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Purpose	
  	
  
The	
  purpose	
  of	
  this	
  paper	
  is	
  to	
  assess	
  high-­‐dimensional	
  visualisation,	
  combined	
  
with	
  pattern	
  matching,	
  as	
  an	
  approach	
  to	
  observing	
  dynamic	
  changes	
  in	
  the	
  ways	
  
people	
  tweet	
  about	
  science	
  topics.	
  	
  
 
Design/methodology/approach	
  	
  
The	
  high-­‐dimensional	
  visualisation	
  approach	
  was	
  applied	
  to	
  three	
  scientific	
  
topics	
  to	
  test	
  its	
  effectiveness	
  for	
  longitudinal	
  analysis	
  of	
  message	
  framing	
  on	
  
Twitter	
  over	
  two	
  disjoint	
  periods	
  in	
  time.	
  The	
  paper	
  uses	
  coding	
  frames	
  to	
  drive	
  
categorisation	
  and	
  visual	
  analytics	
  of	
  tweets	
  discussing	
  the	
  science	
  topics.	
  	
  
 
Findings	
  	
  
The	
  findings	
  point	
  to	
  the	
  potential	
  of	
  this	
  mixed	
  methods	
  approach,	
  as	
  it	
  allows	
  
sufficiently	
  high	
  sensitivity	
  to	
  recognise	
  and	
  support	
  the	
  analysis	
  of	
  non-­‐trending	
  
as	
  well	
  as	
  trending	
  topics	
  on	
  Twitter.	
  	
  
 
Research	
  limitations/implications	
  	
  
Three	
  topics	
  are	
  studied	
  and	
  these	
  illustrate	
  a	
  range	
  of	
  frames,	
  but	
  results	
  may	
  
not	
  be	
  representative	
  of	
  all	
  scientific	
  topics.	
  	
  
 
Social	
  implications	
  	
  
Funding	
  bodies	
  increasingly	
  encourage	
  scientists	
  to	
  participate	
  in	
  public	
  
engagement.	
  As	
  social	
  media	
  provides	
  an	
  avenue	
  actively	
  utilised	
  for	
  public	
  
communication,	
  understanding	
  the	
  nature	
  of	
  the	
  dialogue	
  on	
  this	
  medium	
  is	
  
important	
  for	
  the	
  scientific	
  community	
  and	
  the	
  public	
  at	
  large.	
  	
  
 
Originality/value	
  	
  
This	
  study	
  differs	
  from	
  standard	
  approaches	
  to	
  the	
  analysis	
  of	
  microblog	
  data,	
  
which	
  tend	
  to	
  focus	
  on	
  machine	
  driven	
  analysis	
  of	
  large-­‐scale	
  datasets.	
  It	
  
provides	
  evidence	
  that	
  this	
  approach	
  enables	
  practical	
  and	
  effective	
  analysis	
  of	
  
the	
  content	
  of	
  midsize	
  to	
  large	
  collections	
  of	
  microposts.	
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Introduction	
  

 

The current ethos of science communication, driven by policy (POST, 2003), 

advocates engaging the public in dialogue (Nisbet and Scheufele, 2009). As a 

consequence, research funding bodies typically require public engagement and 

dissemination of findings beyond scholarly communities (see, .e.g, the Research 

Councils UK’s strategy for public engagement at http://www.rcuk.ac.uk/pe, and the 

European Commission’s policy on public engagement at 

http://ec.europa.eu/research/swafs/index.cfm?pg=policy&lib=engagement). Social 

media are the latest in a series of technologies which have shaped scientific 

communication and enabled scientists to disseminate their research more widely 

(Hogan and Sweeney, 2013). It has been has noted (Meyer and Schroeder, 2009) that 

online access to scientific discussion gives the public access to scientific information 

which has not been mediated by the traditional communication professions of science 

journalism, documentary film-making, etc. Journalists have thus also had to adapt to 

compete with other communicators exploiting the new media (Fahy and Nisbet, 2011; 

Hermida, 2010). Events related to scholarly content on social media are being 

explored as potential indicators of research impact (Priem et al., 2012), and research 

communities have embraced social media for informal communication (Ponte and 

Simon, 2011; Darling et al., 2013; Bar-Ilan et al., 2012; Weller et al., 2011; 

Mandavilli, 2011). For science organizations, Web 2.0 has become integral to public 

relations, and means are being sought to quantify its impact at an organizational level 

(Roemer and Borchardt, 2013). Individual scientists are also aware of the public 

engagement agenda: Letierce et al. (2010) have shown that although researchers' main 



 

 

motivation for tweeting is to communicate with members of their own community 

(89%), some also try to reach general audiences (45.9%). As a source of altmetrics 

about formal publications, Twitter has low coverage compared to other social media 

such as Mendeley (Zahedi et al., 2014). However, scientists play only one part in the 

bigger picture – science organizations, journalists, lobbyists and the general public 

also have important contributions to make. We find microblogs, specifically Twitter, 

of interest because of the low barrier to entry compared to other social media such as 

blogs and discussion forums. They also have the advantage of being an open forum, 

including people who would not normally, or ever, read scholarly literature.	
  

