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Introduction

Regulation of thiol redox balance is critically important for
multiple metabolic, signalling and transcriptional processes in
mammalian cells. Thiol groups, whether in proteins or small
molecules, are highly reactive and susceptible to oxidation that
may cause significant loss of biological activity. In proteins, oxi-
dation of free thiol groups produces modifications that, depending
on their location, may impact on the structure, catalytic activity or
ability to engage in protein-protein interactions. A critical function
of cell-based thiol redox buffering systems is to protect thiol
groups from oxidation and to repair those that may have become
oxidised as a result of normal or aberrant cellular metabolism. The
key components of the thiol redox buffering system are the
cysteine/cystine and glutathione (GSH)/glutathione disulphide
(GSSG) redox pairs, and the thiol disulphide oxidoreductases that
include thioredoxin (Trx), glutaredoxins (Grx) and peroxiredoxins
(Prx).

In this review, we describe the biochemistry of cellular redox
couples and present recent findings on the association between
thiol redox stability and neurodegenerative disease. A wealth of
studies has implicated GSH redox balance in brain disorders that
are the subject of several recent reviews [1-3]. Here, we focus
primarily on the GSH precursor, cysteine, and the association
between protein thiol redox balance and neurodegeneration, using
Parkinson's disease (PD), Alzheimer’s disease (AD) and amyo-
trophic lateral sclerosis (ALS) as examples. A section on thiol redox
homeostasis in glaucoma is included that illustrates common
disease mechanisms between this and other neurodegenerative
diseases.

Cellular redox couples

Physiologically, sulphur exists in many different oxidation
states ranging from +6 to —2 in an oxidative environment [4]. In
cysteine, the thiol group is mildly acidic with pKa values ranging
from ~4 to 9 depending on the structure of the protein and the
local environment [4,5]. Its reactivity is further increased in the
deprotonated thiolate anion (RS-) form. Therefore, the thiol side
chain may be readily oxidised to give a variety of different post-
translational modifications such as sulphenic acids and dis-
ulphides which are reversible, or higher oxidation products such
as sulphinic and sulphonic acids [6]. Thiols act as depots for nitric
oxide through reversible formation of nitrosothiols. Due to its high
reactivity, the thiol group of cysteine plays a major role in many
biological activities like catalysis, metal binding and in acting as a
‘molecular switch’ activating or deactivating protein activity and
function [6]. Early studies of thiol reactivity were conducted in
isolated chemical systems and these may be far removed from the
actual cellular and organismal redox potential and it is therefore
important to consider the feasibility of chemical reactions within
local cellular conditions and the thermodynamic feasibility of
redox reactions within biological systems.

GSH is the major cellular thiol antioxidant. It operates within
an important biological network of redox couples comprising
NAD* /NADH, NADP " /NADPH and GSH/GSSG that work in concert
with GSH/ glutathione reductase (GSR), Grx/GSH, Trx/oxidised Trx
and thioredoxin reductase (TrxR) and Prx to maintain redox
homeostasis (see Fig. 1). In neurons, oxidation of glucose via the
pentose phosphate pathway provides the NADPH needed by GSR
to regenerate GSH from GSSG [7]. Moreover, neurons preferentially
oxidise glucose for antioxidant defence rather than energy pro-
duction, due to low activity of the key activator of glycolysis,
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 [8]. The
abundance of GSH in cells and the ready conversion of sulphenic
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Fig. 1. Cellular redox couples in biological systems that show the link between
reducing nucleotides (NADPH) derived from the pentose phosphate pathway (PPP)
and maintenance of cellular redox state through reduction of hydrogen peroxide
and oxidised proteins.GSH, glutathione; GSSG, glutathione disulphide; GR, glu-
tathione reductase; Grx, glutaredoxin; Prx, peroxiredoxin; PrxSOH, peroxiredoxin
sulphenate; PrxSOOH, peroxiredoxin sulphinate; PrxSS, oxidised peroxiredoxin;
RSH, protein; RSSG, glutathionylated protein; RSOH, protein sulphenate; RSSR,
protein disulphide; trx, thioredoxin; TrxR, thioredoxin reductase.

acids and S-nitroso derivatives to S-glutathione mixed disulphides
suggests that reversible S-glutathionylation may be a common
feature of redox signal transduction and regulation of the activities
of redox sensitive thiol-proteins [9].

