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Abstract—A real-time adaptive resource allocation 

algorithm considering the end user’s Quality of Experience 

(QoE) in the context of video streaming service is presented in 

this work. An objective no-reference quality metric, namely 

Pause Intensity (PI), is used to control the priority of resource 

allocation to users during the scheduling process. An online 

adjustment has been introduced to adaptively set the 

scheduler’s parameter and maintain a desired trade-off 

between fairness and efficiency. The correlation between the 

data rates (i.e. video code rates) demanded by users and the 

data rates allocated by the scheduler is taken into account as 

well. The final allocated rates are determined based on the 

channel status, the distribution of PI values among users, and 

the scheduling policy adopted. Furthermore, since the user’s 

capability varies as the environment conditions change, the 

rate adaptation mechanism for video streaming is considered 

and its interaction with the scheduling process under the same 

PI metric is studied. The feasibility of implementing this 

algorithm is examined and the result is compared with the 

most commonly existing scheduling methods. 

Keywords— Resource allocation; QoE; scheduling; adaptive 

video streaming; fairness; efficiency; 3GPP-LTE 

I.  INTRODUCTION 

In spite of the extended capability of the modern 
communication technologies that support a wide range of 
communication services, ensuring a high level of quality of 
service (QoS) or quality of experience (QoE) for end users 
remains to be a big challenge for network operators and 
service providers. This problem is further intensified by the 
growing demands for video streaming over mobile 
smartphones and tablets due to the limitations inherited in 
wireless and mobile communications environments. 

Maintaining a good balance between the quality of the 
video and the resource requirement is one of the main 
hindrances in video streaming services. However, it is 
generally possible to compromise on the quality of the video 
for less required resource dedication. This is especially 
desirable in the case of wireless communications with scarce 
spectrum and high demand for mobile video services [1]. 
The current adaptive streaming service is an example of 
handling this trade-off, where multiple versions of the same 
video content with different video code rates are made 
available for different user conditions and requirements.  

In the 3GPP-DASH (Dynamic Adaptive Streaming over 
HTTP) standard [2], clients choose the code rates of the 
video content from the server (client-pull), without the 
intervention of the intermediate unit of the network, e.g. the 

base station in mobile networks. Collaboration between the 
base station and the either side of an end-to-end video 
streaming system (server or client) can enhance the 
experience of the client being served with quality. But this 
may entail extra information exchange among them and does 
not comply with the idea of the independent-client based 
adaptive service such as DASH. Furthermore, it may require 
additional processing overhead and standardization 
amendment which practically can be a limitation for the 
implementation of this idea. 

To tackle this issue, a quality of experience (QoE) driven 
resource allocation scheme with scheduling algorithms for 
the last-mile scheduler is proposed in this work based on a 
no-reference packet based video quality metric, i.e. Pause 
Intensity (PI) [3]. This metric takes account of user’s video 
code rate (required data rate) and network performance 
(throughput), which can realistically characterize the 
demand-supply relationship of video streaming services [4]. 
The proposed scheme provides the capability of online 
adjustment of system efficiency, fairness and correlation 
between the required and allocated data rates. The PI metric 
can be easily assessed by the scheduler on the network side 
without requiring extra information exchanged between 
users and the network. In addition, PI can also play a role in 
shaping the distribution of video code rates for adaptive 
video streaming and reaching the required level of QoE for 
clients. The proposed algorithms are examined in the context 
of 3GPP-LTE (Long Term Evolution [5]) for both adaptive 
and non-adaptive video streaming scenarios, complied with 
the 3GPP and related standards for streaming services[6], 
[7]. 

The rest of the paper is organized as follows: The 
background and related works are explained in Section II. 
The model description, proposed optimization system and 
its implementation algorithm are presented in Section III. 
The simulation results and analysis are discussed in Section 
IV and finally the conclusion is provided in Section V. 