 

Bauer et al., (2007, p. 90) have called “to expand the range of data ‘officially and 

legitimately’ relevant for monitoring public understanding of science”. The 

measurement of science communication in Web 2.0 media, which is sometimes 

known as altmetrics (Priem et al., 2012), plays a role here. The dominant strand in 

social media metrics research, so far, is in assessing impact of scholarly papers on 

social media (Haustein et al., 2014a, 2014b; Shuai et al., 2012; Thelwall et al., 2013; 

Eysenbach, 2011). Such work extends previous bibliometric studies on the 

communication of scholars. In addition to “evaluation of scholars” and 

“recommendation of articles” Priem and Hemminger (2010) define the remit of the 

scientometric study of Web 2.0 to include “the study of science”. It is at this point, at 

the intersection of the science communication studies and social media metrics, that 

this work positions itself.	
  

 

In the study presented here, we have observed relatively informal science 

communication on Twitter. We used selected scientific terms to filter samples of 



 

 

science related communication by any Twitter account holder. Our aim was to 

understand better which aspects of science provoke transient and sustained activity on 

the microblogging platform. The work, therefore, focused on identifying ‘message 

frames’ within the tweets, where frames are seen as ways of interpreting topics, 

identifiable by the use (or avoidance) of certain words and phrases. The study applies 

a mixed methods approach to framing analysis for science communication in social 

media, combining content analysis with high-dimensional visualisation of frames 

identified using pattern matching. The contribution of the work lies in the assessment 

of the visualisation of science related tweets as a method for analysing 

communication and improving the understanding of Twitter’s role in the context of 

altmetrics.	
  

	
  

The aim of this study was to provide proof of concept using the new method, which 

combines content analysis and visual analysis as a means to observe dynamic changes 

to the framing of science communication on Twitter: which frames were prominent 

when and how this changed over time. One specific issue facing Twitter research on 

scientific topics is that science produces relatively few posts compared to current 

affairs, popular culture, etc. (Uren and Dadzie, 2011). This accurately reflects the 

lower interest in these topics by lay society as a whole, but nonetheless makes 

gathering usable samples difficult. On these small samples, simple trend spotting 

methods can be ineffective. Our first research question addressed the scale issue:	
  

1. Does the proposed method support the analysis of dynamic changes in non-

trending topics? 	
  

A requirement of a method for observing science communication is the ability to 

support longitudinal studies, in order to facilitate medium to long-term observation. 



 

 

This is especially important for microblogging services such as Twitter, to ensure that 

spurious spikes that do not represent truly trending topics do not skew the analysis. 

Therefore our second research question was:	
  

2. Can changes be observed across disconnected time periods (within days and in 

samples taken a year apart)?	
  

The established method for this kind of study would be content analysis. However, 

content analysis requires multiple rounds of analysis and cross checking between 

coders, which takes time. Further, only relatively small tweet counts can be handled 

this way, which could become problematic for trending topics or long-term 

longitudinal studies. We therefore combined content analysis with high-dimensional 

visualisation of tweeting activity, using parallel coordinates (Inselberg, 2009); the 

content analysis takes a subjective approach to the identification of frames in smaller 

samples, whereas the visual analytics deploys pattern matching to explore 

communication in larger datasets. This approach allowed us to compare multiple 

frames (coordinates or dimensions) across multiple time periods, and where sufficient 

data was available, at larger scale. A third question, aimed at determining whether the 

addition of a visual analytic approach added value to the content analysis was:	
  

3. Does visualisation-based analysis reveal further information in addition to 

confirming the content analysis?	
  

 	
  

Literature Review	
  

 

We have identified several studies, which address public scientific communication in 

microblogs. Some are topic focused, considering issues such as climate change 

(Hubmann-Haidvogel et al., 2012), nanotechnology (Veltri, 2013), and astronomy 



 

 

(Wilkinson and Thelwall, 2012). Others look at the dispersion of messages (Chew and 

Eysenbach, 2010; de Domenico et al., 2013), while a number focused on Twitter 

activity around events (Adams et al., 2011; Desai et al., 2012). These publications 

confirm interest in analysing scientific microblogs and point to a diversity of 

analytical methods, with the results targeted at audiences with different perspectives. 	
  

 

The content of tweets has been studied using a range of natural language processing 

(NLP) methods. The 140 character restriction on tweets poses challenges here, 

leading to unconventional grammar and abbreviations, although language use on 

Twitter has been shown to be surprisingly formal (Hu et al., 2013). Twitter specific 

NLP methods have been developed, for example, Reddy Yerva et al. (2011) present a 

classification method for ambiguous terms (e.g., the product names Apple and 

Blackberry). Ritter et al. (2011) present a named entity recognition (NER) algorithm, 

and Thelwall et al. (2011) developed SentiStrength, a sentiment analysis system, all 

for short social web texts. Because of the important temporal element in Twitter 

analysis, topical content analysis of tweets is frequently aligned with events. 

Exploration of topic evolution on social media has been tackled by several methods: 

Hu et al. (2012) use a Latent Dirichlet allocation (LDA) based method, Cui et al. 

(2011) use a hierarchical Dirichlet process, Dou et al. (2013) similarly employ 

hierarchical text analytics with interactive visualization, Chua and Asur (2013) have 

developed a method for summarising Twitter content by extracting representative 

tweets. 	
  