Cysteine is the precursor for GSH, hydrogen sulphide and
taurine, each of which has significant antioxidant, neuroprotective
or neuromodulatory properties. Free cysteine readily oxidises to
the corresponding disulphide, cystine. In normal cells, cysteine is
the dominant form, due to electron transfer from other cellular
thiol/disulphide systems, particularly GSH/GSSG. The cytosolic
cysteine/cystine redox potential (Eh) is typically —140 to
—160 mV, whereas extracellularly, the oxidised form prevails and
the cysteine/cystine ratio is close to 1:5, with an Eh of —80 mV.
The GSH/GSSG redox potential is more reduced than that of
cysteine/cystine and has an intracellular mean value of —230 mV,
compared to —140 mV extracellularly. The steady-state redox
potential for reduced/oxidised Trx in cells is the most reduced at
—280 mV. The intracellular concentration of cysteine is typically
in the low micromolar range and is an order of magnitude lower
than the concentration of GSH. Extracellularly, the concentration
of cystine (40-50 uM) is greater than either GSH (2.8 uM) or GSSG
(0.14 uM).

The extracellular cysteine/cystine ratio shifts towards a more
oxidised value during ageing in humans and is viewed as a sig-
nificant risk factor for disease [10]. For example, a more oxidised
cysteine/cystine redox potential significantly increases metabo-
tropic glutamate receptor 5 (mGIuR5)-mediated phosphorylation
of extracellular signal-regulated kinase (ERK) in astrocytes, leading
to increased expression of the transcription factor, nuclear factor-
KB (NF-KB), and inducible nitric oxide synthase, release of reac-
tive oxygen and nitrogen species and increased neurotoxicity [11].
It is believed that the extracellular portion of mGIluR5, which
contains a cysteine-rich domain incorporating many disulphide
bridges, alters to facilitate interaction between glutamate and the
receptor at the more oxidised potential. Based on studies using the
6-hydroxydopamine rodent model of PD, it has been proposed
that nutritional strategies aimed at manipulating the extracellular
cysteine/cystine redox potential may prove beneficial in slowing
the rate of neurodegeneration in this and other age-related neu-
rodegenerative diseases [12].



188 G.J. McBean et al. / Redox Biology 5 (2015) 186-194

THF methionine
folate ' homocysteine \ methionine\
cycle / cycle M
serine | CBS
methyl-THF

x. exchanger

SAH
v\’ H,0

cystathionine

L-cystine

v

glycine ~ GS

v
| GSH

glutamate GCS
™

y-glutamylcysteine

oL
N o-ketobutyrate + NH,*
A

l L-cysteine ‘ —
CDO
o
CBS or 27N
CyL

v
cysteine sulphinic
acid

N Ha,/\s pyruvate CSA

decarboxylase
L co;/

| P Hs

v
| taurine

Fig. 2. Pathways of cysteine metabolism; cysteine is derived from extracellular cystine via the x.~ cystine glutamate exchanger and from methionine, via the transsul-
phuration pathway. Cysteine is the precursor for GSH, hydrogen sulphide (H,S) and taurine.CpS, cystathionine-p-synthase; CDO, cysteine dioxygenase; CyL, cystathionine-y-
lyase; CSA, cysteine sulphinic acid; GCS, y-glutamylcysteine synthase; GS, glutathione synthase; GSH, glutathione; SAH, S-adenosylhomocysteine; SAM, S-adeno-

sylmethionine; THF, tetrahydrofolate.

Cysteine

In the brain, cysteine must be supplied either from the extra-
cellular medium, or in situ synthesis from methionine (see Fig. 2).
Astrocytes and microglial cells are the main sites of GSH produc-
tion in the brain and import cystine, which is immediately reduced
to cysteine on entering the cytosol. In astrocytes, uptake of cystine
provides approximately two thirds of the cysteine required for
GSH synthesis. The remaining one third is derived from methio-
nine via the transsulphuration pathway, but this contribution
increases during oxidative stress [13,14]. Uptake of cystine is
mediated by the plasma-membrane x.~ cystine-glutamate
exchanger (SLC7A11 carrier) that releases glutamate in a 1:1 ratio
with cystine uptake (Fig. 2). Immature neurons readily take up
cystine, but this facility is lost in mature cells. Instead, neurons
take up cysteine, which originates from astrocytic GSH that is
exported and degraded extracellularly [15,16]. Therefore, de novo
synthesis of GSH in astrocytes must meet the antioxidant
requirements of both astrocytes and neurons.

It is increasingly recognised that the x.~ exchanger participates
in an intracellular-extracellular cysteine/cystine redox cycle that
serves to regulate the extracellular redox potential and is not
directly associated with GSH synthesis [17-19]. Key features of the
cycle are cystine uptake, intracellular reduction to cysteine and
secretion of cysteine that is surplus to intracellular requirements
to the extracellular space. The net effect is a reduction in the
extracellular cysteine/cystine redox potential [19]. Additional
support for the cycle comes from the observation that x.~ -defi-
cient mice do not display depletion of GSH [20].

