
Distributed Sequential Task Allocation
in Foraging Swarms

Harry Goldingay
Department of Computer Science

Aston University
Aston Triangle

Birmingham, UK
Email: goldinhj@aston.ac.uk

Jort van Mourik
Non-linearity and Complexity Research Group

Aston University
Aston Triangle

Birmingham, UK

Abstract—When designing a practical swarm robotics system,
self-organized task allocation is key to make best use of resources.
Current research in this area focuses on task allocation which is
either distributed (tasks must be performed at different locations)
or sequential (tasks are complex and must be split into simpler
sub-tasks and processed in order). In practice, however, swarms
will need to deal with tasks which are both distributed and
sequential. In this paper, a classic foraging problem is extended to
incorporate both distributed and sequential tasks. The problem
is analysed theoretically, absolute limits on performance are
derived, and a set of conditions for a successful algorithm are
established. It is shown empirically that an algorithm which meets
these conditions, by causing emergent cooperation between robots
can achieve consistently high performance under a wide range
of settings without the need for communication.

I. INTRODUCTION

Swarm robotics is an emerging field in which swarms
of autonomous robots are employed to cooperatively solve
tasks of which the robots are incapable individually [1]. Each
robot in a swarm typically has only limited communication
and local sensing capabilities, and decisions must be made
based on local interactions. Hence, in a well designed system
“intelligent” global behaviour is an emergent consequence
of these interactions [2]. A swarm should be robust, as it
is not critically dependent on any individual, and scalable,
because robots’ behaviour only depends on local interactions,
not the size of the swarm. In such decentralised systems, task
allocation to individuals , without centralised control, is key.
As swarms are well suited for distributed problems [3], it
is important that the task allocation mechanism works well
in a distributed context where individuals do not have a full
overview of the state of the environment [4]. This problem
has been well studied in the swarm intelligence literature, and
good solutions modelled on the behaviour of social insects [5],
[6] or using market-like bidding mechanisms [7] have been
proposed.

While the above studies show that simple tasks can be well
allocated in a distributed environment, one of the difficulties in
building a practical swarm robotics system is that real world
tasks are inherently complex (exceeding the complexity of the
robots attempting to solve them). Nouyan et al. [8] show that it
is possible for swarms to solve complex problems by breaking
them down into simpler sub-tasks. Such decomposition of
problems is also seen is social insect colonies [9], a frequent

source of inspiration for swarm robotics. Apart from complex-
ity reduction, task decomposition may allow for a better use of
resources (e.g. space [10]). However, as sub-tasks form part of
a larger problem, they may have sequential dependencies; one
sub-task (or set of sub-tasks) must be completed before another
can be started. The speed with which the swarm can process
a task is limited by its slowest sub-task. The task allocation
problem has now become one of decentralised sequential task
allocation, without centralised control and such that all sub-
tasks are satisfied.

Current studies of sequential task allocation either focus on
ensuring optimal usage of resources (e.g. robots, time) on each
sub-task globally [10]–[12], or on optimal switching between
sequential and non-sequential processing of tasks [9], [13]
(when coordination for partitioning tasks incurs an overhead).
However, a problem not addressed so far is distributed sequen-
tial task allocation: the optimal use of fractions of resources
locally in a distributed problem. This is clearly an important
issue as spatially distributed problems are a key application
for swarm robotics [3], and poor local distribution of resources
limits the performance as much as poor global distribution.

In this paper, we extend the classic “foraging” problem
found in swarm robotics literature to test the capability to
process distributed sequential tasks. We analyse the problem
theoretically to establish bounds on performance, and identify
the mechanisms for break down of cooperation between swarm
members. Hence, we propose a set of policies for individuals
for location selection without communication or a global
knowledge. We test these policies under a range of system
conditions, and show that high performance is achievable in
all conditions with a single algorithm.

The paper is organized as follows. In section II we define
and analyse the problem. In section III, we propose several
solutions. In section IV, we present and analyse numerical
results in comparison with the theoretical analysis. Finally,
section V, contains the conclusions and an outlook to future
work.

II. THE PROBLEM

In the literature, the sequential task allocation problem
is frequently studied in the context of foraging; the swarm
must gather resources in an environment and return them to a
central nest. The task is split into two sub-tasks which must be

processed sequentially. At an intermediate location robots who
have finished the first sub-task transfer the resource to robots
waiting to start the second. In some studies, this transfer is
directly between robots [10], [12], [14], whereas others make
use of a cache in which resources can be deposited after
completion of the first sub-task, regardless whether a robot is
ready to start the second [9], [13], [15]. These studies, however,
all use a single source and nest, and hence resources have a
single entry-, exchange- and exit-point.

Since we are interested in a distributed setting, we extend
this to a multiple source, single nest scenario. To reduce
the need for exact temporal coordination between swarm
members, exchanges between are indirect (via caches) and
at multiple (distributed) locations. Robots are limited to local
perception and can only discover the state of a location upon
a visit. The swarm has no capacity for direct communication
(communication incurs additional cost and complexity which
may detract from swarm flexibility in some cases [9]), and is
not centrally controlled. As the problem of optimal fractions
of robots performing each sub-task has already been explored
[10], [12], [14], this paper focusses on controlling where the
sub-tasks are performed. As we concentrate on the essential
characteristics of the problem environment rather than the
physical representation of the robots, the members of the
swarm are henceforth referred to as agents.