 

In contrast to the computational approaches for text analysis outlined above, content 

analysis employs human coders to classify texts – defined as a qualitative “research 



 

 

technique for making replicable and valid references from texts” (Krippendorff, 

2004). Although much Twitter analysis has focused on trending topics with millions 

of tweets and on getting results quickly, (manual) content analysis has been employed 

by researchers seeking subtle information about content which goes beyond current 

capacity of (automated) NLP methods for these short, irregular texts. Examples of 

content analysis applied to tweets include: Chew and Eysenbach (2010), in which a 

sample of tweets about the H1N1 flu pandemic was categorized for content (e.g., 

resources, personal experience), qualifiers (e.g., humour, relief, concern) and links; 

and analysis of discourse on stem cell science (Adams et al., 2011) for tone 

(sentiment), user identity, and a range of frames such as religious, political and 

business. 	
  

 

In this work we present an approach which bridges qualitative content analysis and 

NLP by using the former to guide deployment of the latter. We do this through the use 

of a visual analytics method. Visual analytics has evolved as a field where interactive 

visualization is used to augment human intuition and perception during analysis of 

complex data. First, high-level, exploratory overviews of data structure and content 

are examined. Detailed analysis of regions of interest (ROIs) thus discovered is then 

carried out using visualization methods selected based on data type and task, and the 

target audience. 	
  

 

The most basic visualization used in Twitter analyses is the timeline plot of numbers 

of tweets, trends, etc., (e.g., Lumezanu et al., 2012; de Domenico et al., 2013). Word 

clouds (e.g., Xu et al., 2013), and variations of scatter plots (e.g., Cao et al., 2012; 

Yuan et al., 2009) are other simple options used to examine term usage. Tweets often 



 

 

include explicit, or automatically derived, geo-location information: another 

dimension along which to categorize them. The results of such analysis are typically 

displayed using cartographic or other location-based visualisation, topic distribution 

(Cano et al., 2013) or evolution (de Domenico et al., 2013). Analysis of the evolution 

of topic and sentiment in dynamic datasets requires techniques able to handle multi-

attribute data; examples include flow visualizations such as streamlines or 

themerivers, that harness the metaphor of a flowing river (e.g., Cui et al., 2011; Dou 

et al., 2013; Xu et al., 2013). 	
  

 

Visualization also has a long history in the field of bibliometrics (Börner et al., 2003), 

where it has a role in mapping knowledge domains and their development over time. 

The dominant visualisation maps topic clusters in 2D space as used in VOSviewer 

(van Eck and Waltman, 2010). Time may be represented with a view for each time 

window, e.g., as by Kraker et al. (2014) and in the cluster network visualization of the 

SciMAT tool (Cobo et al., 2012). Other visualizations present citation networks 

plotted against a time axis, as in CitNetExplorer (van Eck and Waltman, 2014) or the 

longitudinal view in SciMAT. 	
  

	
  

	
  

Parallel coordinates provide another method for visual comparison of multiple, 

dynamic data attributes. In this work we deploy them to visualize multiple time 

windows and multiple frames in the same view, allowing the observation of changes 

in interest and terminology usage through time. The remainder of this paper 

demonstrates the application of parallel coordinates as an analytical tool for the 

selected scientific topics, to answer the research questions outlined above.	
  



 

 

 

Methods	
  

This study observed one trending topic (the Curiosity landing) to represent a large-

scale event, and two non-trending topics (Phosphorus and Permafrost), which were 

identified as topics in which previous research showed low, but consistent, Twitter 

activity (Uren and Dadzie, 2011). Non-trending communication about science can be 

assumed to involve what Miller (1983) characterises as attentive groups: fewer in 

number, but persistently engaged. The samples provide contrast, allowing us to 

investigate whether methods for studying trending topics transfer to non-trending, but 

not less important, topics. 	
  

 

A longitudinal study was carried out with two sampling periods: 4-9 August 2012 (the 

period of the Curiosity landing) and 4-9 August 2013 (its anniversary). Data was 

collected using the Twitter streaming API for the terms: “curiosity”, “phosphorus” 

and “permafrost”. We did not sample using hashtags specifically, as many studies do, 

because of the relatively low numbers expected. The non-bounded pattern search for, 

e.g., “curiosity”, however, also retrieves #curiosity. Subsequently, Tufekci (2014) has 

written concerning social sampling biases of hashtag studies, which supports our 

decision not to use them here. Total tweets sampled for each period were: 	
  

• Curiosity 2012   – 1,194,470 	
  

• Curiosity 2013  – 3,310	
  

• Phosphorus 2012  – 587 	
  

• Phosphorus 2013  – 6,269	
  

• Permafrost 2012  – 311 	
  

• Permafrost 2013  – 618	
  



 

 

 

Curiosity, also known as MSL (Mars Science Laboratory) and on Twitter as the 

persona @MarsCuriosity, is a robot designed to conduct geological survey work on 

the surface of Mars. It landed on Mars on 6th August 2012. Our first sampling period 

includes the landing date. Considerable publicity surrounded the landing, heightened 

by the history of failed landings.   There was however overwhelmingly positive 

response as the first images came back to earth; the Curiosity dataset provides an 

example of a topic for which there are many tweets representing a big international 

event. 	
  

