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Abstract: Spectrally modulated Airy-based pulses peak amplitude
modulation (PAM) in linear dispersive media is investigated, designed,
and numerically simulated. As it is shown here, it is possible to design the
spectral modulation of the initial Airy-based pulses to obtain a pre-defined
PAM profile as the pulse propagates. Although optical pulses self-amplitude
modulation is a well-known effect under non-linear propagation, the de-
signed Airy-based pulses exhibit PAM under linear dispersive propagation.
This extraordinary linear propagation property can be applied in many kinds
of dispersive media, enabling its use in a broad range of experiments and
applications.
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1. Introduction

Airy solutions of the Schrödinger equation were proposed in 1979 [1] within the context of
quantum mechanics. In optics, Airy wave-packets were first introduced in the context of spatial
optics Airy beams [2, 3] , and the corresponding non-linear dynamics were presented in [4, 5].
These ideas have also been applied in temporal optics, where the unique propagation proper-
ties of temporal Airy-based pulses has been recently investigated in both linear and non-linear
media, namely in linear light bullets [6, 7], soliton pulses generation [8], Airy-soliton interac-
tion [9], supercontinuum generation [10], spectrum to distance mapping [11], linear dispersive
invariant propagation by flat-topped spectrum Airy-based pulses [12,13], and linear dispersive
attenuation invariant propagation by Airy-based “rocket” pulses [14]. In a similar way to op-
tical solitons [15], optical Airy pulses exhibit temporal propagation invariance of the temporal
intensity as it propagates through a linear dispersive media during a limited propagation path,
until a “critical point” where the pulse breaks up [16]. However, while solitons invariant prop-
agation is due to non-linear effects of the medium, Airy-based pulses invariant propagation is
based on linear effects.

Here, the properties of peak amplitude modulation (PAM) of spectrally modulated Airy-
based pulses in linear dispersive medium are analysed, designed, and numerically simulated.
In non-linear dispersive media, self-amplitude modulation [17] is a well known effect, where
the amplitude of the pulse is modulated as it propagates due to both non-linear effects and
dispersion. However, only linear effects are involved in the PAM effect of the proposed Airy-
based pulses. Moreover, the PAM profile can be pre-defined with some degree of accuracy by
applying the proposed design process. As it is illustrated in Fig. 1, the pulse peak intensity is
modulated as it propagates through a linear dispersive medium following a pre-defined profile
(oscillatory profile example shown in the figure).

In the reminder of this Letter, the theoretical basis of the customizable linear dispersive PAM
of the proposed Airy-based pulses is shown. In the examples, several spectrally modulated Airy-
based pulses are designed and numerically simulated to obtain 4 pre-defined PAM profiles.
Finally, the work is summarized and concluded.
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Fig. 1. Illustrative representation of the linear dispersive PAM of the Airy-based pulse (ex-
ample of oscillatory pre-defined PAM). The propagation delay is not represented for a clear
visualization of the PAM.

2. Principle

The chromatic dispersion effect of a linear dispersive media section with length z can be
modelled as a phase-only filterHD(ω ,z) = exp(− jβ (ω)z) , whereω is the base-band an-
gular frequency, i.e.,ω = ωopt −ω0, ωopt is the optical angular frequency,ω0 is the central
angular frequency, j is the imaginary unit, andβ (ω) is the propagation constant as a func-
tion of ω . β (ω) can be approximated as a Taylor expansion until the second order ofω ,
β (ω) = β0 +β1ω +β2ω2/2, whereβi = diβ (ω)/dω i at ω = 0. An ideal Airy pulse propa-
gated through a dispersive medium can be expressed [13]:

Fprop(ω ,z) = A(ω)HD(ω ,z) = A(ω −∆ω(z))exp(− j(∆t(z)ω +φ(z))) (1)

whereA(ω) = exp( jξ ω3) represents the Airy pulse in the spectral domain [18], withξ is
a real constant number,Fprop (ω ,z) represents the spectral function of the propagated pulse as

a function ofz, φ (z) = β0z− ξ
(

β2z
6ξ

)3
represents an added constant phase term [13],∆t(z) =

3ξ ∆ω(z)2+β1z represents a temporal shift due to the propagation delay [13], and:

∆ω(z) =
β2z
6ξ

(2)

represents a dispersive spectral shift [13] of the Airy pulse.
The proposed spectrally modulated Airy-based pulse can be expressed as:

AM(ω) = M(ω)A(ω) = M(ω)exp( jξ ω3) (3)

, whereM(ω) is a spectral modulation term that must be designed to obtain a pre-defined
PAM profile. Using Eq. (1), we can deduce the effect of propagation in a lossy dispersive
medium section with length z:

FM,prop (ω ,z) = AM (ω)HD (ω ,z)HA (ω ,z) =
= M (ω)A(ω)HD (ω ,z)HA (ω ,z) =
= M (ω)HA (ω ,z)A(ω −∆ω (z))e−j(∆t(z)ω+φ(z))

(4)

whereHA(ω ,z) represents the transfer function of the losses of the medium section with
lengthz.
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Joint time-frequency representations constitute as a very useful method to analyse and vi-
sualize the effect of optical pulses propagation in different kinds of optical media [13, 19, 20],
where the temporal distribution of the spectral components of optical signal are represented
in 2D. Note that these spectral components do not refer to spatial frequencies, but to the fre-
quency components of the temporal waveform. In [13], it was shown that the Airy-based pulses
parabolic time-frequency distribution remains invariant, and it is only affected by a simulta-
neous time-frequency shift,∆t(z), ∆ω(z), of the whole time-frequency distribution. As it is
illustrated in the time-frequency distribution shown in Fig. 2, the spectral components corre-
sponding to the main lobe of the Airy-based pulse are centred at∆ω(z). In temporal domain,
the main lobe pulse has a full width half maximum (FWHM) that can be numerically calculated
asFWHMt =

∣

∣2.35ξ 1/3
∣

∣. From this, we can approach the main lobe spectral width,δω , as the
corresponding spectral full width half maximum (FWHM) of the main lobe:

δω ∼= FWHMω = 4log(2)/FWHMt =
∣

∣

∣
1.2ξ−1/3

∣

∣

∣
(5)

whereFWMHω is approached as the spectral FWHM of a Gaussian function with same
FWHMt as the main lobe. By using the Parseval theorem, we can approximate the energy of
the main lobe of the propagated pulse atz, Eml(z), considering the energy spectral density of

the propagated pulse
∣

∣FM,prop(ω ,z)
∣

∣

2
= |M (ω)HA (ω ,z)|2, and the integration interval defined

by the main lobe spectral range|ω −∆ω(z)|< δω/2:

Eml (z)≈
∆ω(z)+ δω

2
∫

∆ω(z)− δω
2

∣

∣FM,prop (ω ,z)
∣

∣

2
dω =

=

δω
2
∫

δω
2

∣

∣FM,prop (ω +∆ω (z) ,z)
∣

∣

2
dω ≈

≈ δω
∣

∣FM,prop (∆ω (z) ,z)
∣

∣

2
= δωSAM (z)

(6)

where:

Fig. 2. Time-frequency range of the main lobe of the Airy-based pulse, temporally centred
at t = ∆t(z) within a temporal widthFW HMt , and spectrally centred atω = ∆ω(z) within
a spectral widthδω . This spectral range is the integration interval used to approximate the
main lobe intensity peak by applying the Parseval theorem.
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PAM(z) = |FM,prop(∆ω(z),z)|2 = |M(∆ω(z))HA(∆ω(z),z)|2 (7)

, and we have approached
∣

∣FM,prop (ω +∆ω (z) ,z)
∣

∣

2
≈

∣

∣FM,prop (∆ω (z) ,z)
∣

∣

2 in the interval
|ω |< δω/2, which will be more accurate providing the the total integration interval rangeδω is
small enough , or equivalently from Eq. (5),ξ is big enough. Since the main lobe peak intensity
is proportional to the main lobe total energy, we can deduce:

Iml(z) ∝ Eml(z)≈ δωPAM(z) (8)

whereIml(z) denotes the peak intensity of the main lobe. Equation (8) implies that the peak
exhibits a PAM effect as it propagates, approximately proportional toPAM(z). From Eq. (7),
using a change of variable∆ω(z)→ ω , we can deduce:

M(ω) =

√

PAM
(

z = 6ωξ
β2

)

∣

∣

∣
HA

(

ω ,z = 6ωξ
β2

)∣

∣

∣

(9)

wherePAM(z) must be real and positive. Assuming a limitedz interval of lengthL, Eq. (9)
definesM(ω) in a limited bandwidth:

B =

∣

∣

∣

∣

β2L
6ξ

∣

∣

∣

∣

(10)

, which from Eq. (3) can also be deduced as the bandwidth of the Airy-based pulseAM(ω).

3. Examples and results

In order to illustrate the customizable dispersive linear PAM effect of the proposed Airy-based
pulse, several examples are designed and numerically simulated. Without loss of generality,
in these examples we consider a linear dispersive medium consisting in a standard single
mode fibre and ITU-T G.652 specifications, which dispersion parameter can be modelled as
β2 =−21.68ps2/km at the central frequencyω0 = 2π f0 with f0=193.413 THz (1550 nm wave-
length). In these example we consider a path length ofL=10 km, where the origin ofz is set in
the middle of the propagation path, i.e.,z ∈ [−L/2,L/2]. The attenuation parameter is modelled
asα(ω) =α0+α1ω dB/km, withα0=0.2 dB/km, andα1=0.45 fs dB/km, values obtained from
typical values in Table 1.2 of [21].

The attenuation transfer function at a fibre positionz can be expressed:

HA(z,ω) = 10−
α(ω)(z+L/2)

20 (11)

In these examples, we assume four customizedPAM(z) profile functions shown in Fig. 3.
The resulting spectral functions of the Airy-based pulses can be obtained from Eqs. (3) and (9)
as:

AM(ω) =

√

PAM

(

z =
6ωξ
β2

)

10
α(ω)

20

(

6ωξ
β2

+ L
2

)

e jξ ω3
(12)

where the resulting spectral function depends on the value ofξ . In order to facilitate the
design process, it is practical to haveξ expressed as a function of a normalized parameter
r = δω

B , which represents the pulse main lobe bandwidth to full pulse bandwidth ratio. Using

Eq. (10) we can deduceδω = rB = rβ2L
6ξ , and from Eq. (5) we can obtain:

#188547 - $15.00 USD Received 9 Apr 2013; revised 15 May 2013; accepted 15 May 2013; published 28 May 2013
(C) 2013 OSA 3 June 2013 | Vol. 21,  No. 11 | DOI:10.1364/OE.21.013394 | OPTICS EXPRESS  13398



Fig. 3. Four pre-definedPAM(z) profiles (red-dotted), and the numerically obtained propa-
gated pulse peak intensity, usingr = 0.2 (blue-dashed),r = 0.1 (blue-solid), andr = 0.05
(blue-dash-dotted), for examples from (a) to (d), in a propagation path ofL=10 km.

Fig. 4. Main lobe temporal width of the Airy-based pulse for examples from (a) to (d),
using r = 0.2 (blue-dashed),r = 0.1 (blue-solid), andr = 0.05 (blue-dash-dotted), in a
propagation path ofL=10 km.

|ξ |=
∣

∣

∣

∣

β2Lr
7.2

∣

∣

∣

∣

3
2

(13)

The temporal waveform of the resulting propagated pulse at a positionz of the propagation
path can be obtained fromfM,prop(t,z) = IFT [FM,prop(ω ,z)], whereIFT denotes the inverse
Fourier transform, andFM,prop(ω ,z) can be calculated from 4. Figure 3 represents the evolution
of the peak intensity of the propagated pulse through a path ofL =10 km for r= 0.2, 0.1 and
0.05, withξ = -14.779, -5.225, and -1.847ps3 from Eq. (13), and(B/2π)=0.19, 0.55 and 1.55
THz from Eq. (10). As it can be observed, the agreement between the actual PAM of the pulse
peak intensity and the pre-definedPAM(z) function improves asr decreases, or equivalently,
ξ increases. Although in the previous analysis we have considered the main lobe of the Airy-
based pulse with an approximately constant temporal width as the pulse propagates, the spectral
modulation will unavoidable affect to the main lobe width. Figure 4 shows the evolution of the
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Fig. 5. Energy spectral density|AM(z)|2 = |M(z)|2of the Airy-based pulse for examples
from (a) to (d), forr = 0.1.