The x.~ exchanger has a significant role in regulating the
extracellular concentration of glutamate and, increasingly, atten-
tion is drawn to the physiological and pathological implications of
exchanger-mediated glutamate release [21]. For example, X.™ -
derived glutamate stimulates group 2/3 metabotropic glutamate
receptors (mGluR2/3) in tissue slices of the nucleus accumbens or

prefrontal cortex, leading to a reduction in excitatory tone [22].
Moreover, withdrawal from cocaine reduces extracellular gluta-
mate levels in the nucleus accumbens by decreasing cystine-glu-
tamate exchange [22].

The x.~ exchanger in neurodegenerative disease

Increased expression of the x.~ exchanger and consequent
elevation of glutamate release has been recorded in a number of
neurodegenerative disorders, including brain tumours [18,23], HIV
infection [24], multiple sclerosis [25] and hereditary haemochro-
matosis, a neurodegenerative disorder of the visual system [26,27].
Direct sampling of peritumoural extracellular fluid in Grade IV
glioblastoma multiforme (GBM) patients by microdialysis has
revealed concentrations of glutamate in excess of 100 uM at the
tumour margin [28], leading to widespread glutamate-mediated
excitotoxicity and neurodegeneration. SiRNA-mediated silencing
of the XCT subunit of the exchanger protects against neurode-
generation and reduces glioma-associated oedema [29]. Equally,
blockade of x.~ exchanger with sulphasalazine or the cyclic glu-
tamate analogue 4-carboxyphenylglycine (4-CPG) has an anti-
proliferative and cytotoxic effect on glioma cell lines [30-32].
While additional research is needed, the results cited here illus-
trate the therapeutic potential of treatments targeting the X.~
exchanger in glioma therapy.

Aberrant activity of the cystine-glutamate exchanger is asso-
ciated with neurodegenerative changes in AD and ALS. In AD,
activated microglia display increased expression and functional
activity of the x.~ exchanger and elevated glutamate release [33].
The toxicity of amyloid beta peptide 1-40 to cultured neurons was
increased on exposure of the cells to activated microglia due to
glutamate release via the X~ exchanger. Inhibition of N-methyl-p-
aspartate (NMDA) receptors or system X.~ prevented the micro-
glia-enhanced toxicity of the peptide [33]. More recently, it has
been hypothesised that excessive glutamate release from activated
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microglia may be a significant contributor to motor neuron
degeneration in the symptomatic stages of ALS. In support of this
theory, expression of xCT is elevated in spinal cord and isolated
microglia from mutant superoxide dismutase 1 (SOD1) ALS mice
and in the spinal cord of ALS patients [34]. Moreover, XCT
expression correlates with increased inflammation and enhanced
release of glutamate. XCT is absent from motor neurons [34].
Deletion of XCT in ALS mice leads to earlier symptom onset, but
ultimately, increases the number of surviving motor neurons.
Taken together, these observations raise the possibility that tar-
geting the x.~ exchanger could provide a mechanism to slow
disease progression after onset of clinical symptoms.

Thiol redox homeostasis in glaucoma

Glaucoma is the leading cause of irreversible blindness
worldwide [35] and is characterised by progressive damage or
degeneration to the optic nerve [36]. Since the retina and optic
nerve are part of the central nervous system, glaucoma shares
mechanistic and epidemiological similarities with other CNS
neurodegenerations, including PD, ALS, AD and Huntington’s dis-
ease [35].