 

Phosphorus is essential for all life. As a result, a fair number of biology articles 

concerning phosphorus are announced on Twitter. The biggest commercial use of 

phosphorus is in fertilizers (Neset and Cordell, 2012), but mineral sources are limited 

(“peak phosphorus”). Phosphorus fertilizers can pollute water supplies, and this can 

become politicised. A more active political issue, in the periods we sampled, concerns 

the use of white phosphorus in warfare. This bears similarities to other debates about 

technologies perceived as risky, such as nuclear power. The combination of these 

threads causes a steady, albeit relatively low, flow of tweets containing the term 

‘phosphorus’. 	
  

 

Climate change has been extensively studied in the public engagement of science 

literature because of its importance and its controversial nature (e.g., Hubmann-

Haidvogel et al., 2012; Nisbet, 2009). The term ‘permafrost’ allows us a small view 

onto this wider debate. Permafrost is a soil type characterised by a permanently frozen 

layer (Schaefer et al., 2012). Permafrost can be viewed both as an indicator of 



 

 

warming (during the second, 2013, sampling period it was melting at an 

unprecedented rate), and a climate risk (melting releases methane). Furthermore, 

changes to underlying soil structure disrupt ecosystems and the built environment of 

affected areas. Therefore it is of scientific interest to those interested in climate 

change, and has political, economic, and social importance for people living in the 

affected regions.	
  

 

Frames	
  

 

The notion of “frames”, first proposed by Goffman (1974), is influential in the 

interpretation of public communication about science, with frames seen as a tool for 

shaping public perceptions (Nisbet and Scheufele, 2009). Frames may be defined as: 

“ideal-type arguments used to interpret certain topics” (Schäfer 2009, p. 485), or 

“interpretative storylines” (Nisbet and Scheufele, 2009, p. 1770) and are marked by 

“patterns in the use of certain words, phrases, images, and sources of information” 

(Bruu Carver et al., 2013, p. 9). Hence, frames can be recognised by the use (or 

avoidance) of certain words, phrases, metaphors or images, and the status of particular 

kinds of information sources, which together point at a particular interpretation of an 

issue.	
  

 

For the content analysis, we sought a general-purpose framing scheme which could be 

applied to a range of science-related topics. The scheme proposed by Schäfer (2009) 

was selected because: 1) it has been applied to multiple topics (stem cell research, 

human genome and neutrino research), and 2) it was the simplest such scheme we 



 

 

found (given the constraints of 140 characters, complex arguments are difficult to 

frame in tweets). 	
  

 

The scheme was originally used in the analysis of elite German newspapers, therefore 

some modifications were needed to adapt it for the less formal discourse of Twitter. 

To the four original codes (Scientific, Political, Economic, ELSI –	
  Ethical, Legal & 

Social Implications) a fifth code was added to reflect the light-hearted nature of many 

posts on Twitter, which was labeled Fun. Some further codes were required to 

classify the tweets that could not be assigned to a frame. Firstly, scientific terms are 

quite international in their usage and “English” words therefore occur in tweets 

written in a wide range of languages (Spanish, German and Indonesian were found, 

among others, often also containing English terms). We determined that interpreting 

the subtleties of framing in 140 character tweets that had been passed through 

automatic translation was too error prone. Therefore, the category Other Languages 

was added. A benefit of this code is that it indicates international interest. Finally, the 

code Off Topic was defined for tweets that could not be categorised with any other 

code. For example, #curiosity is used in its general sense and Permafrost is the name 

of a games server. The results of the coding are presented in Figure 1. A coding 

manual providing definitions can be found at: http://bit.ly/1s9P9DV. The manual was 

refined by agreement between the two coders prior to final coding.	
  

	
  

	
  



 

 

Figure 1 Proportion of frame codes per dataset, left to right Curiosity, 

Phosphorus and Permafrost.	
  

	
  

	
  

We define the unit of analysis as a single tweet. Each tweet was assigned exactly one 

code. For each topic, 12 batches of tweets were coded, one for each day 04-09 Aug. in 

2012 and 2013. For Phosphorus and Permafrost the numbers of tweets per day were 

relatively low (32-116 for permafrost, 65-4,736 for phosphorus). For Curiosity, the 

numbers of tweets were too great to be coded in their entirety (at its maximum on the 

6th of Aug. 2012 there was a total of 733,000 tweets). In 2013 Phosphorus had some 

days with several hundred tweets and one with over 4,000. Therefore, each batch 

contained the smaller of either the total number of tweets filtered on the term for the 

day or a random sample of 200 of the filtered tweets (randomisation was achieved 

using the SQL ORDER BY RAND() statement). Table 1 summarises the numbers 

coded, and Figure 1 summarises the frames identified for each dataset.	
  

 

Dataset Cur12 Cur13 Phos12 Phos13 Perm12 Perm13 

4 Aug 200 200 94 169 70 70 

5 Aug 200 200 65 200 33 108 

6 Aug 200 200 113 200 55 116 

7 Aug 200 200 137 200 73 114 

8 Aug 200 200 86 194 49 99 

9 Aug 200 192 92 200 32 111 

Total 1200 1192 587 1163 312 618 

 



 

 

Table 1 Numbers of tweets coded	
  

 

Agreement between the two coders was calculated using Hooper's measure (1965): 

  𝐻 = !
!!!!!