A. The Environment

The environment has a distributed set of prey sources, and
the overall aim of the problem is to maximise throughput:
the number of prey items taken from these sources back to a
central nest. However, a foraging task cannot be completed in
one go; it must be broken down into two sub-tasks: harvesting
and storing, which must be performed sequentially by the
agents. At any given time, an agent is specialized in one these
sub-task types known as its job. Hence we can distinguish
between harvesting and storing agents, but after completion
they may choose another job.

Harvesting agents travel to a source of their choice (sources
are assumed to always contain prey), pick up a prey item and
transport it so that it can be processed by a storing agent. To
facilitate the transfer of prey items from foraging to storing
agents, harvesting agents deposit their items in a caches of
finite capacity C, with one cache associated with each source.
Storing agents travel to a cache of their choice, pick up a prey
item if one is present and transport it back to the central nest
which has unlimited capacity to receive prey. We describe the
set of sequential tasks (i.e. harvesting from a specific source
and storing prey found in its associated cache) as a task chain,
and the problem environment consists of Nc task chains, as
illustrated in figure 1.

Task chains are not homogeneous; in order to test al-
gorithms’ abilities to prioritize the most promising foraging
locations, we introduce travel times such that harvesting and
storing take different amounts of times at different task chains.
In particular, each sub-task in a chain has its own travel time;
when starting a task, agents take this long to reach the location
that they are aiming to pick up a prey item (source and cache
for harvesting and storing agents respectively) and then take
the same amount of time to travel to the location to deposit it
(cache and nest for harvesting and storing agents respectively).

Fig. 1. An illustration of the problem environment. Agents harvest from
sources and deposit prey in associated caches. Prey from these caches is then
stored in a central nest.

Formally, the state of task chain c at time t is given by:

Cc(t) = {Tc,H , Tc,S , rc(t)} (1)

where:

• Tc,H is the travel time for the harvesting sub-task,

• Tc,S is the travel time for the storing sub-task,

• rc(t) is the number of prey items in cache at time t
(limited by the global cache capacity C).

The problem environment (i. e. the set of all Nc task chains),
is denoted by: C(t) ≡ {C1(t), ..., CNc

(t)}.

B. The Agents

Foraging agents are homogeneous, with each agent capable
of both harvesting and storing a single item of prey. These sub-
tasks can only be taken on one at time, however, and, once
engaged in, must be completed (either successfully or other-
wise) before a new sub-task is chosen. An agent completes
a sub-task only after attempting deposit prey, regardless of
whether it has successfully picked prey up (this is equivalent
to the need to return to a central hub to re-orient on failure,
but viewing it as part of the task simplifies the description of
the algorithm).

As discussed previously, to promote an efficient, scalable
system, agents are not centrally controlled, nor do they com-
municate directly; instead, they must rely on environmental
information to make good decisions about which task locations
and sub-task types to select. However, this information may
relate to a time prior to when the agent makes its decision (for
instance, it could reasonably be based on how many items were
in a cache when an agent last visited it). It may also be useful to
gain a better estimate of some noise-dependent environmental
factor by using its average rather than its value at a single time.
In order to allow for this, we also give each agent a memory,
denoted Ma(t): a set of information about the environment

upon which an agent can base its decisions. The details of this
memory depend on which task-chain selection policy is being
used and are discussed in section III.

Therefore, the full state of agent a at time t is given by:

Aa(t) = {Ca(t), Ja(t), τa(t),Ma(t)} (2)

where:

• Ca(t) is the current task chain.

• Ja(t) is the current job type, taken from the set
{H(arvesting), S(toring)}.

• τa(t) is the time spent undertaking its current sub-task,
needed to keep track of how close it is to completion.

• Ma(t) is its memory

The state of the whole swarm (i.e. set of all Na agents) is
denoted by: A(t) = {A1(t), ...,ANa

(t)}.

C. The Simulation

The foraging problem proceeds in discrete time-steps of
size 1, starting at t = 1. Agents are initialized with task chain
and sub-task type randomly drawn from a uniform distribution
of the possible task chains and sub-task types respectively
and τa(1) is defined to be 0 so that these tasks are started
at the beginning of the run. Unless explicitly changed in
the algorithm below, an agent’s variables are assumed to be
unchanged after a time-step (e.g. Ca(t) = Ca(t− 1)). At time
t, the simulation proceeds as follows:

1) Agents engage in their current sub-task (updating
τa(t)→ τa(t)+1), and become ready to collect (resp.
deposit) after TCa(t),Ja(t) (resp. 2 TCa(t),Ja(t)) time-
steps.

2) Agents ready to deposit, act in a (uniform) random
order, succeeding if they are:
• A harvesting agent which is at a chain with

a non-full cache (rCa(t)(t) < C), increasing
the number of items in the cache (rCa(t)(t)→
rCa(t)(t) + 1).