Several hypotheses exist on the mechanism of ganglion cell
death in glaucoma, including high intraocular pressure (IOP) and
hypoxia [37], oxidative or nitrative stress [38,39], glutamate toxi-
city [40], loss of neurotrophic factors [41] and autoimmune reac-
tions assisting degeneration of retinal ganglion cells [42]. The
retina is one of the most vascularised tissues in the body and is
particularly vulnerable to oxidative stress due to its high con-
sumption of oxygen and exposure to light [43]. It has one of the
highest oxidative metabolic rates per tissue weight [44]. Retinal
cells require the maintenance of normal GSH levels, turnover rates
and oxidation state [45]. GSH deficiency is manifested largely
through an increased susceptibility to oxidative stress, and the
resulting damage is thought to be a key step in the onset and
progression of glaucoma [46]. Enzymes involved in GSH synthesis
and metabolism in different types of retinal cells are shown in
Fig. 3.
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Fig. 3. Scheme of enzymes involved in glutathione synthesis and metabolism in
the retina. AC, amacrine cell; BPC, bipolar cell; GC, ganglion cell; GCL, ganglion cell
layer; yGCL, yglutamate cysteine ligase; G6PD, glucose-6-phosphate dehy-
drogenase; 6PG, 6-phosphogluconate; GPx, glutathione peroxidase; GR, glu-
tathione reductase; GS, glutathione synthase; GSH, glutathione; HC, horizontal cell;
INL, inner nuclear layer; IPL, inner plexiform layer; IOSP, inner and outer segments
of photoreceptors; NF, nerve fibre; ONL, Outer nuclear layer; OPL, Outer plexiform
layer; protein-S,, protein-S—S; protein (SH),, protein-SH. RPE, retinal pigment
epithelium; TR, thioredoxin reductase; TRX (SH),, thioredoxin; TRX-S,, oxidised
thioredoxin.

GSH levels decline in human eyes with age [47] and decreased
GSH levels have been associated with glaucoma [48]. Moreno et al.
analysed retinal GSH levels in a rat glaucoma model induced by
chronic injection of hyaluronic acid in the eye anterior chamber
[48]. Reduced GSH levels were assessed in the retinas from
hypertensive eyes at 6 weeks of ocular hypertension compared to
controls, whereas, at 3 or 10 weeks of treatment, levels of GSH did
not change compared to eyes injected with vehicle. In accordance
with animal studies, plasma glutathione levels measured in 21
patients with newly diagnosed primary open-angle glaucoma and
34 age- and gender-matched control subjects revealed that glau-
coma patients exhibited significantly lower levels of reduced and
total glutathione than did control subjects [49].

In a recent study performed on humans, levels of circulating
total GSH (GSH and GSSG) were analysed in 34 primary open angle
glaucoma (POAG) patients, 30 normal tension glaucoma (NTG)
patients and 53 controls [50]. Total blood GSH levels were also
determined in this study by the glutathione reductase-5.5 dithio-
bis-2-nitrobenzoic acid (DTNB) recycling procedure. Independent
of age, POAG and NTG patients demonstrated significantly lower
GSH and total GSH levels than age-matched controls. Additionally,
a lower redox index, defined as the GSH/GSSG ratio, was found
only in POAG patients, in comparison to both NTG and control
groups. GSSG levels were similar between all study groups. This
study demonstrated that both POAG and NTG patients exhibit
lower GSH and total GSH levels than age-matched controls, indi-
cating a compromise of the antioxidant defence systems in
glaucoma.

Glutathione S-transferase (GST) catalyses the conjugation of
GSH to electrophilic centres on a variety of substrates including
toxic species [51]. In a recent study, the aqueous humour proteome
was analysed by antibody microarray in samples obtained from 10
clinically uncontrolled POAG patients and 10 cataract patients
immediately before trabeculectomy and cataract surgery, respec-
tively. Aqueous humour GST levels were significantly lower in
POAG patients than in controls reflecting a weakening of GST-
mediated mechanism of protection against harmful electrophiles
produced during oxidative damage [52]. Serum antibodies against
GST have also been reported to be higher in patients with POAG
than in controls [53].

Glutamate toxicity is an important mechanism of ganglion cell
death in glaucoma [54]. Increased levels of glutamate have been
reported in the vitreous of glaucomatous patients and a prolonged
elevation of extracellular glutamate is possibly caused by chronic
ocular hypertension [55]. The cystine-glutamate exchanger is
upregulated by oxidative stress in retinal ganglion cells [56] and,
given that glutamate is toxic to these cells via over-stimulation of
the NMDA receptor [40], upregulation of the exchanger under
oxidative stress conditions in glaucoma would have injurious
consequences.

Protein redox state in neurodegeneration

Alterations in protein redox state have been implicated in the
pathology of neurodegenerative diseases [57-59]. Early important
observations of cell death under redox stress have been reviewed
and linked to more recent, elegant experiments describing
mechanisms of redox-regulated cell death in AD, PD and ALS. Key
pathways that are affected by redox state and predispose to death
are the apoptosis signalling kinase 1 (ASK1)/JNK and ASK1/
p38MAPKkinase cascades [9,60]. Mitochondrial dysfunction is con-
sidered pivotal to cell death as a source of increases in thiol-oxi-
dising reactive oxygen species and during intrinsic apoptotic sig-
nalling. Consequently, a number of studies have investigated Grx,
Trx and Prx activity and mitochondrial function in neurodegen-
eration models. While the majority of articles focus on
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mitochondria as a source of oxidants that contribute to cytotoxi-
city, mitochondria have also been reported to play an important
role in removal of hydrogen peroxide, e.g. generated by redox
cycling of chemicals such as paraquat [61,62]. Nicotinamide
nucleotide transhydrogenase capitalises on the mitochondrial
proton gradient to generate NADPH from NADH and NADP™*, so
providing a link between energetics and removal of hydrogen
peroxide via the Trx2/TrxR and Prx systems [63].