 

where C is the number of codes on which both coders agree, A is the number of codes 

assigned by coder A, and B is the number of codes assigned by coder B. Note that 

Cohen's Kappa (1960) is inappropriate for this study because tweets are not 

independent of each other because of retweeting. Hooper’s measure was chosen as an 

alternative because it is a well known consistency measure in document indexing, 

e.g., Medelyan and Witten, (2006), which has procedural similarities to a priori 

coding. Furthermore, it gives consistently lower values than the other well known 

alternative Rolling’s measure (Leininger, 2000). The batch agreement was calculated 

as the mean of the agreement values per day. Frame agreements were calculated as 

raw values cumulated for all six days. Several rounds of coding were undertaken for 

the datasets. Coding was stopped when no batch in the dataset had an agreement of 

less than 0.7. To achieve this, coders had to reach a similar or higher level of 

agreement on the most populous frame codes for the dataset (some individual frames 

may have low agreement at this point but these would be for barely populated frames 

with little influence on the overall score).	
  

	
  

Visual Analytics	
  

 

Visualisation and analysis are often treated as distinct steps. However, increasingly, 

(interactive) visual analytics is being used to tackle more effectively the analysis of 

very large amounts of complex data, by augmenting advanced human perception with 



 

 

high computing power (see, e.g., Cao et al., 2012, Cui et al. 2011, Xu et al., 2013). 

For our study, the qualitative visualisation, while human-driven, relies on the 

capability of the visualisation technique, parallel coordinates (Inselberg, 2009), to 

highlight trends within the data, and therefore reveal ROIs, key here being areas of 

intense activity and other areas where unexpected patterns occur, to determine where 

to investigate in more detail. Where ROIs were identified, further detailed analysis of 

tweet content was carried out, by investigating manually the tweets used in the 

content analysis (see Table 1), to identify additional terms or evolution in terminology 

usage, in addition to the larger samples visualised. The visual analytics approach was 

thus used to guide the identification of terms tweeters use to express their opinions 

about and interest in different aspects of each topic and how this changed with 

surrounding context and time. 	
  

 

Parallel coordinates (Inselberg, 2009) stack (interchangeable) vertical axes in parallel, 

each of which represents one attribute or variable (dimension) in a dataset. A polyline 

or polygon representing the attribute(s) of interest across all others intersects each 

axis at its value (cardinal or ordinal), providing a simple method for comparing trends 

between two adjacent or across large numbers of dimensions. While the interactive 

technique may be used to compare an infinite number of dimensions, practical 

limitations in screen width and resolution may require less important axes to be folded 

or hidden to allow a focus on more important attributes during detailed analysis of 

ROIs.	
  

 

For each snapshot in the visualisation, the variable of interest is time, with six trend 

lines colour-coded (and annotated) in the same order across the parallel coordinates, 



 

 

stacked with oldest (4th Aug) at the top. The key period is highlighted (in thick 

yellow): the 6th of Aug (the landing day of the Mars rover in 2012). The period 

immediately before each (5th) is highlighted in red, 4th Aug. is violet, 7th turquoise, 

8th green and 9th blue. Because of the variation in tweet count between the two years, 

especially for Curiosity, we normalise each dataset during pre-processing, to aid 

comparison across the different batches. The second left axis is count or relative count 

where tweet counts are not uniform across the period (count for any day falls below 

the maximum set). The remaining vertical axes of the visualization represent one 

(simple or compound) term each. 	
  

 

The first round of the visual analysis used random samples of up to ten times (max. 

2,000 per batch) those used for the content analysis. While the visualisation method 

used does not in itself impose an upper limit, this value was chosen to assess how 

representative of the overall dataset the trends observed in the smaller, manually 

annotated datasets were, and still have a sufficiently small dataset that allowed a good 

degree of manual inspection of its content. Further, this upper limit took into account 

the large variation in tweet count outside the immediate focus. Term selection was 

guided by knowledge of the content derived from the frames observed in the smaller, 

manually coded samples, and insight from alternative framing schemes. This was 

further refined using the larger sets of up to 2,000 each. Uren and Dadzie (2013) plot 

the entire dataset for a small set of terms for the Curiosity 2012 dataset, and Figure 2 

shows plots for much larger samples, showing the results obtained by applying pattern 

matching across the larger datasets. (A larger set of snapshots comparing the trends 

can be found at http://bit.ly/1DK3YkB.) 	
  

 



 

 

Terms used to build the visualisation were extracted using pattern-matching. In 

addition to the knowledge of the data built during content analysis, patterns definition 

drew on knowledge of frames reported in the science communication literature. The 

benefit of the human in the loop is seen here; prior and contextual knowledge allows 

for more nuanced classification during manual inspection of ROIs. For instance, in 

Permafrost, a tweet comparing the revenue from oil exploitation in the Arctic to the 

environmental cost of melting permafrost at face value could appear to be 

“Economic”. However, following the frames described in (Nisbet and Scheufele, 

2009), as it addresses controversial government plans for energy generation, there is a 

stronger argument for “Public accountability / governance”, than “Economic 

development/competitiveness”, so that the tweet is categorised as “Political”. 