• A storing agent which has picked up a prey
item from the cache during its current sub-
task.

After depositing, agents:
• Change their job based on the rule from

section II-D.
• Update Ma and choose a new task chain

based on one of the policies from section III.
Ca(t + 1) and Ja(t + 1) are updated to reflect the
newly chosen sub-task and chain. τa(t + 1) is reset
to 0.

3) Agents ready to collect act in a (uniform) random
order, picking up prey if they are:
• A harvesting agent.
• A storing agent which is at a chain with a

non-empty cache (rCa(t)(t) > 0), decreasing
the number of items in the cache (rCa(t)(t)→
rCa(t)(t)− 1).

Note that in steps 2-3, we specify that agents must act in a
random order. While our simulation is discrete, it approximates

a continuous problem, in which agents would not arrive at
exactly the same time such that they could be easily ordered
according to some rule. In order to prevent an algorithm gain-
ing a performance advantage from some unrealistic ordering
of agents, we specify that they must act in a random order.

D. Sub-task Type Selection

Note that agents have two sources of freedom in their be-
haviour. After depositing a prey item (step 2 in the algorithm)
agents must both choose a new job (i.e. sub-task type), and
a new task chain to visit. Although a mechanism for taking
a joint decision may be expected to optimize performance,
it is beyond the scope of this paper; for simplicity, we treat
these decisions as independent. As previously discussed, the
problem of balancing the numbers of agents between jobs was
previously explored, and we focus on the best policy for chain
selection (section III). We do, however, need some method
for sub-task selection. As task type selection methods in the
literature are aimed at balancing global levels of agents doing
each job (rather than the local levels important in a distributed
setting), and depend on information not present in our setting
(e.g. waiting times, either at caches or in direct handover of
prey items), we opt for a single simple method.

On successful completion of the previous sub-task, agents
stick to the same job, whereas on failure they switch job with
probability 0.5. Although we lay no claims to optimal per-
formance, the global number of agents for each sub-task type
is balanced in our experimental setup, hence this switching
probability should lead a good global distribution of agents to
jobs.

E. Performance Measures

Before designing policies which aim to lead to good
allocations of agents to chains, it is useful to consider what an
optimal centralised allocation would be with full knowledge
of the system. By devising and analysing the performance of
this optimal allocation, we can establish both the conditions
for a good algorithm, and derive upper limits on performance.
Any practical algorithm can then be tested against these limits.
Here, we show how to maximise throughput and quantify the
performance of such a system. We also show that this places
a limit on the number of agents that can be engaged in useful
work at a given task chain.

1) Maximum Performance: At any given chain c the maxi-
mum number of tasks which can be processed is limited by the
capacity C of the cache. Assuming the cache is kept full, in a
perfectly coordinated system it would be possible for groups
of C agents to pick up prey items from the cache every 2
time-steps 1. As an agent needs 2 Tc,s time-steps to deliver its
collected resource to the nest and return to the cache to pick up
a new resource, Tc,S such groups of agents would be required
to fully exploit a task chain with a continually full cache. For
similar reasons, if we assume that a cache is constantly being

1Note that this factor of 2 is a function of the discrete nature of our
simulation and the fact that agents take the same time to pick up a resource
as they do to deliver it. An agent starting a sub-task with travel time T will
finish it after 2T time-steps and, because all agents start the simulation at
time t = 0, agents can only start a task on an even time-step. It would be
possible to rescale the system time to remove this factor, but it would then be
necessary to use half time-steps.

emptied, we would need Tc,H groups of C harvesting agents
to refill the cache every 2 time-steps.

A chain is saturated if it exactly meets the conditions on
the numbers of visiting agents set out above. If it has too few
agents, it is under-saturated while it is over-saturated if it
has too many. Exactly C(Tc,H + Tc,S) agents are required to
saturate chain c. The total travel time Tct ≡ Tc,H + Tc,S also
determines the maximum efficiency of agents at the (saturated)
chain c: an agent can on average complete C

2 C Tct
= 1

2Tct

tasks per time-step. Using similar reasoning, we can see that
this average is an upper limit on the performance of agents
at under-saturated task chains, although in these cases no
allocation of agents to sub-tasks that actually reaches this
limit may exist. For maximum performance we do not need
to consider over-saturation as adding agents to a saturated
location cannot increase performance.

Since we have a finite number of agents and want to
maximise the number of completed tasks, it is clear that we
should aim to maximise the average number of tasks completed
per-agent. As this average monotonically decreases with total
travel time, maximal throughput is obtained by saturating
locations with the lowest total travel time first. Then the
maximum throughput of the system per time-step is closely
approximated 2 by f(Na, 2) (recursively) defined as:

f(N,T) =

0 if |CT ′ | = 0, ∀T ′ ≥ T ,
NT

2T +f(N−NT , T+1) if N ≥ NT ,
N
2T otherwise.

(3)
where CT = {Cc|Tc,H + Tc,S = T} is the subset of chains
with total travel time T , and NT = T C |CT | is the number
of agents needed to saturate all these locations.