Glutaredoxin as a neuronal survival factor

Glutathionylation/deglutathionylation reactions are regulated
by the expression and activity of Grx and the availability of GSH
substrate which is required for chemical reduction of Grx. Grx
exists in at least 3 forms in humans, however, most studies focus
on Grx1 found in the cytoplasm and Grx2 found in the nucleus and
mitochondria. In 2004, Kenchappa et al. described that down-
regulation of Grx using anti-sense oligonucleotides prevented
recovery of mitochondrial complex [ activity in the striatum after
1-methyl, 4-phenyl, 1,2,3,6-tetrahydropyridine (MPTP) treatment
[64]. This study suggested a critical role for Grx in recovery of
mitochondrial function in brain. A follow up study investigated the
mechanism of toxicity of the excitotoxin [3-N-oxalyl amino-i-ala-
nine (BOAA) [65]. While male mice were susceptible to mito-
chondrial complex I loss and GSH depletion only ovariectomised
female mice showed mitochondrial-dependent neuronal loss. Grx
expression, central to neuroprotection via maintaining complex
1 activity, is regulated by oestrogen; treatment of SH-SY5Y cells
with oestrogen upregulated Grx1 and protected from BOAA
mediated mitochondrial membrane potential (MMP) loss. Later,
Lee et al. demonstrated that Grx2 is involved in glutathionylation
of protein cysteine sulphydryl residues in the mitochondria and is
required for iron sulphur cluster biogenesis and complex 1 activity.
Following inhibition of Grx2 in vitro, complex 1 activity declines in
a manner consistent with the pathological events associated with
PD [66]. The concomitant rise in intracellular iron further predis-
poses neurones to oxidative stress. Consistent with these findings,
Karunakaran elegantly demonstrated that downregulation of Grx2
using antisense oligonucleotides in the mouse brain in vivo
resulted in partial loss of complex I activity supporting the concept
that Grx2 may help maintain complex I function in the mito-
chondria. These findings were reinforced in vitro by over-
expression of Grx2 in neuroblastoma cells which abolished
1-methyl-4-phenylpyridinium (MPP " )-mediated toxicity [67].

Despite its localisation to the cytoplasm, downregulation of
Grx1 by shRNA resulted in loss of MMP that is associated with
oxidation of thiols on voltage dependent anion channels [68]. Loss
of MMP was preventable by the antioxidant, o-lipoic acid, or by
cyclosporine A, an inhibitor of mitochondrial permeability transi-
tion suggesting that either there is direct interaction between
Grx1 and proteins in the mitochondrial membrane or that an
intermediate redox active protein transduces the reducing signal.

Most commonly, familial ALS is associated with the aggregation
of mutant SOD1, but whether SOD1 aggregates represent a cause, a
correlate or a consequence of processes leading to cell death is
unclear. As well as being localised in the cytoplasm, SOD1 is found
in the intermembrane space and in ALS mitochondria, fission and
dysfunction has been attributed to mutant SOD aggregation.
Aggregation can be prevented by Grx2 overexpression, preserving
mitochondrial function and preventing apoptosis [69]. Related to
this, biochemical studies by Bouldin et al. have described the
propensity for the intramolecular disulphide bond between two
SOD monomers to be reduced by Grx1/GSH; they showed that ALS
mutant SOD was more susceptible to reduction to monomers and
inactivation than WT [70]. This is significant because it is the apo-
and reduced forms of ALS mutant hSOD1 that are especially

vulnerable to destabilisation and readily aggregate under mild
oxidative stress conditions. In ageing yeast, glutathionylation was
shown to be essential for human SOD1 activation [71]. Further
work is needed in this area to rationalise the role of Grx in mutant
SOD aggregation.

