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Abstract: The modulation instability (MI) is one of the main factors 
responsible for the degradation of beam quality in high-power laser 
systems. The so-called B-integral restriction is commonly used as the 
criteria for MI control in passive optics devices. For amplifiers the adiabatic 
model, assuming locally the Bespalov-Talanov expression for MI growth, is 
commonly used to estimate the destructive impact of the instability. We 
present here the exact solution of MI development in amplifiers. We 
determine the parameters which control the effect of MI in amplifiers and 
calculate the MI growth rate as a function of those parameters. The safety 
range of operational parameters is presented. The results of the exact 
calculations are compared with the adiabatic model, and the range of 
validity of the latest is determined. We demonstrate that for practical 
situations the adiabatic approximation noticeably overestimates MI. The 
additional margin of laser system design is quantified. 
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1. Introduction 

When the power of a laser beam propagating in nonlinear medium exceeds a critical valuecP , 

the transverse beam modulations (random or induced) begin to grow exponentially. This 
physical phenomenon is known as light beam modulation or self-focusing instability [1]. As a 
result of this instability, the beam quality degrades and the beam breaks into filaments with 
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power of the order ofcP . Every such filament then experiences self-focusing up to the point at 

which either the high intensity produces the material breakdown, or the field collapse is 
arrested before breakdown by some other physical effect, depending on the specific 
configuration and the medium material. 

The laser power in modern high-energy pulse laser systems often greatly exceedscP . For 
an example, in the National Ignition Facility (NIF) [2] the power is millions of times higher 
that the critical power. The beam quality in such advanced laser facility is maintained by 
keeping the cascaded system elements effectively short enough to prevent the dangerous 
development of the modulation instability [3]. Spatial filters are inserted into the system to 
clean the beam and to prevent the growth of the instability. For passive optical elements 
(lenses), the self-focusing instability can be treated within linear theory [1]. In amplifiers, 
where the intensity increases exponentially, an especially careful quantitative treatment is 
required. Direct numerical modeling of beam propagation can be applied, but this requires a 
great deal of computational time and is not convenient in multi-parametric system design 
optimization. Quantitative analytical models are very desirable as they can be used for design 
analysis before full-scale comprehensive modeling. In this paper, we present exact analytical 
results providing base for design guidance rules in such complex large-scale laser systems.  

2. Physical model and basic equations  

We start from the mathematical description of the problem. The nonlinear Schrödinger 
equation (NSE) governs the propagation of a high-power beam through the amplifier medium 
according to 
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Here 0k is the propagation vector in vacuum; 0n and 2n are the linear and nonlinear refractive 

indices, respectively; and0g is the amplifier gain. After the straightforward transformation 

0exp[ / 2] ,g z UΨ = ×  this equation reads 
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Here ( ) [ ]2 2 0( ) 0 exp ,n z n g z= ⋅  and the optical field propagates from 0z =  to .z L=  Note that 

the problem of instability in an amplifier is mathematically similar to the problem of beam 
propagation in non-uniform media [4] with exponentially increasing nonlinear refractive 
index. The solution of Eq. (1a) that we are interested in is a plane wave with a z-dependent 
phase. We consider here a modulation instability of the continuous wave (CW) having the 

form: ]')'(||exp[ 2
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These two first-order equations can be combined into the following second-order equation in 
z: 

2
2

0 2 02
0 0 0 0

1 1
{ 2 ( ) | | } 0.

2 2

a
k n z U a

z n k n k⊥ ⊥
∂ + ∆ ∆ + =
∂  

In what follows, for simplicity, we will skip using indices k⊥ indicating that ( )a z  is the 

Fourier mode. When constzn =)(2 , analysis of the Fourier 

modes ]exp[ ⊥⊥+∝ rkizika z  leads to the standard modulation instability relation [1]: 
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It is seen from (3) that the spatial growth zk  is increased with k⊥ for small values of the 

latter. It reaches a maximum at 

                                             
k⊥

2

2n0k0

= k0n2 A
2
                                       (4) 

and it turns to zero at the point 
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The maximal wave-number zk  related to the increment of the modulation instability is 

given by the expression
2

0 2 0Im( ) | | .zk k n A= −  In the case of constzn =)(2
 after propagation 

over a distance L, the initial perturbation increases as 

2
0 2 0(0), (0)exp[ ] (0), (0)exp[ | | ] (0), (0)exp[ ].za b k L a b k n A L a b B= =  

