I. Codes for the circle require less overhead than

those for the triangle. This is because the circle has lower

pre-FEC BER. Codes based on the bivariate model have

higher overhead than the univariate model. This is because the

univariate model assumes i.i.d. bit errors, whereas the bivariate

model includes two correlations: 1) an AWGN error pattern

gives two bit errors (100% correlation), and 2) the correlation

coefficient ρ (5), which is positive. As such, bit errors in the

bivariate model tend to bunch together—blocks with errors

have many errors—and thus require stronger codes.

Post-FEC simulations in Fig. 4 use the codes in Table I.

Post-FEC BER is calculated using 107 post-FEC bits due

to simulation limitations. Codes dimensioned using the uni-

variate model have a post-FEC BER of about an order of

magnitude worse than target. By contrast, codes dimensioned

using the bivariate model have performance well within an

order of magnitude of the BER target. This indicates that

TABLE I
CODES USED FOR POST-FEC SIMULATIONS IN FIG. 4. OVERHEAD IS

(nB,S − kB,S)/kB,S .

Post-FEC curve in Fig. 4 Code τ Overhead (%)

Circle, univariate BCH(8190,8008) 14 2
Circle, bivariate BCH(8190,7943) 19 3
Triangle, univariate BCH(8190,7462) 56 10
Triangle, bivariate BCH(8190,7345) 66 12

the bivariate PDF more accurately models the system. The

post-FEC bivariate circle is a factor of three higher than the

target, and the triangle is a factor of six higher. While this

difference is small, it is more than can be attributed to the

approximation in (11), and further investigations are needed

to understand it. Since a stronger code is used for the triangle,

its post-FEC curve is steeper. Both bivariate codes meet the

BER target with around 0.2 dB additional SNR. This would

be a negligible difference in practical systems. In other words,

using our bivariate model enables us to select binary BCH

codes with minimum overhead that achieve performance close

to target.

A system with lower post-FEC BER target would require

higher overheads. This is because the volume under the filled

balls in Fig. 3 must be smaller and τ larger. A lower target

also improves the accuracy of the leading-order approximation

in (11), i.e. approximation error is less at practical post-FEC

BERs of 10−15 than in our example with 10−5. Additionally,

unlike methods that rely solely on simulations to dimension

codes, the simulation effort required by our method is modest

and does not depend on target post-FEC BER.

As the bivariate model more accurately describes the sys-

tem, it may also be useful for accurately dimensioning RS

codes. A key difference between binary BCH codes and RS

codes is that binary BCH codes operate on bits whereas RS

codes operate on symbols. As such, RS codes are less efficient

than binary BCH codes in correcting single-bit errors, but

more efficient for short burst errors. As typical RS codes have

symbol sizes of 8 to 12 bits, most AWGN errors affect one

symbol, but some affect two symbols. When selecting RS

codes, both cases must therefore be considered. Correlation

between AWGN errors and cycle slips affects code selection

if error bursts are compact in time. The exact expressions for

dimensioning RS codes are a topic for future research.

IV. CONCLUSION

In this paper, we present a semi-analytical method for

dimensioning binary BCH codes. Our method is applicable

to differentially-encoded coherent systems impaired by laser

PN, cycle slips, and AWGN. Our approach requires only short

pre-FEC simulations for parameter estimation. With these

estimates and target post-FEC BER, we select codes based

on our novel bivariate binomial distribution. Our approach

is applicable to pre-FEC BER around 10−3 and any post-

FEC BER level. As an example, we consider 28 Gbaud

DQPSK and linewidths ranging from < 100 kHz to 19.6 MHz.

Numerical simulations show that the bivariate model predicts

code performance at post-FEC BER 10−5 to an accuracy of 0.2
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dB SNR. In other words, our method accurately predicts code

performance without requiring lengthy post-FEC simulations.

Our approach is novel, general, and easily adapted to dif-

ferent phase estimation algorithms and laser linewidth ranges.

It facilitates low-complexity implementations using (cheap)

lasers with high PN, even in high-performance coherent sys-

tems requiring any low post-FEC BER (e.g. down to 10−15

and below). Future research includes extending our investi-

gations to interleaving, RS codes, higher-order modulations,

and the influence of equalization-enhanced phase noise [26].

Other possibilities include applying the bivariate model to the

design of new coding schemes, and evaluating the influence

of different Viterbi-Viterbi (VV)-based algorithms e.g. [10],

[19], [20].
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