Entradas et al. (2013), for instance, who discuss space exploration, provide additional 

frames we re-used especially in the analysis of the Curiosity dataset, to differentiate, 

for example, adventure from risk as the rover explores Mars.	
  

Some terms use label and variant thereof, for example, for Curiosity “Rover” searches 

also for 'CuriosityRover'. For Phosphorus, “ELSI, Public accountability & 

Governance” maps to {child|bomb|burn|war|crime|weapon|wmd|first aid}. To 

differentiate those from tweets also talking about white phosphorus as “Political 

(public accountability)” we look, for the latter, for where a specific target region or 

regime using the weapon is being discussed, of note being 

'{fallujah|iraq|palestine|gaza|afghan|syria|pentagon|white house|regime}' (or variants 

thereof, e.g., ‘palestine’ will also search for Palestinian). 	
  

 

Results	
  

 



 

 

Figure 1 summarises the pertinent frames identified for each dataset and Table 2 

presents the inter-coder agreement results. Note that the frame agreement values are 

more variable than batch agreement. For example, the Fun frame typically has only 

moderate agreement, possibly because humour is very personal (the coders had an 

eight year age difference and different cultural backgrounds), whereas the Other 

languages code had high agreement (note it is not 100% because some tweets use two 

languages, e.g., English and Arabic, and it was then down to the judgment of the 

coder whether they could assign it using the English text alone).	
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Table 2 Inter-coder Agreement	
  

 

The parallel coordinate plots are presented in pairs for each topic, with 2012 above 

2013 (Figures 2-4). To allow direct comparison of relative trends for each attribute, 



 

 

the coordinates are stacked in the same order for each set. Summary observations per 

topic follow.	
  

 

Curiosity frames changed relatively little across the two years with Scientific and Fun 

frames dominating in both datasets. We note the increase in Off Topic tweets by 2013, 

indicating that a higher proportion of tweets were not about the Curiosity lander but 

used the term in its more general sense. We also note a small proportion of tweets 

(3%) in the 2012 dataset assigned to the Political frame, which were associated with 

expressions of patriotic feeling around the success of the landing. 	
  

	
  



 

 

Figure 2: Visualization of the frequency of selected terms extracted from the 

Curiosity datasets, from the total number of tweets containing the filter 

‘curiosity’, peaking at 67,703 on Aug. 6 2012 (upper plot), and 548 on the 

anniversary of the landing day in 2013 (lower plot). The middle plot filters out 

data in 2012 with frequency greater than 3500, revealing peaks outside Aug. 6 

(which is subsequently greyed out). The lines are colour coded, one per day for 

each of Figures 2-4, and each is also annotated with a consistent icon to aid the 

reader in distinguishing the trend lines.	
  

	
  

In Figure 2, the second tallest peak in 2013 represents tweets discussing the birthday 

theme with positive sentiment, using the complex, context-specific label positive 

sentiment (Curiosity). This looks at the celebrations focusing on the birthday theme – 

{year|anniversary|happy|birthday|song|sing}. The absolute count in 2012 is still 

higher than that for the following year, picking up tweets using the word happy in the 

celebration on the landing day. However, as a percentage of total tweets, including the 

other specific terms classified as Fun, such as the cat jokes, this coordinate only 

shows a small rise in 2012. Notably, in 2013, while the term shows a consistent set of 

peaks for all days but the 4th, it quickly drops away after the anniversary. In 2012, 

ignoring the landing day, there is no noticeable difference in its usage across the 

period. Looking at the plots as a whole, the much larger number of tweets on the 

landing day in 2012 obscures other rises for the rest of the period, whereas much 

lower overall tweet count in 2013 makes it easier to distinguish variation in 

terminology usage across the period for 2013. 	
  

 

The trends in Figure 2 reflect our content analysis, with proportionally more tweeting 



 

 

about the science behind the Mars rover and the landing event on its anniversary, and 

more celebration on the landing day. Figure 2 shows the dynamic evolution of eleven 

terms for the two periods out of a total of 29 terms for which a co-ordinate was 

generated in the process of data exploration. This is a ‘snapshot’ of the interactive 

visual analytic process. The terms selected represent ROIs, dimensions which, in this 

case, reveal areas of intense discussion. 	
  

The key difference between the two years is the marked increase in tweeting about the 

(trending) event on the landing day (in 2012), obscuring peaks for the surrounding 

days. The middle plot illustrates how, by lowering the upper limit of the plot and 

therefore greying out the dominant day, 06 Aug, the relatively smaller peaks for the 

surrounding days are more clearly revealed. 2013 sees much lower variation; there are 

however clear peaks the day prior to and on the anniversary itself, with a quick drop 

immediately after; publicity in the run up to the anniversary accounting for the brief 

renewal of public interest. There remains a good degree of sustained interest in the 

topic after the anniversary; as for 2012 this would be due to the attentive public and 

the scientific community. Explicit use of the word “science” (and variants thereof), 

for example, while dominant only on the landing day in 2012, show a clear set of 

peaks throughout the sample period in 2013, highest on the 5th and 6th.	
  