Here B is the so-called B integral – a nonlinear phase shift acquired after propagation through 
the system. To guarantee the beam quality, laser system designers typically require B to be 
smaller than 2-3. This means that not only perturbations starting from  noise, but even 
induced modulations due to stray light or coating defects, cannot degrade the beam quality. 
For example, even a perturbation as large as 1% perturbation will not grow to more than 10%. 
In the case of a long laser (with B larger than 3), the typical design solution is to insert spatial 
filters into the system to clean the beam and to reduce effectively the B integral [3]. A 
knowledge of the speed of growth of small perturbations is crucial for design of high power 
laser facilities (see e.g. [2]). 

3. The modulation instability in amplifiers 

From the design consideration, it is important to be able to identify safe zones within the 
space of operational parameters. An example would be the amplifier length such that 
instabilities would not develop to a dangerous level. To start with, one can estimate from the 
introduced above equations the perturbation growth due to modulation instability, using the 
following simple inequality bounding the mode amplitude increase for propagation in the 

amplifier medium. The evolution of the modes ]exp[, ⊥⊥∝ rkiba is given by: 
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It can be shown by straightforward manipulations that the z-dependence of the summed 

amplitudes satisfies 
2 2 2 2 2
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This expression gives an exact upper estimate of the perturbation growth. However, a 
more accurate analysis is desirable for design purpose. Note that in amplifiers, where the 
initial intensity increases during propagation asI = I0e

g0z , the most unstable scale of 
perturbation decreases during propagation due to the exponential increase of intensity, as seen 
in (5). A more accurate, and at the same time simple and safe, criteria for good beam quality 
can be introduced based on the assumption that the maximal growth is given by the mode 

with 2
0 2 | ( ) | .zk k n A z=  Then the corresponding B-integral for an amplifier of length L is 

defined as in [3]:  
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The typical practical requirement is that B’ is smaller then 3. This is a safe range, but it is still 
too conservative an estimate, because one assumes that the maximal growth corresponds to 

the same 2.k⊥  In reality, during propagation, the higher k⊥
2  becomes most unstable. Therefore, 

it is likely that values of B′  larger than 3 can be tolerable. We would like to point out that 
the difference in the accurate estimate of the B-integral is not just an academic interest, but it 
translates into very practical factors such as, for example, an overall cost of the laser system. 
Therefore, we further elaborate on different approaches to the finding the safe operational 
zones, before presenting our results. 

A more regular approach based on the so-called adiabatic approximation was used in [5, 
6]. One can assume that the transversal perturbation grows faster than the intensity in the 
amplifier. In particular, this is certainly true for sufficiently high intensities. In this case, one 
can assume that the perturbations growth follows the intensity adiabatically and (3) is 
applicable with a z-dependent intensity. We have then the overall amplification factor 
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where the function f is defined as 

                        
0

0

2

2 2 1/ 2 2
0

0

2 2 1/ 2 2
0

ln

( , ) [( ) ] : 1

( , ) [( ) ] : 1

g L
x

g L
x

f g L e dx

f g L e dx
ω

ω ω ω ω

ω ω ω ω

= − <

= − >

∫

∫

                              (7) 

The second expression takes into account that, with the intensity growth, some of initially 
stable perturbations become unstable. The integrals are straightforward and yield:  
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However, the applicability of the adiabatic approximation is not evident and its accuracy can 
hardly be controlled a priori. Therefore, in order to determine the safe margin of amplifier 
operation, we now consider the exact solution of the problem, making corresponding 
comparison with the results of the adiabatic approach. 

