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Abstract: The modulation instability (MI) is one of the main factors
responsible for the degradation of beam quality in high-power laser
systems. The so-called B-integral restriction is commonly used as the
criteria for M| control in passive optics devices. For amplifiers the adiabatic
model, assuming locally the Bespalov-Talanov expression for Ml growth, is
commonly used to estimate the destructive impact of the instability. We
present here the exact solution of MI development in amplifiers. We
determine the parameters which control the effect of Ml in amplifiers and
calculate the MI growth rate as a function of those parameters. The safety
range of operational parameters is presented. The results of the exact
calculations are compared with the adiabatic model, and the range of
validity of the latest is determined. We demonstrate that for practical
situations the adiabatic approximation noticeably overestimates MI. The
additional margin of laser system design is quantified.
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1. Introduction

When the power of a laser beam propagating in nonlinear medium exceeds a criticBl,value

the transverse beam modulations (random or induced) begin to grow exponentially. This
physical phenomenon is known as light beam modulation or self-focusing instability [1]. As a
result of this instability, the beam quality degrades and the beam breaks into filaments with
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power of the order d®. Every such filament then experiences self-foqysip to the point at

which either the high intensity produces the matelbreakdown, or the field collapse is
arrested before breakdown by some other physictdctef depending on the specific
configuration and the medium material.

The laser power in modern high-energy pulse laggiems often greatly exceeds For

an example, in the National Ignition Facility (NIE2] the power ismillions of timeshigher
that the critical power. The beam quality in sucivanced laser facility is maintained by
keeping the cascaded system elements effectivalyt €mough to prevent the dangerous
development of the modulation instability [3]. Sphfilters are inserted into the system to
clean the beam and to prevent the growth of thealilgy. For passive optical elements
(lenses), the self-focusing instability can be tedawithin linear theory [1]. In amplifiers,
where the intensity increases exponentially, are@sfly careful quantitative treatment is
required. Direct numerical modeling of beam propagacan be applied, but this requires a
great deal of computational time and is not consenin multi-parametric system design
optimization. Quantitative analytical models areyvdesirable as they can be used for design
analysis before full-scale comprehensive modelinghis paper, we present exact analytical
results providing base for design guidance rulesuch complex large-scale laser systems.

2. Physical modd and basic equations

We start from the mathematical description of thhebfem. The nonlinear Schrédinger
equation (NSE) governs the propagation of a higlwggdeam through the amplifier medium
according to

oW 1

—: 9%
i—+ AW+kn |WfIW=i=WY.
AT LI 2 (1)

Here K, is the propagation vector in vacuum; andn, are the linear and nonlinear refractive

indices, respectively; ar@i, is the amplifier gain. After the straightforwaradsformation
W =explg,z/2]xU, this equation reads

U 1 -
|E+ﬂADU +k,n,(2)|U FU =0. (1a)
Heren,(2) =n,(0) Eéxr{goz] , and the optical field propagates from¥0 to z=L. Note that

the problem of instability in an amplifier is mathatically similar to the problem of beam
propagation in non-uniform media [4] with exponell}i increasing nonlinear refractive
index. The solution of Eq. (1a) that we are intEdsn is a plane wave with a z-dependent
phase. We consider here a modulation instabilityhef continuous wave (CW) having the

form: U =U, explik, |U, jnz(z')dz'] . The evolution of small perturbations to the CW is
given by:
U(z,r)= (U, +a+ib)xexplk, U, T [n, & Bz ",

da_ 1
i S
0z  2n.k,

b 1 (2
-——+ Aa+2kn,(z2)|lU,fa=0.
52 o 2 @)U f

Ab=0,
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These two first-order equations can be combineal tim following second-order equation in
z:
o’a 1 1 )
+ A{——A,+2k,n,(2|U,|}a=0.
o7 2nk, o 2, kono(2) [Uo [}

In what follows, for simplicity, we will skip usinindices k-, indicating thata(Z) is the
Fourier mode. When, (z) = const, analysis of the Fourier

modesa [ explik,z+ikor o] leads to the standard modulation instability iefaf1]:

L'
ro2nk, 2ngk,

=2kyn, [U, F1. (3)