II. BACKGROUND AND RELATED WORKS 

 There are two quality related aspects of a video service 
that can be compromised for less resource allocation during 
the communication process: the fidelity based quality of the 
image and the continuity of the service. Actually these two 
aspects are related to each other in terms of sharing the same 
amount of resource. For example, the discontinuity of 
playback is more likely during a video service with a higher 
level of visual quality (given a limited amount of bandwidth) 
[8]. Both fidelity and continuity based quality issues are 
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related to QoE and can be generally assessed through 
subjective metrics, such as the mostly used Mean Opinion 
Score (MOS) [9].  

Due to the subjective nature of QoE and the diversity of 
the related applications, a unified objective metric for QoE is 
still not available. Many variations of PSNR (Peak Signal to 
Noise Ratio) and SSIM (Structural SIMilarity) are used as 
video quality assessment tools to evaluate the performance of 
proposed solutions [10]. The occupancy of the playback 
buffer usually forms a base for the evaluation of continuity in 
video streaming. The occupancy level, probability of buffer 
underrun, initial delay and pause durations, pause frequency 
and jitter are some of the metrics which have been used to 
quantify the continuity of a video service [11], [12].  

A communication model using the visual quality 
assessment metrics (e.g. PSNR) usually needs the output of 
the decoder and the original video reference. This type of 
metrics is more suitable for performance analysis rather than 
an online quality assessment process [13], [14]. In contrast, 
the continuity based quality can be evaluated without the 
need of the original reference and decoder output. However, 
most of the continuity based metrics mentioned above don 
not have a good relation with subjective QoE metrics such as 
MOS. Furthermore, a QoE-driven solution normally acquires 
extra information sent from the user to the network, which 
leads to additional control overhead or standard 
amendments.  

Pause Intensity (PI), as described in Section I, is a 
reference-less metric for continuity assessment and takes 
both pause duration and pause frequency into account. It is 
highly correlated with the subjective QoE metric, MOS, 
which is content independent, as shown in Fig. 1. The PI 
value, PI(η, λ), can also be determined by both network 
performance, i.e. throughput η, and the required data rate 
(video code rate, λ) per user, which is expressed by [3]:  

 PI(η, λ) = 1 −
η

λ
 (1) 

In a non-recorded streaming scenario η is always less 
than or equal to λ, i.e. η ≤λ and 0≤PI≤1. The description of 
the PI model, buffer paly-pause characterization and 
associated subjective tests are provided in [3] and the PI 
metric has been applied in the context of 3GPP-LTE in [4]. 

PI is an objective representation of QoE which, as it will be 
shown in Section III, can be evaluated locally both on the 
user side and on the network side without additional 
information exchange and hence no extra overhead for this 
purpose. 

The proposed algorithm in this paper is examined in the 
context of LTE/4G.  The last mile resource allocation 
function in eNodeB (i.e. LTE’s base station) plays the main 
role in the proposed idea alongside the link adaptation and 
channel status control, which will be detailed in the next 
section. Although the exact resource allocation policy in 
LTE has not been defined by 3GPP standards, the state of the 
art solutions are usually based on the general rationality of 
the resource allocation in mobile communication systems. 
Subsequently, the main parameters used to characterize a 
scheduler are the efficiency of the system as a whole and the 
fairness of the scheduler to each user. 

The most common resource allocation algorithms used to 
make an efficient or fair scheduler are best-CQI, 
proportional fair and MaxMin throughput schedulers [15], 
[16]. The CQI (Channel Quality Indication) in LTE is a 
feedback from the user to the base station to indicate the 
capability of the user for using the allocated resources, which 
is related to the modulation order and the channel coding (or 
code) rate. The best-CQI scheduler (also known as maxC/I) 
is focused on the efficiency of the system by targeting the 
users with the highest capability in each round of the 
allocation. In contrast, a scheduler such as MaxMin 
throughput scheduler achieves a high degree of fairness by 
allocating almost the equal resource to all users regardless of 
their CQIs.  

A balanced allocation to each user can be achieved 
through the consideration of the efficiency of each user 
alongside the history of the allocation to that user. For 
example, in the proportional fair scheduler [17] a user with 
higher efficiency (i.e. better channel quality) will be served 
more than the users with poorer channel quality. Meanwhile, 
the comparison of the total allocation to all users will prevent 
the scheduler from excessive allocation to that user and force 
the scheduler to serve other users as well. Later in Section 
IV, the performance of our proposed algorithm will be 
compared with these common scheduling methods.  