2) Useful Agents: Achieving maximum performance re-
quires perfect coordination between agents which, in a prac-
tical context, is difficult to achieve. While comparing the
throughput of a concrete algorithm with the theoretical max-
imum can indicate how well coordinated agents are, it does
not tell us about how their coordination is breaking down at
a given location. We measure this by defining the number of
useful agents at a location. Let a task chain have a total of vH
harvesting agents and vS storing agents acting (i.e. in moving
to collect or deposit a resource) at it at a given time-step. If
v′H ≤ vH and v′S ≤ vS are the minimum numbers of har-
vesting and storing agents, respectively, required to maintain
the current throughput at the chain, then the number of useful
agents is given by v′H + v′S . Intuitively, this is the minimum
number of agents who could achieve the same throughput as
the current set of visiting agents without switching sub-task.

In two situations a visiting agent can fail to contribute
to throughput at a task chain. At an already saturated or
over-saturated chain, any agent above the number required
for saturation does not contribute to useful work. Secondly,
at an under-saturated chain with an unbalanced number of

2Note that the only difference between the true maximum and this approx-
imation comes is for the case N < NT with not enough agents to saturate
all locations in CT . In this case we may, in the worst case, end up with
a single under-saturated task chain at which the agents’ maximum average
performance is limited above by 1

2T
. However, in a system with a large

number of task chains (as studied in this paper), the difference between f
and the true maximum is negligible and we prefer it for its simplicity.

harvesting and storing agents in relation to the travel times
(i.e. if one sub-task is being done more slowly than another),
the agents undertaking one of the sub-tasks will fail (either
harvesting agents because the cache is full or storing agents
because the cache is empty). In a balanced setting, we have
Tc,S vH = Tc,H vS therefore, for vH harvesting agents at a
chain, a maximum of Tc,S vH

Tc,H
storing agents can be useful,

and vice-versa.

Combining the limits on the number of useful agents at
over- and under-saturated chains into a single rule, we obtain
that at any chain with (vH , vS) agents, the number of useful
agents is limited from above by:

u(c, vH , vS) = Tc,H min(C,
vS
Tc,S

)+Tc,S min(C,
vH
Tc,H

) (4)

III. TASK CHAIN SELECTION

When selecting a task chain, an agent must balance two
factors: the inherent quality of the chain (measured in terms of
travel time) and the existing population of agents at the chain
(with whom it should cooperate rather than compete). From
the reasoning in section II-E, we can formulate the following
principles for a “good” algorithm:

1) Agents should minimize their travel times - Agent
performance is limited by the total travel time at
the chain. The direct evidence an agent has for the
total travel time is the time it spends performing its
own sub-task. By minimizing this, it should be able
to perform tasks more quickly, thus increasing the
system’s overall throughput.

2) Agents should maximise the proportion of sub-tasks
in which they succeed - The simplest measure of
whether an agent is cooperating or competing with
agents at its chosen task chain is whether it succeeds
or fails. Frequent success implies that it has sufficient
agents performing the other sub-task at the chain
(cooperation), and not too many competing agents
doing its own sub-task.

3) Agents should maximise their “usefulness” - An
agent may be blocking other agents from doing work.
If an agent can estimate its own usefulness, it can
target work that contributes most to the system’s
throughput.

We propose a set of task chain selection policies, i.e. a col-
lection of rules and information used by agents to select their
task chain. Each policy is based on a different combination
of principles 1-3, such that we can test which are most useful
for maximising throughput. Task chain selection is based on
agent memory which contains, at least a vector of preferred
task chains ~Pa = {Pa` : 1 ≤ ` ≤ L} of limited maximum size
L (the value of L depends on the task selection policy used).
Memory is initially empty but, when an agent completes a sub-
task successfully, it can add its current task chain to the vector
if it is not already present. It will do this automatically if ~Pa
has not reached its maximum size, but may do so otherwise
according to its selection policy rules.

When choosing a new task chain to visit, agents return to
one of their preferred task chains in ~Pa with probability pr,
or select a task chain randomly from the set of all task chains

with probability 1 − pr. When ~Pa is empty, the task chain
is also randomly selected. By sometimes allowing agents to
choose a random location, we prevent the situation where they
are trapped with a sub-optimal set of preferences.

A. Random Selection Policy

In order to establish a baseline, we test our policies against
one in which agents choose new task chains randomly, denoted
random selection policy (RSP). Agent memory formally
contains preferred locations (Ma = {~Pa}), but we limit the
number of preferred locations to L = 0, such that agents select
a random task chain.3

B. Greedy (Time) Selection Policy

The Greedy (Time) Selection Policy (GTSP) is based on
the 1st principle outlined at the start of section III: agents
should minimize their travel times. Agents greedily select the
task chain with the lowest travel time they encounter. Agent a
has a memory Ma = {~Pa, tP a} where:

• ~Pa has a maximum size of L = 1

• tP a is the lowest sub-task travel time a has encoun-
tered so far.

Upon successful completion of a sub-task, agent a compares
the time spent during that sub-task to the best time encountered
so far. If τa(t) < tP a,the memory is reset: ~Pa = {Ca(t)} and
tP a = τa(t). Since memory is retained on task switch (and
travel times for sub-tasks are not guaranteed to be identical),
an agent always updates tP a when returning to the same
location. In this way, an agent minimizes its travel time given
its current knowledge. Conversely, this rule only tangentially
takes success rate into account: the agent must successfully
complete a sub-task for the task chain to become preferred
but, once a location with low enough travel time is added, the
agent will keep returning regardless of subsequent success.