 

Some terms were found to be strongly associated with either the original event only or 

its anniversary. Concern about the technology, and especially the landing gear, is 

captured in “Technical Uncertainty” (7th axis from the left in Figure 2); this peaked 

on the landing day but fell to near zero after the successful landing. ‘Technical 

Innovation’ (8th axis – concerning the camera and its output) sparked interest on the 



 

 

landing day. Apart from a brief fall the following day, this was maintained as images 

of Mars were sent back to earth. In 2013, however, neither term recorded much 

interest. Some terms persist across both years, e.g., Landing (4th axis) and the Spanish 

word for Mars, Marte (5th axis), which with very high occurrence, indicates both 

international interest and the Spanish-speaking population in the US tweeting about 

the event.	
  

 

 Explicit “congratulations” shows a clear peak on 06 Aug 2012, but much smaller 

rises on the 5th and 6th in 2013. Terms for “Fun” popular in 2012, such as “curiosity 

killed the cat” and other cat jokes (12th axis) are almost non-existent in 2013. This 

prompted further analysis of the tweets framed as Fun in 2013; we found new jokes 

centred on the birthday song and theme. Tweets with ambiguous sentiment, for which 

the human element was necessary for disambiguation, include the terms used to 

collect additional information about ‘Positive Sentiment’ (9th axis) in 2013. Some of 

these referred to the scientific achievement / advanced technology that allowed the 

rover to sing happy birthday to itself, an event which some tweeters found poignant 

because it highlighted the lonely state of the rover, whose Twitter persona had an 

anthropomorphic tone. This prompted tweets such as those asking whether it had 

made friends with any aliens. Other terms which became more prominent in 2013 

include Adventure (13th axis) – expressing the Rover’s year long exploration of the 

planet (while total numbers are smaller, the relative peak size rises to near 50% in 

2013).	
  

 



 

 

Phosphorus shows a swing from Scientific and ELSI frames dominating in 2012 to 

Fun and Political in 2013. The Fun tweets are predominantly periodic table jokes. 

This was not examined further because the scientific relevance was minimal, but we 

note it as a second example of the Fun frame linked to trending. Both the Political 

and the ELSI tweets are primarily associated with white phosphorus usage in Middle 

East conflicts. The difference between the years is that in 2012 the emphasis was on 

highlighting the effect of the weapons on civilians caught in the conflicts, whereas in 

2013 a recent news item had introduced the terms “Pentagon” and “Syrian regime”. 

These mentions of political entities caused the tweets to be coded as Political. No 

single story dominated the tweets coded as Scientific, a wide range of subtopics was 

observed around agriculture, biology and school science (e.g., homework and exam 

revision). 	
  

	
  

Figure	
  3:	
  Frequently	
  occurring	
  terms	
  in	
  the	
  Phosphorus	
  datasets;	
  the	
  axis	
  
for	
  jokes	
  is	
  hidden,	
  as	
  this	
  dwarfs	
  the	
  other	
  trend	
  lines.	
  (2012	
  upper	
  plot,	
  



 

 

2013	
  lower	
  plot)	
  

	
  

Filtering out off-topic spikes in the phosphorus 2013 dataset (the periodic table jokes) 

revealed smaller, relevant peaks. In Figure 3, the tallest set of peaks in 2013 are 

“Political (public accountability)” (6th axis from the left in Figure 3) and “White 

Phosphorus”	
  (3rd axis); these related peaks concern contentious use of white 

phosphorus. The sudden jump to a peak on 6th Aug 2013 is due to retweeting of news 

that broke on the 5th, that the Pentagon (US) had admitted to using the weapon in 

Fallujah (Iraq). The focus on the regime and previous denial, over the moral 

implications of the action, is the key to framing as Political (concerning public 

accountability) rather than ELSI. While the use of the term continues to fall for the 

rest of the period it is the only consistent set of peaks in 2013.	
  

 

Looking at 2012, the smaller peaks for other terms are more apparent, not being 

dwarfed by a single spike as in 2013. Starting on 4 Aug the highest peak is also 

“Political (public accountability)”; this is again due largely to “White Phosphorus”. 

The latter however stays relatively low for the rest of the period. The other set of 

peaks of note is “Nutrition & Health” (5th axis), framed as ELSI as they fall under 

social issues or popular science/psychology. Such tweets discuss or advise on 

homeopathy, health and nutrition, e.g. in lists of nutrients and minerals found in 

particular foods. “Nutrition & Health”, although not the highest, comprises the only 

consistent set of peaks throughout 2012. This, with a small contribution from 

“Environmental stewardship” (9th axis), accounts for the relatively high percentage of 

tweets framed as ELSI in 2012 (see Figure 1).	
  



 

 

 

Permafrost had a large number of Off Topic tweets in 2012. Overall, numbers of 

tweets were low, and hence one set of retweets linking to a social documentary 

entitled “Conquering Permafrost: People of the BAM railway” became prominent. 

More interesting (for our purposes) frames were Scientific and ELSI, which were well 

populated in both the Permafrost datasets. The Scientific tweets predominantly 

reported results from scientific studies. Typically, these reported record melting, in 

particular following an unusually hot summer in 2013. The ELSI tweets were broadly 

of two types, the first concerned the effects of permafrost melt on communities in the 

high north, the second type point to the moral responsibility to take action on climate 

change.	
  