In the next section the analytical model for the proposed 
QoE driven scheduler together with an implementation 
algorithm will be derived and explained. 

III. MODEL DESCRIPTION 

A. Resource allocation assumptions 

LTE provides resources through a combination of 
Orthogonal Frequency Division Multiple Access (OFDMA) 
and Adaptive Modulation and Coding (AMC) techniques in 
a bandwidth range from 1.4MHz to 20MHz.  A resource 
allocation unit in LTE is defined as a ‘Resource Block (RB)’ 
in a two dimensional time-frequency grid. Each RB is a 180 
KHz of bandwidth allocated for one time slot of 0.5ms. 
Allocation will remain the same in the next time slot which 

 
Fig.  1.  Correlation between MOS and PI produced from 

subjective testing using different video contents [3]. 
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creates a 1ms Transmission Time Interval (TTI) for each 
transmission process.  

Each client provides an evaluation of its channel status, 
i.e. signal-to-noise ratio (SNR) across the NRB predefined 
resource blocks: 

 𝑆𝑁𝑅 ∈ {𝑆𝑁𝑅𝑚𝑖𝑛 , … , 𝑆𝑁𝑅𝑚𝑎𝑥}
1×𝑁𝑅𝐵  (2) 

A channel quality indicator (CQI) feedback will be 
generated based on this evaluation and the capability of the 
client’s device: 

 𝐶𝑄𝐼 ∈ {1,2, … , 𝐶𝑄𝐼𝑚𝑎𝑥}
1×𝑁𝑅𝐵 (3) 

The value of CQI can be a result of a linear fitting of 
SNR value(s) or searching through a lookup table which 
reflects the capability of user’s device with regard to 
different modulation and (channel) code rates (i.e. MCS) 
given the SNR values. CQI suggests a range of modulation 
and code rates for which at least 90% accuracy will be 
achievable at the receiver. Given the selected modulation and 
code rate (based on the CQI values) and the allocated 
resources, rk, the total allocated data rate to user k (k=1 to 

NUE) in the i
th
 round of the allocation, 𝑅𝑘

𝑖 , can be calculated 
as: 

 
{

𝑅𝑘
𝑖 = 𝐶𝑘

𝑇 . 𝑟𝑘
𝐶𝑘 = 𝐶𝑘(𝐶𝑄𝐼(𝑆𝑁𝑅)) ∈ ℝ>0

1×𝑁𝑅𝐵
 

(4) 

where Ck is the vector of the achievable capacities in the 
resource blocks for user k, given the corresponding CQI 
values. rk is the vector of the allocation defined as follow:  

 

{
  
 

  
 
𝑟𝑘 = [𝑟𝑘,1, 𝑟𝑘,2, . . , 𝑟𝑘,𝑁𝑅𝐵]

𝑇  ∈ {0,1}𝑁𝑅𝐵 ,
 

 𝑟𝑖 . 𝑟𝑗
𝑇 = 0  ∀ 𝑖 ≠ 𝑗 ,

 

  ∑  ‖𝑟𝑘‖1

𝑁𝑈𝐸

𝑘=1

≤ 𝑁𝑅𝐵

 

(5) 

rk,l=1 indicates the allocation of the l
th
 resource block to user 

k and rk,l =0 otherwise. Hence: 1) each resource block is 
supposed to be allocated just to one user; 2) all resource 
blocks can be allocated to one user; and 3) allocated 
resources in each round can be less than the total number of 
available resources (i.e. some resources may remain unused 
in each round).  