C. Greedy (Cache) Selection Policy

The Greedy (Cache) Selection Policy (GCSP) is based
on the 2nd principle outlined at the start of section III: agents
should maximise the proportion of sub-tasks in which they
succeed. An agent’s success or failure in a sub-task depends
entirely on the state of the cache at the visited chain. A
harvesting agent which tries to deposit a prey item in a full
cache will fail, as will a storing agent when trying to pick
from an empty cache. Therefore, harvesting (storing) agents
greedily select the task chain which they encounter which has
the lowest (highest) number of prey items in its cache at the
time of visit. Agent a has a memoryMa = {~Pa, ρP a} where:

• ~Pa has a maximum size of L = 1

• ρP a is number of items found in the cache of the
agent’s preferred task chain at last visit.

Upon successful completion of a sub-task, an agent compares
the number of items encountered in the cache to ρP a. If the
agent is harvesting (storing), it switches preferred task if it

3Note that we could define a random task selection policy more naturally,
but doing it this way allows for a single framework to treat all policies.

finds fewer (more) items in the cache, updating ~Pa and ρP a

to match. Agents always update ρP a when returning to their
preferred locations such that they act on the most current
information. This policy should lead to high success rates and
promotes cooperation; an agent is more likely to take up a
sub-task if another agent is carrying out the other sub-task at
the location (as evidenced by the cache). However, as travel
time is not taken into account at all, agents are not driven to
maximise the rate at which they can do tasks.

D. Success Time Selection Policy

The Success Time Selection Policy (STSP) is motivated
by the fact that the two greedy policies introduced above target
one of our first two principles while ignoring the other. Agents
using the GTSP could be driven to fail very often, while those
using the GCSP could be driven to succeed but very slowly.
In order to avoid these flaws, we must combine the 1st and
2nd principle into a single rule by explicitly targeting success
rate - one over the expected number of steps that it takes for
an agent to succeed in its sub-task at a chain.

This cannot be estimated from the results of a single
attempt at a sub-task (as an agent can only succeed or fail
in a task, the rate only takes the extreme values 1

2T or 0).
Therefore, an agent needs to maintain both an average (to
reduce its error when estimating success rate) and more than
one preferred location. When an agent completes a task at a
location not present in its set of preferences, it must choose
whether to discard one of the preferred locations based on the
single measurement at this new location (it is impractical to
maintain average results for all possible locations). If the agent
were only able to retain a single preferred location, it again
has the problem of being forced to base the entire content of
~Pa on an extreme value for success rate at a location.

To mitigate this, we give agents a memory Ma =
{~Pa, ~τa, ~σa} where:

• ~Pa = (Pa,1, ..., Pa,L) has a maximum of size L = 5.

• ~τa = (τa,1, ..., τa,L) is a vector of total travel times,
where τa,` stores the cumulative time that the agent
has spent travelling at task chain Pa,` since it was
added to the agent’s memory.

• ~σa = (σa,1, ..., σa,L) is a vector of total successes,
where σa,` stores the number of times that an agent
has successfully completed a sub-task at task chain
Pa,` since it was added to the agent’s memory.

With this information, an agent can assign a weight
w(τa,`, σa,`) to each preferred task chain ` where w(τ, σ) = σ

τ
is the agent’s observed success rate at `. After successful com-
pletion of a sub-task at a chain not in ~Pa, an agent compares
the observed success rate at this new location (w(τa(t), 1))
to the lowest success rate at the preferred locations. If the
success rate at the new location is higher, it replaces this lowest
weighted preferred task chain in the agent’s memory. When an
agent visits preferred location ` it updates its related variables,
adding its travel time to τa,` and increasing σa,` by 1 if was
successful.

With probability pr, an agent using STSP randomly
chooses a location from ~Pa with probability proportional to

its weight. It is worth noting that agents retain all information
in their memory even after switching jobs; while this may
lead to the agent having an inaccurate estimate of the success
rate of sub-tasks for this job, we have observed empirically
that the benefit (of driving agents towards locations with low
total travel times) significantly outweighs the disadvantages.
This policy should avoid the flaws of the other two greedy
algorithms but, not being specialized, is likely to be worse
than one or other of them in situations where high selectivity
in one of the criteria is crucial.

E. Global Success Time Selection Policy

A memory based on success rate is a good way for agents
to maximise their own performance. However, this does not
necessarily maximise the performance of the whole system if
the proportion of useful work done is too low (see principle 3
at the start of section III). For example, if we have two task
chains which each have capacity 1, one with travel time 1 and
one with travel time 5, and two agents to serve them then the
agents will maximise their own success rate by both choosing
the task chain with low travel time (each expecting a success
rate of 0.5

2×1 = 0.25 if they compete, and an expected success
rate of 1

2×5 = 0.1 for an agent that switches). However, as
only one agent can do useful work for this sub-task (due to a
capacity and travel time of 1) this leads to a sub-optimal total
success rate (0.25+0.25 = 0.5) compared to one agent serving
the low travel time chain and the other serving the high travel
time (1

2×1 + 1
2×5 = 0.6).