Aberrant regulation of protein glutathionylation can disrupt
both apoptotic and survival signalling pathways. More recent
studies have focussed on potential signalling pathways by which
Grx may support neuronal survival. DAXX, the death associated
protein downstream from ASK1, has surfaced as an important
transducer of death signals from the nucleus in PD. Based on
studies of DJ-1, a putative gene recessively linked to early onset PD,
reduced DAXX is normally retained in the nucleus. DJ-1 normally
functions as an antioxidant, transcriptional co-activator, and
molecular chaperone that is maintained active in a reduced state
by Grx1. However, down-regulation of Grx 1 caused loss of DJ-1
protein, translocation of DAXX from nucleus, and cell death. This
effect was eliminated in the DJ-1 cys mutant which was not sus-
ceptible to oxidation or degradation so maintained DAXX in the
nucleus [72]. More recent studies using the brains from DJ-1 (—/-)
mouse model of PD have suggested that the animals have adapted
to loss of DJ-1, increasing consumption of hydrogen peroxide and
through upregulation of the Trx/TrxR /Prx system [73] and in fact
that the ability to adapt to stress may be the key factor in overt
disease. In a model of AD, using SH-SY5Y exposed to amyloid beta,
both Grx1 and Trx1 were oxidised, associated with nuclear export
of DAXX. Moreover, amyloid beta toxicity was inhibited by insulin-
like growth factor-I and by overexpressing Grx1 or Trx1 [74]
highlighting the importance of maintaining redox state for neu-
ronal survival.

Another hydrogen peroxide generating drug relevant to PD is L-
3,4-dihydroxyphenylalanine (L-DOPA). While it is used as a ther-
apeutic, L-DOPA causes oxidative inactivation of Trx and Grx, with
concomitant activation of ASK1 [59,75]. A potential mechanism for
this has been investigated by Sabens et al. [75]; in biochemical
studies, Grx underwent irreversible adduction with dopaquinone
to its nucleophilic active-site Cys-22. This caused enzymatic
inactivation but did not cause protein degradation, consistent with
observations after L-DOPA treatment. Whether this mechanism
may also contribute to cognitive decline observed in PD patients
remains to be explored.

Thioredoxin and neuronal survival

Trx exists in multiple forms and acts as a reducing agent within
the cell and extracellularly. It restores the activity of oxidised Prx
and is in turn recycled at the expense of NADPH by TrxR. In
addition to regulation of expression, TrxR activity is also regulated
post-translationally by thioredoxin inhibitory protein (TXNIP).

Trx has been recognised as a neurotrophic factor for over 10
years; the earliest studies showed it to support nerve growth
factor (NGF) signalling and to play a critical role in NGF-mediated
neurite outgrowth in PC12 cells [76]. It exists in at least two iso-
forms, Trx1 in the cytosol and Trx2 in the mitochondria. Trx1 is a
small, 12-kDa, conserved and ubiquitous multifunctional protein
with several redox-active cysteine residues. It reduces disulphide
bonds and sulphenic acids and exhibits transnitrosylation activity
[77-80]. Trx1 has many interaction partners depending on its
cellular localisation. Through its reductase activity it may regulate
apoptosis, cell growth, differentiation and development [81,82]. In
the nucleus, Trx1 binds directly to a number of different tran-
scription factors including p53, NF-xB, and activator protein-1
(AP1) and thereby modulates their DNA-binding activity [83,84].
With respect to apoptosis inhibition, at least three binding part-
ners have been identified in the cytoplasm; ASK-1, TXNIP and
actin, where actin protects Trx1 from degradation and preserves
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its anti-apoptotic function [81,85]. The cytoprotective protein DJ-1
which is frequently mutated in PD, binds to ASK1 in a Cys-106
redox-sensitive manner and can be reduced by Trx1 [86,87]. It has
been suggested that DJ-1 is an atypical peroxiredoxin-like perox-
idase that scavenges hydrogen peroxide through oxidation of Cys-
106. In WT mice, an increase of Cys-106 oxidised DJ-1 was
observed after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) treatment [88]. DJ-1 has also been suggested to act as an
upstream activator of the transcription factor, nuclear factor (eyr-
throid-derived)2-like 2 (NRF2). NRF2 regulates Trx, and its over-
expression inhibits ASK1/JNK and ASK1/p38 pathways that are
frequently activated in neurodegenerative disease [89]. While
overexpression of DJ-1 resulted in increased NRF2 protein levels,
nuclear translocation and binding to the ARE site in the Trx1
promoter, NRF2 knockdown abolished DJ-1-mediated Trx1
induction and cytoprotection against hydrogen peroxide [11]. In
PD patients with mutant DJ-1, alternative NRF2 activators may
prove to be a useful strategy for upregulating Trx1 expression.