The weighted average of the allocated data rate after the 
i
th
 allocation round can be assessed as: 

 
𝑅𝑘
𝑖̅̅̅̅ = (1 −

1

𝑡𝑤
)𝑅𝑘

𝑖−1̅̅ ̅̅ ̅̅ +
1

𝑡𝑤
𝑅𝑘
𝑖  

(6) 

where tw is the average window size and must be large 
enough compared to the frame duration to filter out the 
fluctuation of the average allocated resources and capture the 
average video code rate of user (e.g. tw=100ms will suffice 
for LTE with 10ms frame duration). As it is depicted in Fig. 
2, the average video playback buffer incoming data rate at 
the receiver, ηk, can be expressed as: 

 𝜂𝑘
𝑖̅̅ ̅ = 𝛽𝑘𝛾𝑘𝑅𝑘

𝑖̅̅̅̅  (7) 

where 𝛽k reflects the ratio of the pure video data rate, λk, to 
the whole incoming data at the scheduler related to that user, 
R’k. This usually includes extra information such as voice, 
metadata etc. The channel quality, the robustness of the error 
detection/correction techniques (i.e. HARQ and ARQ) and 
adequacy of the selected modulation and code rate based on 
the received feedback are all reflected in γk. 

B. Proposed QoE-driven optimization method and 

implementation algorithm 

A QoE driven allocation aims to maximize the users’ 
satisfaction level from the service continuity’s point of view, 
which can be interpreted as a process of lowering pause 
intensity during the playback. This can be expressed as: 

 

{
 
 
 
 

 
 
 
 

𝑟∗ = arg 𝑟  min max 𝑃𝐼
 
 

{
 
 

 
 

𝑃𝐼 = {𝑃𝐼1, 𝑃𝐼2 , … , 𝑃𝐼𝑁𝑈𝐸},

𝑃𝐼𝑖 = 1 −
𝜂𝑖
𝜆𝑖
, 𝑃𝐼 ∈ {𝑥|𝑥 ∈ ℝ,   0 ≤ 𝑥 ≤ 1}1×𝑁𝑈𝐸

 
Η ≤ Λ ,    Η = {𝜂1, 𝜂2, … , 𝜂𝑁𝑈𝐸},

   Λ = {𝜆1, 𝜆2, … , 𝜆𝑁𝑈𝐸}

 

(8) 

As it has been examined in [4] and similar to the well-
known attribute of a MaxMin throughput, the above 
optimization problem tends to be extremely fair and 
inefficient. To restore the efficiency of the system while 
maintaining the effect of the user’s experienced quality, the 
problem in (8) can be rewritten as a weighted rate scheduling 
algorithm as follows: 

 

{
 
 

 
 

𝑟∗ = arg 𝑟 𝑚𝑎𝑥∑ 𝑢𝑘

𝑁𝑈𝐸

𝑘=0  
𝑢𝑘 = 𝑃𝐼𝑘

𝛼 . 𝑅𝑘  ,    𝑢𝑘 ∈ ℝ≥0 

 

(9) 

 

Fig.  2.  Model description and data rates’ assumptions 
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uk in (9) is the utility function where its first term (i.e. PIα), 
reflects the effect of the clients satisfaction (i.e. QoE). The 
first term can also be viewed as the weight for the second 
term, Rk, which represents the user efficiency to consume the 
allocated resources. The value of α defines the trade-off 
between the efficiency and fairness, which will be discussed 
in Section IV. 

Fig. 3 shows the changes of the weight, 𝑃𝐼𝑘
𝛼 ,of rate 𝑅𝑘 

in the proposed utility function for different value of α and 
versus a range of user channel status from poor to good 
(represented as the ratio of the achieved throughput, η, to the 
required data rate, λ). The depicted result justifies the trade-
off between the efficiency and the fairness of the scheduler 
through the adjustment of α. The result shows almost the 
equal weight for all users in the case of smaller value of α 
and higher weight for users with poor channel status when α 
is greater. Therefore, with the value of α closer to zero, 
users with good channel status are expected to be more 
beneficiary from their achievable rate and the allocation is 
more efficient. In contrast, users with poor channel status are 
expected to be more beneficiary when the value of α 
increases, leading to a fairer allocation.  