The proposed policy for solving this problem, the Global
Success Time Selection Policy (STSP), is similar in spirit to
the algorithms proposed by Pini et al. [9] in that agents base
their decision to switch task chain based on their own estimates
of the costs and benefits of doing so. The difference, however,
is that agents assume they are part of a relatively small
population at any given task chain such that their presence at
a location can have a non-negligible effect on the performance
of other agents. This effect is taken into account when deciding
at what task chain the agent would be most useful. As with
STSP, agents measure performance in terms of success rate.

Given that agents cannot directly communicate, an agent
must infer its own effect from its observations of the environ-
ment. It has a memory Ma = {~Pa, ~τa, ~σa, ~va, τ̂a, σ̂a} where

• ~Pa, ~τa and ~σa are defined as in STSP.

• ~va = (va,1, ..., va,L) is a vector of total visits, where
va,` stores the number of times that an agent has
attempted to perform a sub-task at task chain Pa,`
since it was added to the agent’s memory.

• τ̂a and σ̂a are global versions of the elements of ~τa
and ~σa. They store, respectively, the total time which
the agent has spent travelling at any task chain and
the total number of sub-tasks successfully completed
by the agent.

When deciding upon the task chain to visit, or whether
a chain should be added to ~Pa, the agent estimates the local
decrease (or otherwise) and the global increase in success rate
that it would cause by choosing a different task chain.

The following shows how an agent estimates its effect when
visiting a task chain from memory (with the indices a, ` omit-
ted from estimates for convenience), but calculations for a new
location are the same. Given the observed success percentage,
an agent estimates the size N of the local population at a task
chain as the follows:

Nest =
C va,`
σa,`

(5)

under the assumptions4 that the task chain always has a full
cache, and that its own success rate is representative for the
local population.

The estimated local population size is then used to estimate
the success percentage P of the remaining agents assuming
that one agent leaves:

Pest =

{
min

(
C

Nest−1 , 1
)

if Nest > 1,

0 otherwise.
(6)

The increase in local task completion rate at ` attributable to
agent a, is then calculated as:

∆R local
est =

(
Nest

σa,`
va,`
− (Nest − 1) Pest

)
/

(
τa,`
va,`

)
(7)

which can be interpreted as the difference between the number
of useful agents, with and without a, divided by the observed
travel time at ` to give a completion rate.

An agent should also consider what it loses by not acting
elsewhere. While ideally we should treat an agent’s global
contribution in the same way as its local one: taking into
account its likelihood of being “useful”, this is significantly
more complex in the global case. While we could use the
agent’s global success percentage to infer information about
how often it is useful globally, we would also need to know
how this changes with travel time for it to be meaningful. A
policy based on this information would increase the complexity
of the algorithm significantly, hence we omit it. Instead,
we base an agent’s global contribution on its expected task
completion rate assuming that it does not act at chain `, given
by:

∆R global
est =

{
σ̂a−σa,`

τ̂a−τa,`
if τa,` 6= τ̂a

0 otherwise
(8)

This is equivalent to the assumption that agents are useful at
locations other than the one they are considering travelling
to (for which they estimate their own usefulness). While
this assumption does not always hold, its breakdown implies
that there is redundancy in the system (because swarm is
sufficiently large such that agents are frequently not doing
useful work) and, as such, that the performance of individual
agents is not as critical as in other circumstances.

Finally, an agent uses these two estimates to quantify its
preference for each task chain:

p(a, `) = ∆R local
est −∆R global

est . (9)

4Although the first assumption is not always true, C normally cancels out
before it is used by the agent to make a decision (except in the rare case
where C < Nest < C + 1 when it only has a minor effect). The second
assumption is more plausible, because agents act in random order.

TABLE I. PROPORTION OF TASK CHAINS WITH TRAVEL TIMES TAKEN
FROM THE SET {1, 2, 5} WITH RELATIVE FREQUENCIES {0.5, 0.3, 0.2}.

Tc,H = 1 Tc,H = 2 Tc,H = 5

Tc,S = 1 0.25 0.15 0.10

Tc,S = 2 0.15 0.09 0.06

Tc,S = 5 0.10 0.06 0.04

Agents always visit the task chain with the highest prefer-
ence and replace their least preferred chain with a newly
encountered one if the preference for the new chain is higher.
Since a newly encountered task chain (at which an agent has
just successfully completed a task) has an observed success
percentage of 1, travel time of ta(t) and a single visit, its
preference value is given by:

pnew =
1

ta(t)
− σ̂a − 1

τ̂a − ta(t)
(10)

As in STSP, agents retain their memory after switching jobs.

IV. RESULTS

In this section, we first discuss the experimental setup, and
the parameters used in it. Then we measure the performance
of the various task selection policies discussed in the previous
section, under a wide range of conditions. Finally, we study the
efficiency of agent allocation for these policies in more detail,
in particular as a function of Na for a specific representative
setting of all other parameters. We identify where and why
these policies fail in comparison to ideal performance.