Neurotoxins associated with risk for PD frequently associate
with oxidised Trx and activate unique pathways. For example,
paraquat oxidised Trx1 impairing its ASK1 inhibitor activity and
leading to JNK and caspase 3 activation whereas 1-methyl-4-
phenylpyridinium (MPP*) and rotenone oxidised Trx2 without
activating the JNK pathway [90,91]. Injection of MPP™* into mouse
brain decreased levels of TrxR 1 mRNA, protein and activity [92].
Others have shown that MPP* toxicity is due to ER stress which
can be inhibited by Trx-1 overexpression; Trx-1 played a neuro-
protective role in MPP " -mediated neurone loss by suppressing ER
stress [93]. Interestingly, Trx acts not only as a reducing agent but
also as a chaperone; when Trx mutants were studied in the Pael-R
drosophila model of PD, it was the chaperone rather than redox
activity of Trx that proved to be more significant for enhancing cell
survival [94].

Trx1 also associates with the plasma membrane and is traf-
ficked with a limited number of cytosolic proteins via the leader-
less secretory pathway [95]. We have shown previously that under
oxidative stress, Trx1 secretion is altered [96]. Trx1 and Grx1 are
also released to the cerebrospinal fluid. In 120 patients the early
stages of AD and with mild cognitive impairment Trx1 and Grx1
levels correlated with the established AD biomarkers tau and
phospho-tau suggesting their potential involvement in the
pathogenesis of disease [97].

The neuroprotective effect of Trx1 and Trx2 were investigated
in a rat glaucoma model [98]. Expression of Trx1 and Trx2 was
observed in the retinal ganglion cell layer (GCL), nerve fibre (NF)
layer and inner nuclear layer (INL). Trx1 level decreased 2 weeks
after glaucoma induction and more notably after 5 weeks. No
change in Trx2 levels was reported. The effects of Trx1 and Trx2
overexpression on retinal ganglion cell survival were evaluated
5 weeks after glaucoma induction. Trx1 and Trx2 preserved 45 and
37% of cells, respectively that were destined to die in glaucoma-
tous retinas.

Peroxiredoxin and neuronal survival

Basal expression of the six different Prx isozymes shows a
distinctive distribution profile within brain regions and different
cell types. On the one hand, Prx1 and 6 are expressed in glial cells
but not in neurons; conversely, Prx2, 3, 4, and 5 are expressed in
neurons [99]. Of these enzymes, it is Prx3 that is found in mito-
chondria. Prx 6 differs from the other Prx enzymes and is a 1-Cys
Prx that lacks an internal resolving cysteine residue. The other
mammalian Prx enzymes are 2-Cys Prx where the peroxidatic
cysteine is first oxidised to a sulphenic acid and then it oxidises a
second resolving cysteine to form a di-sulphide bond. The latter is
reduced via Trx and TrxR.

Prx2 is highly expressed in many tissues and along with Prx 6 is
the focus of most research in AD. In a transgenic Alzheimer’s
mouse diseased brain, Prx2 levels were significantly elevated. This
was suggested to be an adaptive response that protected the mice
against amyloid beta toxicity [100]. In a histochemical study of
brains from AD patients, nitrated Prx2 was identified. Randall et al.
investigated the functional consequences of Prx2 tyrosine nitra-
tion, and demonstrated that nitration was on a non-catalytic
residue that resulted in increases in peroxidase activity and
resistance to over-oxidation [101]. Prx2 is also S-nitrosylated
forming SNO-Prx2 by reaction with nitric oxide at two critical
cysteine residues (C51 and C172). In contrast to the effect of
nitration, this prevents its reaction with peroxides [102].

The role of Prx6 is less clear; on the one hand, apoptosis was
inhibited after amyloid beta treatment in PC12 cells over-
expressing wild-type Prx6, but not in cells that overexpressed the
C47S catalytic mutant. This indicates that the peroxidase activity of
Prx6 protects PC12 cells from amyloid-induced neurotoxicity
[103]. However, in a mouse model after amyloid beta infusion,
memory impairment in Prx6 transgenic mice was worse than
C57BL/6 mice. In addition, the astrocytes and microglia cells of
amyloid-infused Prx6 transgenic mice were more activated, lipid
peroxidation and protein carbonyl levels were increased and glu-
tathione levels were lower, suggesting that Prx6 is promoting
rather than preventing oxidative stress [104].