Usually in a wideband assessment of SNR at the receiver, 
a single average CQI will be generated to suggest the most 
suitable modulation scheme and code rate for the whole 
available allocation spectrum at the scheduler. Therefore all 
the elements of vector Ck in (4) will be equal to a certain 
value, ck(CQI), and   in the i

th
 round of the allocation, (9) can 

be rewritten as a linear programing as follows: 

 

{
 
 

 
 

𝑥∗ = arg 𝑥  max 𝑓𝑥
𝑇

 
   

𝑓 ∈  ℝ1×𝑁𝑈𝐸 , 𝑓𝑘 = 𝑃𝐼𝑘
𝛼 . 𝑐𝑘

 
𝑥 ∈ ℤ≥0

1×𝑁𝑈𝐸 , 𝑥𝑘 = ‖𝑟𝑘‖1 ≤ 𝑁𝑅𝐵 

 

(10) 

where fk combines the effect of the user’s experienced 
quality, PI, with its achievable data rate in each resource 
block, ck (i.e. user efficiency). The solution of (10), x

*
k≥0, 

represents the number of the allocated resources to user k and 
is an integer value while the original problem in (9) was a 
binary integer programming problem. The evaluation of fk in 
each round, given the throughput in (7) based on its 
corresponding average allocated data rate in (6), is as 
follows: 

 
𝑓𝑘 = 𝑃𝐼𝑘

𝛼 . 𝑐𝑘 = (1 −
𝜂𝑘
𝜆𝑘
)
𝛼

. 𝑐𝑘 
(11) 

PI as a QoE metric is by definition based on the client 
side information, while the actual allocation process is 
supposed to be on the network side. PI can also be treated as 
a pre-decoding QoE metric, so can be evaluated merely 
based on the network side information to avoid additional 
information exchanges between users and the network. This 
implies that, given the network arrangement shown in Fig. 2,  

 
𝑓𝑘 = (1 −

𝛾𝑘𝑅𝑘
𝑅𝑘
′ )

𝛼

. 𝑐𝑘 
(12) 

Obviously, it is also possible to pull the users’ evaluated 
PI from an element in the central network to do any specific 
load balancing and congestion control for those users that 
share the resources. 

An algorithm for the implementation of the analytical 
models in (9) and (10) can be achieved by replacing the 
utility function in these models with a priority function. 
Based on the values of the priority function, the allocation 
process selects just one dominant user in each round and 
continues until all available resources are allocated. This 
algorithm can be expressed as: 

 

{
 
 

 
 

𝑘∗ = arg 𝑘  max 𝑢𝑘
 
 

𝑢𝑘 = (1 −
𝛾𝑘𝑅𝑘
𝑅𝑘
′ )

𝛼

. 𝑐𝑘  

 

(13) 

where uk appears as a priority function and a user with the 
highest value of uk will be chosen in each round of the 
allocation. It will be shown in Section IV that the result of 
the algorithmic in (13) complies with those based on the 
models in (9) and (10), and (13) is for the practical 
implementation of the proposed model. 

In the next section the result of the implementation 
algorithm in (13) will be compared with that of the analytical 
model in (10). The adjustment of α for achieving a certain 
trade-off between efficiency and fairness will be examined. 
In addition, a PI based adaptive video streaming scheme will 
be presented in the presence of this algorithm to show the 
effectiveness of PI as a QoE metric for both client and 
network. 

C. PI based rate adaptive video streaming 

In a client driven rate adaptive video streaming service 
(e.g. 3GPP-DASH), client decides the suitable rate which has 
to be pulled from the server in each adaptation segment. As it 
is depicted in Fig. 4(a) in a shared channel with limited 
available resources, the user has to decide the best trade-off 
between the desired fidelity of the image and the minimum 
acceptable continuity of the service. The user will ask for 
each segment of the video based on the adapted rate for that 
time segment. The required assessment in most of the 

 
Fig.  3.  The weight of the rate in utility function as a function of 

parameter α. 
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existing technologies is based on the average incoming data 
rate of the playback buffer compared to a threshold (which is 
based on the video code rate). A simplified decision making 
process for the adapted rate of the (i+1)

th
 segment can be 

expressed as: 