A. Experimental setup and parameters

The most important parameters that we independently
control in our simulations are the number of agents Na, and
the cache size C. Then we take the number of task chains
as Nc = 10000/C, such that the total number of sub-tasks
is constant when C is varied. Next we set the distribution of
the travel times Tc,H , Tc,S . For a given set of travel times
{Ti, i = 1, .., nT }, we only fix their relative frequencies
{fi,

∑
i fi = 1}, such that the number of task chains with

travel times (Tc,H , Tc,S) = (Ti, Tj) is given by Nc fi fj , as
illustrated in table I. We set the probability pr that a preferred
task chain is chosen to the empirically determined (close to
optimal) value of pr = 0.9.

In all experiments the algorithms run for 5000 iterations
and throughput is calculated as the total taken over the entire
run. Useful/wasted visits are only measured in the final itera-
tion such that agents have time to explore the environment and
reach cooperative groups if led to by their task chain selection
policies. All results are averaged over 20 runs. Standard
deviation was measured, but is negligible (comparible to the
line width in the graphs) and so has not been included.

B. Performance

In this section, We test the absolute performance of the task
selection policies under variations of the cache capacity C, the
number of agents Na, and the distribution of travel times.

We have taken two values for C: a low one C = 10 and a
high one C = 100, to test whether the increased pressure on

TABLE II. PERFORMANCE AS A FRACTION OF THE MAXIMUM FOR
TRAVEL TIMES ∈ {1, 2, 5} VARYING BOTH Na AND C

C 10 100

Na 5000 23500 42000 5000 23500 42000

RSP 0.431 0.667 0.809 0.471 0.744 0.938

GTSP 0.799 0.506 0.524 0.868 0.521 0.548

GCSP 0.435 0.700 0.871 0.475 0.750 0.962

STSP 0.700 0.788 0.793 0.798 0.852 0.828

GSTSP 0.686 0.837 0.892 0.835 0.938 0.957

TABLE III. PERFORMANCE AS A FRACTION OF THE MAXIMUM FOR
TRAVEL TIMES ∈ {1, 10} VARYING BOTH Na AND C

C 10 100

Na 5000 57500 110000 5000 57500 110000

RSP 0.164 0.630 0.801 0.179 0.699 0.926

GTSP 0.565 0.682 0.746 0.609 0.713 0.793

GCSP 0.152 0.645 0.860 0.185 0.726 0.950

STSP 0.448 0.792 0.799 0.530 0.841 0.832

GSTSP 0.480 0.803 0.882 0.555 0.830 0.947

coordination changes the relative performance of the selection
policies.

A low number of agents Na is used to test whether
algorithms can efficiently specialize to the best locations, while
high Na is used to test whether they can efficiently distribute
resources between all locations, and finally intermediate values
of Na are used to test how they adapt. For the results tables,
we have set the low Na value to the exact number of agents
needed to saturate all task chains with T = 2, the high Na
value to the exact number of agents needed to saturate all task
chains, and we the intermediate value is the midpoint between
these values.

Travel times are either taken from the set {1, 2, 5} with
relative frequencies (0.5, 0.3, 0.2), or from the set {1, 10} with
relative frequencies (0.5, 0.5). These are chosen to test whether
the relative performance of selection policies changes with the
viability of sub-optimal solutions increases or decrease. Note
that the difference in total travel time between the best and
second best task chains is 1 for {1, 2, 5} ((1, 1) ↔ (1, 2)),
while it is 9 for {1, 10} ((1, 1)↔ (1, 10)).

In tables II and III respectively, we show the performance
(i.e. the throughput as a fraction of the maximum obtainable
one) for the two different choices of travel time distributions
respectively, for the various task selection policies and for
the chosen combinations of C and Na values. The best
performance, in each environment is indicated in bold.

We note the following patterns as a function of Na.
Although at high Na, RSP performs reasonably well (which
can be understood because a random assignment of agents
to task chains yields a number of agents proportional to the
travel time, ideal at high levels), it doesn’t quite reach the of
performance of GCSP or indeed GSTSP. This is due to the
fact that the agents at a given chain tend not to be balanced
(collisions). At low Na, GTSP tends to be the best, while
STSP is at least competitive at low to intermediate values
of Na, but less so at high values because it does not take
into account whether its work is useful. Finally, we note that
GSTSP competitive (and often best) at all levels.

(a) (b)

Fig. 2. 2a Performance as a fraction of the maximum for each of the task selection policies as a function of Na. 2b Optimum number of agents visiting task
chains with total travel time T as a function of Na

(a) (b)

(c) (d)

Fig. 3. The number of useful (3a and 3c) and failed (3b and 3d) visits to task chains with total travel time T as a function of Na, for the task selection
policies GTSP (3a and 3b), and GCSP (3c and 3d)

When varying the values of C we note that there is an
obvious and easily understood overall performance increase
for all policies with increasing C. At low values of C, GSTSP
performs slightly better compared to the other policies. In gen-
eral, however, the influence of C on the relative performance
of the various policies is limited.