It is seen from (3) that the spatial growlﬂa is increased witHﬂj for small values of the
latter. It reaches a maximum at

K _

2
=kyn (4)
2n.k, o/
and it turns to zero at the point
g =2kn, |Af (5)
2ngk, ’

The maximal wave-numbek, related to the increment of the modulation inditgbis

given by the expressidm(k,) =—k,n,| A, f . In the case oh,(z) = const after propagation
over a distance L, the initial perturbation ince=aas

a(0),b(0)expk,L 1=a(0)b (0)expkn, K, °IL Fa (O (O)exi

Here B is the so-called B integral — a nonlineaagghshift acquired after propagation through
the system. To guarantee the beam quality, lasgesydesigners typically require B to be
smaller than 2-3. This means that not only pertioha starting from noise, but even
induced modulations due to stray light or coatirdedts, cannot degrade the beam quality.
For example, even a perturbation as large as 1%rpation will not grow to more than 10%.
In the case of a long laser (with B larger thantl33, typical design solution is to insert spatial
filters into the system to clean the beam and ttuce effectively the B integral [3]. A
knowledge of the speed of growth of small pertudret is crucial for design of high power
laser facilities (see e.g. [2]).

3. The modulation instability in amplifiers

From the design consideration, it is important & able to identify safe zones within the
space of operational parameters. An example wowdthe amplifier length such that
instabilities would not develop to a dangerous lleVe start with, one can estimate from the
introduced above equations the perturbation graju to modulation instability, using the
following simple inequality bounding the mode arplie increase for propagation in the

amplifier medium. The evolution of the modasb [ expliknr o] is given by:
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-2

da_ ki db__ Kk

—= , — = a+2kn,(z2)|U, T a.
0z 2nk, 0z  2nk, on @) o f

It can be shown by straightforward manipulatioret the z-dependence of the summed
amplitudes satisfiesa(2)f + b @) < explX, W, 3[n, £ 9z ¥ @& (OFl+ H (0}
0

This expression gives an exact upper estimate efpirturbation growth. However, a
more accurate analysis is desirable for design gaerpNote that in amplifiers, where the
initial intensity increases during propagation| ad g%, the most unstable scale of

perturbation decreases during propagation duect@xponential increase of intensity, as seen
in (5). A more accurate, and at the same time srapd safe, criteria for good beam quality
can be introduced based on the assumption thamthémal growth is given by the mode

with k, =k,n, | A@z)f . Then the corresponding B-integral for an amplifeér length L is
defined as in [3]:
0L]—1: explg,L -1

B'(L):kon2<0)£|uoreprozuz:kom(owoﬂex"[%o q e ®)

q=4kn,(0) U,  /g,.

The typical practical requirement is that B’ is $lerathen 3. This is a safe range, but it is still
too conservative an estimate, because one asstiatethé maximal growth corresponds to

the samex?. In reality, during propagation, the highké becomes most unstable. Therefore,

it is likely that values ofB’ larger than 3 can be tolerable. We would like ¢inpout that
the difference in the accurate estimate of thetBgral is not just an academic interest, but it
translates into very practical factors such asgf@mple, an overall cost of the laser system.
Therefore, we further elaborate on different apphes to the finding the safe operational
zones, before presenting our results.

A more regular approach based on the so-calledatitaapproximation was used in [5,
6]. One can assume that the transversal perturbgtiows faster than the intensity in the
amplifier. In particular, this is certainly truerfeufficiently high intensities. In this case, one
can assume that the perturbations growth followes ititensity adiabatically and (3) is
applicable with a z-dependent intensity. We haenttne overall amplification factor

L =2
Y, =|Imk,dz=0.590Ff (w.,g,L), «? = Ko ,
! i 4, (0) U, P

where the function f is defined as

Gol

f@.8,0) = | (€ ~aP)af] " <1 -

9oL
f(wg,L) = j [(€ - &) 2dx: w?>1
Inaf?
The second expression takes into account that, téhintensity growth, some of initially
stable perturbations become unstable. The integralstraightforward and yield:
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oL _
f (@ goL) = 2af(e*" - af)"? —m—wtan‘1W+wtan ‘/17} W7 <1

g%t — of
w

f(w g,L) = 2af(e*" —a)"? - wtan™ bW >1

However, the applicability of the adiabatic approation is not evident and its accuracy can
hardly be controlled priori. Therefore, in order to determine the safe maafiamplifier
operation, we now consider the exact solution af firoblem, making corresponding
comparison with the results of the adiabatic apginoa