 
𝜆𝑖+1 = {

𝜂𝑖
∗,        𝜂𝑖 < 𝜆𝑖

𝜆𝑖 + 𝑆𝑣 ,    𝜂𝑖 > 𝜆𝑖
 

(14) 

where λ represents video code rate to be adapted, η* 
represents the rounded value of  network throughput toward 
the nearest available video code rate smaller than η. Sv 
represents the step granularity of the video code rate. The 
rate adaptation condition in (14) can be reformed based on a 
minimum QoE threshold (a maximum acceptable 
discontinuity represented by PIthreshold) and expressed as: 

 𝑃𝐼𝑖 > 𝑃𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (15) 

where PIi represents the assessed value of PI and PIthreshold 
represents the maximum acceptable discontinuity of the 
service. Alternately (15) can be shown as: 

 (1 −
𝜂𝑖
𝜆𝑖
) > 𝑃𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                        

→    𝜂𝑖 < (1 − 𝑃𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)𝜆𝑖 (16) 

which resembles the initial form of the condition in (14) with 
the difference of the effect of the minimum desired QoE (i.e. 
PIthreshold). PI provides a quantitative and objective value and 
can be used to conduct a flexible and network oriented 
assessment for rate adaptation, instead of using the rigorous 
user oriented criteria in (14). A zero PI threshold produces 
the initial form in (14). As it will be shown later in Section 
IV, a predefined or broadcast non-zero PI threshold for users 
of a shared channel can produce a desired distribution of 
QoE from both continuity’s and fidelity’s points of view.  

As depicted in Fig. 4 (b), a PI driven rate adaptation 
mechanism (on the client side) actually has an interplay with 

the last mile’s scheduler (e.g. in eNodeB) to shape the QoE 
distribution among the users of the shared resources. In 
Section IV the results of these interactions will be discussed 
in more detail. 

IV. SIMULATION RESULTS AND ANALYSIS 

A. Simulation setup 

Table I shows the settings of the simulator developed in 
Matlab, which is used to examine the proposed optimization 
method, its algorithm implementation and the QoE driven 
rate adaptive video streaming service. The source of the 
users’ data is the video stream data packets generated using a 
truncated Pareto model (for packets’ inter-arrival-time and 
size). No background traffics have been considered. Video 
code rates are in the range of standard video quality of the 

 

Fig.  4.  Different aspects of the QoE (fidelity and continuity) in an adaptive rate video streaming service and its implementation: (a) two 

users with similar channel status and the trade-off between fidelity of the image and the continuity of the service (b) the implemented 

model of an end-to-end rate adaptive video streaning service with the conisderation of the role of last mile scheduling policy. 

TABLE I.  SIMULATION SETUP 

Parameter value 

No. of Cells 
1 (with the first tier 

interference) 

Inter-site distance  2000 meters 

Shadowing effect 

mean=0, deviation=8 

decorrelation distance=25m, 

inter-site correlation=0.5 

Channel model PedA, speed=3km/h 

Bandwidth 5MHz, 20MHz 

No. of RBs (per TimeSlot) 25, 100 

Subcarrier 15KHz 

Range of average SNR -6 ~ 18 dB (CQI=1~15) 

Average video code rate 156kbps ~ 1.5Mbps 

No of Users 45 

Each scheduling round One TTI=1ms 

Simulation time 10000*TTI (10 s) 

Video stream model 
Truncated Pareto for packet 

size and inter-arrival time 
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state of the art technologies (e.g. for BBC-iPlayer 470 kbps -
1500 kbps is the current range of non-HD video code rates 
for desktop application). Users’ Head-of-Line packets (HOL) 
are scheduled in a timely manner.  

The CQI mapping table and the channel status generator 
presented in [16] and [18] are used in our simulator. Each 
video code rate is corresponding to more than one user with 
different SNRs in the range of the defined CQI (i.e. 1~15). 
This produces unbiased results with regards to the video 
code rate or SNR distributions. Users are distributed in one 
cell with the consideration of the interference from the first 
tier neighboring cells. Shadowing effect (inter/intra-cell 
spatial correlation) has been taken into account.  