Fig. 6. Color map representation of the evolution of the temporal intensity of the propa-
gated Airy-based pulse for examples from (a) to (d), in a propagation path ofL=10 km.The
propagation delay is not represented for a clear visualization of the PAM.

temporal width of the main lobe in the pulse propagation path, where the effect of the spec-
tral modulation can be observed. Again, lowerr values improve the approximation accuracy,
obtaining a more uniform temporal width evolution.

The selection of the value of the design variabler involves a trade-off solution between the
pre-defined PAM profile complexity, the usable bandwidth, and the desired PAM profile accu-
racy, according to the specifications of a particular application. Let us focus here on the case
r = 0.1, where a reasonable PAM accuracy is obtained for the four pre-defined PAM profiles
(see Fig. 3). Figure 5 shows the corresponding spectral functions, and Fig. 6 represents the
pulse waveform through a propagation path ofL=10 km, where the propagation delay has been
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neglected for a clear visualization of the linear dispersive PAM effect. As it can be observed,
the main lobe peak intensity of the Airy-based pulses exhibits a linear dispersive PAM corre-
sponding to thePAM(z) profile functions.

It is worth noting that the third order dispersion parameterβ3 = d3β (ω)/dω3 has not been
considered in the design process, having a marginal effect in the previous examples. The effect
of third order dispersion can be neglected provided the quasi-non-distortion condition proposed
in [13], |β3L/12| ≪ |ξ |, is satisfied. For this particular case, an ITU-T G.652 standard single
mode fibre has a typical valueβ3 = 0.0911ps3/km, leading to a condition|ξ | ≫ 0.0756ps3,
satisfied in the previous examples. If the quasi-non-distortion condition is not satisfied, third-
order dispersion cannot be neglected, and will affect distorting the resulting PAM profile. In
that case, further analyses must be done in order to deduce additional considerations in the
design process to compensate the third-order dispersion induced PAM distortion.

4. Conclusion

In summary, linear dispersive PAM effect of the proposed spectrally modulated Airy-based
pulses has been analysed, designed, and numerically demonstrated. As it is shown in the ex-
amples, the initial Airy-based pulses can be designed to exhibit a pre-defined PAM profile as it
propagates through the linear dispersive medium.

The main limitation of the proposed technique consists in the PAM distortion due to too high
r value (or equivalently, insufficient bandwidth), as well as the third order dispersion in case
the quasi-non-distortion condition [13] is not satisfied. However, this PAM distortion can be
probably mitigated in the design process, which would require deeper study and analysis of the
pulse propagation in these conditions, out of the scope of the present work.

In order to emphasize the unique properties of the designed Airy based pulses, we can com-
pare these results with a trivial case, considering a transform-limited Gaussian pulses with an
initial temporal width (FWHM) equal towg. It can be deduced that the pulse PAM in this case
can be expressed as [22]PAMg(z) = 1/

√

1+ pz2 with p = 4β2 ln2/w2
g. As it can be observed,

the set of possible PAM profiles is very restricted, and only depends on the valuep. However,
applying spectrally modulated Airy-based pulses with the design principles presented here, we
can obtain diverse pre-defined PAM profiles along the z axis.

Different pulse shaping techniques can be applied to generate the initial Airy-based pulse
AM(ω) from a pulsed laser source. Spatial light modulators [26] have been successfully applied
for generating Airy-based pulses in [10], by spectral manipulation of the spectral components
of the optical signal. Also, fiber Bragg gratings have shown to be useful in shaping optical
pulses of relative complexity [23–25].

It is worth noting that, although the examples have been designed considering an optical
fibre, any linear dispersive medium can be considered, providing the chromatic dispersion is
the dominant term, resulting in a broad range of experiments and applications exploiting this
unique linear propagation property.
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