 

	
  

Figure	
  4:	
  Frequently	
  occurring	
  terms	
  within	
  the	
  Permafrost	
  datasets	
  (2012	
  
upper	
  plot,	
  2013	
  lower	
  plot)	
  

	
  



 

 

In Figure 4, the visualisation detects an ROI for 06 Aug. 2012: two significant peaks 

are seen for terms to do with “Public accountability, Environmental stewardship & 

Ethics”	
  (4th axis from the left in Figure 4) and “Region affected” (3rd axis – including 

countries or regions frequently mentioned). All trend lines for both years show peaks 

for “Science”	
  (6th axis), which detects terms related to permafrost melt. The steepest 

peaks are for 7 Aug. 2013, focusing on the effect on the environment and the residents 

of the geographical areas concerned. Finally, “Economic” (8th axis) sees small peaks 

on 5 Aug. 2012 and 6 Aug. 2013 but is otherwise not well populated. That for 5 Aug. 

2012 is interesting in that it maps to retweets about the controversy surrounding the 

proposed Enbridge gas pipeline in Canada, due to potential socio-cultural and climate 

risks. 	
  

 

Limitations	
  

This study has considered only three scientific topics sampled in two consecutive 

years. Although these illustrate a range of frames they cannot be representative of all 

scientific topics, having been selected only to illustrate trending and non-trending 

topics. It is not possible to conclude with absolute certainty, from the data gathered, 

what the lower sample size limits are.	
  

 

Parallel coordinates are often found to have a relatively high learning curve. Further, 

with superficial visual similarity to line graphs, static snapshots in print 

communications can make interpretation non-intuitive. The benefits in the approach 

are better seen in actual use, as the interactive components allow trends and ROIs to 

be recognised as the dynamic filters are applied and co-ordinates relocated to allow 



 

 

focus on and detailed analysis of selected attributes. We acknowledge that until the 

visualization becomes more familiar, the reader may require more detailed guidance 

for interpretation.	
  

 

Finally, in the approach reported here, the dimensions/attributes analysed were 

generated using hand-coded patterns, albeit guided by research on framing and the 

visual overviews. Augmenting this with automatically generated dimensions, for 

example, produced by co-word clustering, is the obvious next step. More advanced 

social media metrics could also be deployed. For example, in previous studies we 

have experimented with the use of ageing factors, calculated using retweets, to study 

attention to science events in the news (Uren and Dadzie, 2012). 	
  

 	
  

Conclusions 	
  

 

The first research question was whether this method supports the analysis of dynamic 

changes in non-trending topics. That Twitter has potential to monitor engagement 

with newsworthy science topics or big science events, like Curiosity, is expected. 

Studies of science communication suggest that space exploration events typically 

generate significant interest (Baram-Tsabari and Segev, 2011), and that the sector of 

the public that is interested in science has a positive attitude, overall, toward space 

exploration (Entradas et al., 2013). We have, further, demonstrated that we can 

observe dynamic changes to the framing of science communication for less populous 

topics, such as Phosphorus and Permafrost, which had only tens of tweets on some of 

the days sampled. 	
  



 

 

 

The second research question concerned whether changes could be observed across 

disconnected time periods. We found that a longitudinal view brought out the 

development of the debates. The combination of multi-dimensional visualisation and 

pattern matching allowed rapid discovery and analysis of communication patterns – 

term emergence and usage – within each frame and time period. For Curiosity we saw 

how the audience shrank to an attentive group, with more interest in science issues, 

but still retaining enthusiasm for the adventure of scientific exploration. For 

Phosphorus and Permafrost we saw how political frames grew on Twitter and how 

polarised they can be, with particular viewpoints and arguments dominant in both 

topics. For example, only one side of the climate change debate was much 

represented. Hestres (2013) has discussed the tactics of climate advocacy campaigns, 

and our samples suggest they have been successful in engaging an “issue public” 

around the negative impact of permafrost melt on affected regions.	
  

 

The third question asked whether visualisation-based analysis reveals further 

information in addition to confirming the content analysis. We found that the multi-

dimensional visualisation technique, parallel coordinates, used with compound terms, 

provides a candidate method to support content analysis approaches to the 

interpretation of frames. This exploratory process allowed fluid addition of new terms 

to the analysis. For example, in the Curiosity dataset we identified a shift from issues 

of technical uncertainty and the landing event itself in 2012, to the use of terms 

around scientific exploration as an adventure in 2013. The higher degree of 

automation also allowed us to analyse bigger samples in detail (up to 2,000 tweets per 

batch, compared to 200 in the content analysis), and to examine smaller time slices 



 

 

(day by day in this report as opposed to the two six day periods). From a practical 

viewpoint, the visualisation-based approach reduces the labour required for pure 

content analysis while increasing breadth and coverage. 	
  

 

This work is positioned at the intersection of science communication studies and 

social media metrics. The research questions sought to analyse the suitability of the 

parallel coordinates visualization, in combination with pattern matching, for the 

analysis of the framing of microblogs – a science communication activity. The 

analyses presented here indicate that it is an effective method for observing dynamic 

changes in communication on Twitter, with the scalability required for longitudinal 

studies, and the flexibility to study medium scale datasets. The visualization approach 

has potential for use with a range of social media metrics with a view to improving 

the understanding of scientific contents discussed on Twitter. Exploring these further 

is the next stage of our research.	
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