For the sake of comparison, MaxMin Throughput and 
maxCI (known as best-CQI in LTE) are taken as two 
extreme sides of the fairness/efficiency spectrum. The 
integer relaxation and rounding is employed to solve the 
integer linear programing problem in (10) with the 
constraints driven from LTE’s available number of Resource 
Blocks for the given bandwidth in Table I. The efficiency of 
the system is represented in b/s/Hz and is the ratio of the 
total created capacity (i.e. the summation of the total 
allocated data rates) to the system bandwidth. Fairness is 
evaluated among the users’ allocated data rates using the 
Jaine’s Index. Correlation between the users’ required and 
allocated data rates is assessed by the Pearson's Linear 
Correlation Coefficient.  

B. Performance of the proposed algorithm 

Fig. 5 depicts the achievable efficiency, correlation and 
fairness of the proposed optimization method in (10) and its 
implementation algorithm in (13) for different values of α.  
The results show the achievable trade-off between fairness 
and efficiency based on the value of α. Increasing α 
improves the fairness (Fig. 5(c)) and correlation (Fig. 5(b)), 
but decreasing the efficiency of the scheduling process (Fig. 
5(a)). In contrast, a scheduler using smaller α will lower the 
levels of fairness and correlation, but increasing the 
efficiency. However, unlike the optimization problem in 
(10), the simplified algorithm in (13) allocates the resources 
in each round just to the dominant user (i.e. the most 
efficient user when α is close to zero). This leads to the over-

performed efficiency of (13) compared to (10) with higher 
correlation between the required and the allocated data rates 
when α approaches zero.  

Fig. 6 shows the performance of the implementation 
algorithm in (13) as a function of the users’ channel status. 
The performance of the scheduler, with different values of α, 
lay between extremely efficient (e.g. best-CQI) and very fair 
(e.g. MaxMin throughput).  

C. Online adjustment of α-parameter  

The suitable value of α can be chosen based on the 
desired trade-off between fairness and efficiency, illustrated 
in Fig. 7. It can be a fixed predefined value based on the 
nominal characteristics of the system such as the system 
performance in Fig. 5. Parameter α can also be adjusted 
online based on the assumption about its relationship with 
the desired fairness or efficiency. With the assumption that 
the change rate of α with respect to fairness, f, is a constant μ 

(i.e. 
𝑑𝛼

𝑑𝑓
= 𝜇), the value of α can be set online as αi=αi-

1+μ(ftarget - fcurrent) in each iteration where ftarget is the desired 
fairness, fcurrent is the achieved fairness via α=αi-1 and αi is 
the new α to be set.  

As it is depicted in Fig. 7 with two different values of μ 
and fairness target 0 .75, the value of αi approaches an 
adequate range after a transient time. It will be amended 

 
Fig.  5.  The achieved trade-off between efficiency, fairness and correlation for different value α in the proposed scheduling algorithm: (a) 

Efficiency of the system vs. α (b) the correlation between required data rates and allocated data rates per user vs. α (c) fairness among 

allocated data rates to users vs. α . 

 
Fig.  6.  The performance of the proposed scheduling algorithm 

based on the allocated data rates vs the status of the users’ channel 

represented by SINR. 
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later, accordingly, with the changes in the situation (e.g. 
changes in the number of active stations, channel status, 
background traffics, etc.). The value of μ defines the step of 
the adjustment in each iteration and affects the speed of the 
convergence. Smaller μ produces smoother changes of α 
with less fluctuation in the produced fairness and efficiency 
(i.e. smoother change in the resource allocation) though this 
will extend the convergence time. The sufficiency of the 
achieved convergence time depends on the service 
demanded. Some alternative online adjustment methods, 
such as those suggested in [16], are available, which can be 
tailored for our purpose to achieve shorter transient time if 
necessary.  

D. Client QoE-driven rate adaptation 

A PI based criteria for rate adaptation for video streaming 
has been introduced in Subsection III-C. Fig. 8 provides an 
insight into the performance of such an adaptive scheme 
compared to non-adaptive video streaming from both the 
user’s and network’s points of view. The initial values of the 
video code rate for all of the users are a default value 
(780kbps in this example) and in the case of the adaptive 
streaming, video code rates can vary (above or below the 
initial value, i.e. 156kbps~1.5Mbps).  