In an inhomogeneous medium, the instability evoluis described by equation (2), or

=2

d2a+ Ko Ré

- 2k,n,(2) |U, F a=0.

dz?  2ngk,| 2nk, (8)
- " da : :
The initial conditions are:a(0) = f,, @ l,-o= f,, and, in the figures below we use
V4
f,=0. For n,(z) =n, (0)explg, 7] . introducing
ke ke
O ] . 2
= , V= = ,and usingg =4k, n, 0)|U, | /9,.
4n0k02n2 (0) |UO |2 nOkOQO
we can write the equation as:
d’a qza)zg
—— (" —explg, z))a=0.
dzZ
After the substitutiox = qwexp[g,z/2] , this equation can be re-written as:
d’a _da
xzy+x&+(v2 -x%)a=0. )

A similar equation was derived by M. Karlsson [@]the context of studies of modulation
instability in lossy fibres. We follow here his yeémportant work in many technical aspects.
However, apart from an obvious difference in phystibere are also mathematical differences
in our analysis compared to [7]. The key differemcehat, while in [7] only the decaying
solution of (8) was considered, here we are inteckén the opposite case of a growing

solution. The formal solutions of the equation @@ the Bessel function$,, (X) and

I, (X) . Therefore the full solution of the initial probie(8) a(z) can be written as:

a(Z) =j 2s|r?f61([)l7n] Eﬁ -iv qw anQOZ/Z) (qa)) a., (qaegozlz)} + 10
! go Slﬂh[l}]‘[il Eﬁ a., (‘BQOZ/Z) v (qa)) (qaegoZ/Z)} .
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da

E |z=0
The analogue of the increment of the spatial grovette in our situation will be the

valuey=In[a(L)/a(0)]. For a large ratio a(L)/a(0), this value is practically

independent of boundary conditions. The asymptatigansion of (10) at large index values
coincides with the results of the adiabatic appr@tion [6]. However, the key issue here is a
quantitative analysis. It is not clear a priori what range of parameters and with what
accuracy the adiabatic approximation works and wkediscuss this issue in more details
below.

Here the constants are chosen to satisfy theliniiaditions: a(0) = f,, = f,.

The exact solution is the function of three pararet, gL and@. The parametew2
in the uniform case is the ratio dﬁé to its maximal unstable value. For fixed valuegain
goL and an effective nonlinearityy we must find the maximal value df as a function

of @. In a uniform media g,L =0), the most unstable mode correspondsdfo=1/2 and

the cut-off to«” =1. In the amplifying medium the growing solution doesist in the

interval0 < w< e®"'?and the growth starts when propagation distancdaiger than
Z =In[a’]/ g, - This should be taken into account when calcutgiticrement of instability.

The most unstable value tkﬁ increases in amplifier during the propagation.
We plot in Figs 1-6 solutions of Eq. (10) (showntla point L=1) with the boundary
conditions:f, =1 f, =0 at z=0for 0<«w<1, and f, =1 f, =0at Z =In[e’]/g,

L/2

for 1< w<e% '“. Figure 1 shows the functioW(CU) for selected values ofl and for

gL =3, while Figure 2 shows this function fat =1 and for selected values @,L. The
black lines in these graphics correspond to thalsdic approximation. As expected, the
maximum of @ shifts up with increasing,L . However, for considered solutions the cut-off
takes place at)

— ~0L/2
cut _ off =€

This, in particular, means that the most dangernades initially were stable ones and start
to grow only later downstream. The result for tlgabatic approximation is plotted for only

a single value ofd because of the simplél dependence given by (7). It is seen that the

>1 and the most unstable mode correspondsus 1.