In an inhomogeneous medium, the instability evolution is described by equation (2), or 
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The initial conditions are: ,|,)0( 100 f
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fa z == =  and, in the figures below we use 
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we can write the equation as: 
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After the substitution ]2/exp[ 0 zgqx ω=  , this equation can be re-written as: 
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A similar equation was derived by M. Karlsson [7] in the context of studies of modulation 
instability in lossy fibres. We follow here his very important work in many technical aspects. 
However, apart from an obvious difference in physics, there are also mathematical differences 
in our analysis compared to [7]. The key difference is that, while in [7] only the decaying 
solution of (8) was considered, here we are interested in the opposite case of a growing 

solution. The formal solutions of the equation (9) are the Bessel functions )(xI iν  and 

)(xI iν− . Therefore the full solution of the initial problem (8) ( )a z  can be written as: 
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Here the constants are chosen to satisfy the initial conditions: .|,)0( 100 f
dz

da
fa z == =  

The analogue of the increment of the spatial growth rate in our situation will be the 

value ( ) ( )ln / 0 .a L aγ =     For a large ratio ( ) ( )/ 0 ,a L a  this value is practically 

independent of boundary conditions. The asymptotic expansion of (10) at large index values 
coincides with the results of the adiabatic approximation [6]. However, the key issue here is a 
quantitative analysis. It is not clear a priori in what range of parameters and with what 
accuracy the adiabatic approximation works and we will discuss this issue in more details 
below. 

The exact solution is the function of three parameters 0,q g L  and .ω  The parameter 2ω  

in the uniform case is the ratio of k⊥
2  to its maximal unstable value. For fixed values of gain 

0g L  and an effective nonlinearity q  we must find the maximal value of γ  as a function 

of .ω  In a uniform media ( 0 0g L = ), the most unstable mode corresponds to 2 1/ 2ω =  and 

the cut-off to
2 1.ω =  In the amplifying medium the growing solution does exist in the 

interval
2/00 Lge≤≤ ω and the growth starts when propagation distance is larger than 

0
2* /]ln[ gz ω= . This should be taken into account when calculating increment of instability. 

The most unstable value of k⊥
2  increases in amplifier during the propagation.  

We plot in Figs 1-6 solutions of Eq. (10) (shown at the point L=1) with the boundary 
conditions: 0,1 10 == ff  at 0=z for ,10 ≤< ω  and 0,1 10 == ff at 0

2* /]ln[ gz ω=  

for 2/01 Lge≤≤ ω . Figure 1 shows the function ( )γ ω  for selected values of q  and for 

0 3,g L =  while Figure 2 shows this function for 1q =  and for selected values of 0 .g L  The 

black lines in these graphics correspond to the adiabatic approximation. As expected, the 

maximum of ω  shifts up with increasing0g L . However, for considered solutions the cut-off 

takes place at 12/
_

0 >= Lg
offcut eω  and the most unstable mode corresponds to 1.ω >  

This, in particular, means that the most dangerous modes initially were stable ones and start 
to grow only later downstream. The result for the adiabatic approximation is plotted for only 
a single value of q  because of the simple q  dependence given by (7). It is seen that the 

adiabatic approximation visibly overestimates the peak value of ( )γ ω . Note that definition 

of cut-off frequency is somewhat not well defined as near the cut-off the growth of the mode 
is not large enough to avoid impact of the initial conditions. An important advantage of the 
exact analytical solution is that the influence of the initial conditions can be traced directly. 

Figure 3 shows γ  for selected values of 0.5,1ω = and 0 ,g L  as a function of ,q  for 

both the exact solution and the adiabatic approximation. One can see that the curves 
converge, but only at very high and impractical values of .γ  For parameters of practical 

interest, the adiabatic approximation systematically overestimates the growth of the 
modulation instability. This is one of the most important practical results of this work. Fig. 4 
shows ω  corresponding to the maximal value of γ as a function of ,q  for selected values 

of 0g L .The dashed lines on these pictures represents the results of the adiabatic 

approximations (7). 
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As was indicated above, the maximum of ω  shifts up with increasing0 ,g L  the cut-off 

takes place at 1,ω >  and the most unstable modes corresponds to ω >1. This means that 
the most dangerous modes initially were stable and started to grow only later downstream.  