Fig. 8(a)  depicts the adopted rates for two users with 
distinctive channel status, where the user with higher 
capability gradually acquires more image quality through the 
higher video code rate. The user with poor channel status has 
to reduce the requested image quality to maintain an 
acceptable continuity for the service. The cost of good 
continuity for users with bad channel status will be lower 
levels of fidelity for their image. However, the users with 
higher capability and better channel status will be served 
with higher video code rate. This has been shown in Fig. 8(b) 
where the single choice of the video code rate in non-
adaptive service is expanded across a wide range of available 
rates higher or lower than the initial value. Fig. 8(c) shows 
the achieved continuity of the service in each case. Since the 
adaptive streaming mechanism can reduce the requested 
quality of the video if necessary, it maintains the continuity 
of the service and achieves higher probabilities of being low 
PI instead.  

Fig. 9 depicts the interplay between the last mile 
scheduler (i.e. scheduling and rate adaptation functions of 

eNodeB in LTE) and the client side rate adaptation 
mechanism. The results of two distinctive efficient and fair 
schedulers with α=0.3 and α=3, respectively and as 
discussed in Section III, are provided in Fig. 9 for the 
purpose of comparison. On the client side, the rate adaptation 
mechanism chooses the desired rate of the video based on 
the performance of the network. As shown in Fig. 4(b), the 
last mile wireless channel is supposed to be the main 
resource bottleneck. Therefore, the scheduling policy used in 
eNodeB that considers the capability of the user’s device is 
the main factor affecting the network performance.  

The user is expected to choose its video code rate not 
only depending on its channel quality but also under the 
resource constraint which is related to the status of other 
users in the same cell (shared resources). The distribution of 
the QoE from the continuity’s point of view (represented by 
Pause Intensity in Fig. 9(a)) and from fidelity point of view 
(represented by the spectrum of the adapted video code rates 
in Fig. 9(b)) are highly polarized in the case of efficient 
scheduler. It means that the rate of an adaptive video 
streaming service will be either very high or very low with 

 
Fig.  7.  Online adjustment of α for fairness target 0.75 and the 

step size of the amendment μ=0.25 and 4: (a) adjusted values of α 

vs time (b) achieved fairness using the adjusted α in the scheduler 

 
Fig.  8.  Adaptive video streaming performance compared to a non-adaptive service: (a) adapted rates for two users with distinctive 

channel status (b) the spectrum of the adapted rates of all users compared to the fixed rate of non-adaptive service (c) overall QoE 

performance of adaptive service compared to the non-adaptive service from continuity point of view 
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low possibility for intermediate values.  

An efficient scheduler provides more resources to users 
with better channel quality, hence higher video code rates 
will be fetched by them. Subsequently, users with poorer 
channel quality experience will limit network performance. 
Therefore they adopt lower video code rates to maintain the 
minimum desired level of continuity of the service. A wider 
range of video code rates will be chosen by the fair scheduler 
though the maximum video code rate is restricted in this 
case. This fact has been reflected in the result where 
smoother change in the distribution of QoE (for continuity) 
in the range of 0≤PI≤1.  

V. CONCLUSION 

In this paper a QoE driven adaptive scheduler has been 
proposed and examined in the context of a wireless mobile 
communication system providing adaptive rate video 
streaming services. An algorithm for the implementation of 
the established analytical model (i.e. the LP problem) has 
been proposed. Pause Intensity is adopted to quantify the 
continuity aspect of the service with the capability of being 
evaluated on both client and network sides. The proposed 
algorithm provides a flexible tool to achieve a desired trade-
off between fairness and efficiency. Furthermore, the 
effectiveness of the online adjustment method for the 
scheduler parameter to maintain the desired level of fairness 
or efficiency has also been shown.  

PI has been used to regulate user’s video code rate on the 
client side and to shape the distribution of the QoE related 
performance among users in collaboration with the scheduler 
on the network side. The performance trade-offs between 
efficient and fair schedulers in both adaptive and non-
adaptive modes for streaming have been analyzed.   
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