In the PD field, interest has been in Prx1, 2 and 3. In MN9D cells,
overexpression of Prx1 protected against 6 hydroxydopamine
toxicity, prevented p38 MAPK activation and subsequent activa-
tion of caspase-3. In contrast, apoptotic death signals were
enhanced by RNA interference-targeted reduction of Prx1 [105].
Hu et al. explored the role of Prx2 and showed it inhibited
6 hydroxydopamine -induced ASK1 activation by modulating the
redox state of Trx1 so preventing its dissociation from ASK1 [106].
In cells expressing a common p.G2019S LRRK2 gene mutation
(rs34637584:A > G) that is responsible for up to 30-40% of PD
cases in some ethnic populations, the phosphorylation of Prx3 is
increased. LRRK2 interacts with Prx3 and mutations in the LRRK2
kinase domain significantly increased phosphorylation but
decreased peroxidase activity and increased death in neuronal
cells [107]. These findings point towards a common downstream
pathway of redox imbalance in PD that may be mediated through
different upstream effectors and by either environmental or
genetic factors.

Evidence for redox disturbance in neurodegeneration

One of the more compelling arguments for thiol regulatory
networks in neurodegenerative disease is evidence of altered
expression in post-mortem tissue or in circulating cells and
plasma. To this end, there is limited analysis of Grx1 in human
neurodegenerative disease. However, of note, a recent study has
examined post-mortem midbrain samples from PD patients, in
which it was observed that Grx1 content is decreased in PD,
specifically within the dopaminergic neurons [108]. This further
supports a role for redox in PD. Although whether it is causal is
unclear. Increased SNO-Prx2 has been described in human PD
brains, and S-nitrosylation of Prx2 inhibits both its enzymatic
activity and protective function from oxidative stress [102].

In post-mortem brain tissue of patients with AD, many blood
vessels exhibited Prx6 staining that appeared to be due to the
astrocytic foot processes [109]. Furthermore, an increase in Grx1
and a decrease in neuronal Trx1 have been described in AD brains
by one group, while a second group reported from 120 patients
that the Trx1, Trx2, Grx1, and Grx2 expression pattern was altered
in hippocampal tissue sections from AD patients compared to
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controls. In addition, oxidative modifications to Prx-2 and Prx-6
were increased in AD plasma [110].

[15] J.I Sagara, K. Miura, S. Bannai, Maintenance of neuronal glutathione by glial
cells, Journal of Neurochemistry 61 (5) (1993) 1672-1676. http://dx.doi.org/
10.1111/§.1471-4159.1993.tb09802.x 8228986.

[16] R. Dringen, B. Pfeiffer, B. Hamprecht, Synthesis of the antioxidant glutathione
in neurons: supply by astrocytes of CysGly as precursor for neuronal glu-
tathione, Journal of Neuroscience 19 (2) (1999) 562-569 9880576.

[17] A. Banjac, T. Perisic, H. Sato, A. Seiler, S. Bannai, N. Weiss, P. Kolle, K. Tschoep,
R.D. Issels, P.T. Daniel, M. Conrad, G.W. Bornkamm, The cystine/cysteine
cycle: a redox cycle regulating susceptibility versus resistance to cell death,
Oncogene 27 (11) (2008) 1618-1628. http://dx.doi.org/10.1038/sj.
onc.1210796 17828297.

[18] J. Lewerenz, P. Baxter, R. Kassubek, P. Albrecht, ]. Van Liefferinge, M.

A. Westhoff, M.E. Halatsch, G. Karpel-Massler, P.J. Meakin, ].D. Hayes,

E. Aronica, I. Smolders, A.C. Ludolph, A. Methner, M. Conrad, A. Massie, G.
E. Hardingham, P. Maher, Phosphoinositide 3-kinases upregulate system xc
(-) via eukaryotic initiation factor 2o and activating transcription factor 4

Conclusion

Much progress has been made in understanding the sig-
nificance of thiol redox imbalance as a contributing factor to
neurodegenerative disease. The biological reactivity of the sulphur
atom in cysteine, whether as the free amino acid or incorporated
into proteins and peptides, is a significant factor in determining
susceptibility to oxidative damage, excitotoxicity and neurode-
generation. It is clear that restoration of redox balance may offer a — a pathway active in glioblastomas and epilepsy, Antioxidants and Redox

Signaling 20 (2014) 2907-2922.

useful approach to minimise neuronal loss during neuro- [19] M. Conrad, H. Sato, The oxidative stress-inducible cystine/glutamate anti-

degeneration. porter, system X (c) (-): cystine supplier and beyond, Amino Acids 42 (1)
(2012) 231-246. http://dx.doi.org/10.1007/s00726-011-0867-5 21409388.
[20] D. De Blundel, A. Schallier, E. Loyens, R. Fernando, H. Miyashita, . Van Lief-
feringe, K. Vermoessen, S. Bannai, H. Sato, Y. Michotte, I. Smolders, A. Massie,
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