For fixed initial intensity, the increase of q  for fixed 0g L  is equivalent to an increase of 

the amplifier length for the same final intensity. For higher q , more instability growth takes 
place at low intensities, which one can see in a decrease of the most unstableω  with 
increasing .q  For smaller values of gain, the situation is closer to the uniform case and the 

shift of ω  with change of q  is less visible (Fig. 4). In all cases the maximal value of ω  is 

higher then the uniform value1/ 2.  
 
 
 
 

 

Fig.1. γ as function of transversal 

perturbation wave-numberω ; L=1. Red line 
q=1, blue q=2, green 
q=3, black adiabatic approximation 
with 1q = , 0 3g L = . 

 
Fig.2 γ  as function of transversal 

perturbation wave-number .ω  Red line 

0 1,g L = blue 0 2,g L =   

green 0 3,g L =  black adiabatic 

approximation 0 1,g L =  1.q =  

 
 

 

Fig.3 γ  as function q for 0.5ω = (red line 
— exact solution, blue – adiabatic 
approximation) and 
for 1ω =  (green line – exact solution,  
 black – adiabatic approximation), 0 3.g L =  

 

Fig.4 maxω  as function q for different values 

of 0g L . Red line 0 3,g L =  green 0 2,g L =  

blue 0 1.g L =  The dashed lines are results of 

the adiabatic approximation. 
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Fig.5 Maximum γ  (solid line) and B-
integral (dashed      line) line as function of 
q for different values of 0g L . Red line 

0 3,g L =  blue 0 2,g L =  green, 

0 1.g L = Dotted lines correspond to the 

adiabatic approximation. 

 
 

Fig.6 Counterplot 
maxγ  as function q  

and 0 .g L  

 
 
 

Figure 5 presents the most important result from a practical point of view, which is the 
instability growth rate as a function of .q  For comparison, on the same graph we show the 

value of the B’ integral given by Eq. (6). The results of the adiabatic approximation also 
presented here. One can see that the adiabatic approximation noticeably overestimates the 
growth of the modulation instability. More careful estimate given by the exact analytical 
solution can be important for practical design considerations. One can see that the real growth 
is smaller than (6), (7), and that the difference is larger for the high gain situation. For the case 

0 3g L =  and ' 5B =  the result is the still tolerable value of .2≈γ  The general view of a 

maximum value of the increment ( )Lgq 0max ,γ  is shown in Fig. 6. 

4. Conclusions 

We have presented a theory that accurately describes the growth of the transversal 
modulations of an optical beam in a laser amplifier. We found the most unstable mode and 
calculated the growth rate for such mode. In a typical situation, the most unstable modes are 
stable at the amplifier input and become unstable during the propagation. We demonstrated 
that the commonly used B’-integral estimate (6), and the more regular adiabatic 
approximation (7), both substantially overestimate the effects of modulation instability for 
practically used parameters. The range of applicability of adiabatic approximation is 
determined. An important advantage of the exact analytical solution is that it can be used to 
study impact of the initial conditions in the situations when the growth is not large enough to 
minimize dependence on the initial perturbations. Our results can be used in laser designs to 
prevent the degradation of beam quality. The important conclusion is that the real system can 
be less sensitive to perturbations induced by various optics and coatings defects. Our results 
might also have applications beyond the field of laser science [8-10]. 

Acknowledgement 

We are grateful to A. Erlandson, K. Manes, and J. Trenholme for useful discussions. This 
work was partially performed under the auspices of the U. S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and 
interdisciplinary grant 42 from the Siberian Branch of the Russian Academy of Science. The 

#119400 - $15.00 USD Received 2 Nov 2009; revised 4 Jan 2010; accepted 4 Jan 2010; published 12 Jan 2010

(C) 2010 OSA 18 January 2010 / Vol. 18,  No. 2 / OPTICS EXPRESS  1387



financial support of the the Engineering and Physical Sciences Research Council and the 
Royal Society is acknowledged. 

#119400 - $15.00 USD Received 2 Nov 2009; revised 4 Jan 2010; accepted 4 Jan 2010; published 12 Jan 2010

(C) 2010 OSA 18 January 2010 / Vol. 18,  No. 2 / OPTICS EXPRESS  1388