adiabatic approximation visibly overestimates tealpvalue ofy(w) . Note that definition
of cut-off frequency is somewhat not well definedreear the cut-off the growth of the mode
is not large enough to avoid impact of the initahditions. An important advantage of the
exact analytical solution is that the influencehaf initial conditions can be traced directly.
Figure 3 shows) for selected values o0=0.5,1and g,L, as a function ofd, for

both the exact solution and the adiabatic approttona One can see that the curves
converge, but only at very high and impracticaluesl of y. For parameters of practical

interest, the adiabatic approximation systematicalverestimates the growth of the
modulation instability. This is one of the most ionfant practical results of this work. Fig. 4
shows W corresponding to the maximal value #fas a function ofd, for selected values
of g,L.The dashed lines on these pictures representsrabelts of the adiabatic
approximations (7).
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As was indicated above, the maximum @ shifts up with increasing,L, the cut-off
takes place aW>1, and the most unstable modes correspondétel. This means that
the most dangerous modes initially were stablestaded to grow only later downstream.

For fixed initial intensity, the increase &f for fixed g,L is equivalent to an increase of

the amplifier length for the same final intensiBar higher d , more instability growth takes
place at low intensities, which one can see in erase of the most unstalsie with
increasing 0. For smaller values of gain, the situation is ctdsethe uniform case and the
shift of & with change of( is less visible (Fig. 4). In all cases the maximalue of ¢ is

higher then the uniform valld~/2.

H
v

0s5fF

(03]
Fig.2 y as function of transversal
Fig.1. yas function of transversal perturbation wave-numberw. Red line
perturbation wave-numbey; L=1. Red line gL =1, blue gL=2,
=1, blue g=2, green _ . .
g=3, black adiabatic  approximation green 9ol =3, black adiabatic
withq=1, g,L=3. approximationg,L =1, gq=1.
10'F 18E
12
16
10° 10
= .~ 8@“"

7 CH 3

L L L L L L L L L
0 2 4 6 818] 12 14 16 18 20

. . . Fig.4 w,,, as function q for different values
Fig.3 y as function q forw=0.5(red line

— exact solution, blue - adiabatic of g,L. Red line g,L =3, green gL =2,
approximation) and blue g,L =1. The dashed lines are results of
for w=1 (green line — exact solution, the adiabatic approximation.

black — adiabatic approximationg,L =3.
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Fig.5 Maximum y (solid line) and B-

integral (dashed line) line as function of Fig.6 Counterploty, _ as functionq
q for different values ofg,L. Red line max

L.
gL=3  blue glL=2  green, and Go

g,L =1.Dotted lines correspond to the
adiabatic approximation.

Figure 5 presents the most important result fropractical point of view, which is the
instability growth rate as a function @. For comparison, on the same graph we show the

value of the B’ integral given by Eq. (6). The réswf the adiabatic approximation also
presented here. One can see that the adiabatioxapation noticeably overestimates the
growth of the modulation instability. More carefestimate given by the exact analytical
solution can be important for practical design idastions. One can see that the real growth
is smaller than (6), (7), and that the differersctarger for the high gain situation. For the case

g,L=3 and B =5 the result is the still tolerable value gf= 2. The general view of a
maximum value of the incrememnax(q, gOL) is shown in Fig. 6.

4, Conclusions

We have presented a theory that accurately descrihe growth of the transversal
modulations of an optical beam in a laser amplifitzle found the most unstable mode and
calculated the growth rate for such mode. In acjpsituation, the most unstable modes are
stable at the amplifier input and become unstabking the propagation. We demonstrated
that the commonly used B'-integral estimate (6),d athe more regular adiabatic
approximation (7), both substantially overestimtite effects of modulation instability for
practically used parameters. The range of applicabof adiabatic approximation is
determined. An important advantage of the exaclytinal solution is that it can be used to
study impact of the initial conditions in the sitioas when the growth is not large enough to
minimize dependence on the initial perturbationsr sults can be used in laser designs to
prevent the degradation of beam quality. The inmgrdrtonclusion is that the real system can
be less sensitive to perturbations induced by varigptics and coatings defects. Our results
might also have applications beyond the field eélescience [8-10].
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