When varying the distribution of travel times, we observe
that at low values of Na the overall performance is better for
{1, 2, 5}. this can be understood by the fact that not being
at an ideal task chain is less of a dis-advantage. At other
levels of Na, performance is generally similar for the {1, 2, 5}
and {1, 10} cases, with the only exception that GTSP does
comparatively better for {1, 10}.

C. Problem Analysis

Since the behaviour at all parameter choices is qualitatively
reasonably similar, we now take one setting as an example to
investigate in depth the factors that influence performance for
the various policies, at different values of Na. We set C = 100,
travel times are taken from {1, 2, 5} with relative frequencies
(0.5, 0.3, 0.2) and we vary Na starting from a slightly lower
value (3000) than that in the tables to a slightly higher value
(50000), to see whether the trends from the previous section
continue.

For each algorithm, we measure three quantities: the per-
formance as a fraction of the maximum, the number of useful
task chain visits, and the number of failed task chain visits.
We note that the number of useful and failed task chain
visits are both needed as there are two main mechanisms for
preformance loss. The first is to assign agents to chains with
higher T before those with lower T are saturated, resulting
in lower success rates than is optimal. The second mechanism
is to over-saturate low T -chains, resulting in too many failed
visits. Since we know the ideal distribution of agents to task
chains, this is presented in figure 2b for reference, which is
a snapshot of the system state at the end of the run. Any
deviation from this (because agents go to chains with higher
T too early) by practical algorithms is sub-optimal.

In Figure 2a, we note that the two greedy algorithms do
well at the extremes where they are expected to do well, but
quickly drop off away from that extreme. For intermediate
values of Na, STSP outperforms all other algorithms, except
GSTSP which is significantly better and gives the best or at
least competitive performance at all levels. We also note that
the performance as fraction of the maximum is non-monotonic
for STSP and GSTSP. When they are trying to saturate the
same type of chain as the maximum, the maximum does
so more efficiently and increases faster. However, when it
has saturated all task chains of this type, it needs to switch
to the next (higher T) while the other algorithms still have
unsaturated low T -task chains, and can therefore temporarily
improve faster.

From Figure 3, it is clear why GTSP fails for anything but
low values of Na as it only saturates T = 2 task chains. Higher
T -chains remain under-saturated (figure 3a compared to the
ideal in figure 2b), while T = 2 is massively over-saturated
(see figure 3b). It also becomes clear why GCSP fails for low
to intermediate values of Na, as it does not have preference
for low T -chains (the number of visits to each type of chain

is proportional to its frequency multiplied by its travel time).
At high Na, however, this is ideal and high performance is
obtained. Note that for GCSP significant over-saturation only
happens for Na > 42000, the minimum number of agents
needed to saturate all chains.

In Figure 4 we observe that for low values of Na STSP
and GSTSP show similar behaviour to 2b (therefore good early
performance), but they then start to deviate. STSP mainly loses
performance due to over-saturation of low T -chains, as it does
not consider the performance of other agents. GSTSP on the
other hand, under-saturates intermediate T -chains (e.g. T = 6
and T = 7). We hypothesize that it has difficulty differentiating
between them given its limited perspective. As was the case
for GCSP, there is no significant over-saturation of chains until
it becomes inevitable (i.e. Na > 42000).

V. CONCLUSIONS

In this paper, we have extended the foraging problem
(used in the literature to study sequential task allocation) to a
distributed setting, such that it can be used to study distributed
sequential task allocation. We have analysed the maximum
performance for this problem theoretically, and have used
this analysis to devise various policies for location selection
by agents. We have tested the performance of these policies
under a range of conditions. One particular policy, GSTSP, in
which agents use local information to estimate both their own
performance and their effect on the rest of the swarm, is shown
to achieve good performance (compared to the theoretical
maximum) under all conditions.

While our study considers the case of two sub-tasks with
sequential dependencies, it is possible to extend this to include
more complex tasks, with higher numbers of sub-tasks and
both parallel and sequential dependencies. From a practical
point of view, it would be useful to test whether the perfor-
mance of our task selection policies (or similar policies follow-
ing the guidelines from section III) would remain high under
those conditions. In addition, it has been assumed that agents
cannot communicate (in order to ensure that the algorithm is
applicable to very limited agents) and that sources always have
prey to harvest. Relaxing either of these assumptions could
lead to interesting extensions of the problem. Finally, the main
aim of this study was to maximise the performance using task
chain selection; combining this with job selection could lead
to further performance benefits.

REFERENCES

[1] M. Dorigo and E. Şahin, “Guest editorial,” Autonomous Robots, vol. 17,
no. 2-3, pp. 111–113, 2004.

[2] G. Beni, “From swarm intelligence to swarm robotics,” in Swarm
Robotics, ser. Lecture Notes in Computer Science, E. Şahin and
W. Spears, Eds. Springer Berlin Heidelberg, 2005, vol. 3342, pp.
1–9.

[3] E. ahin, “Swarm robotics: From sources of inspiration to domains
of application,” in Swarm Robotics, ser. Lecture Notes in Computer
Science, E. Şahin and W. Spears, Eds. Springer Berlin Heidelberg,
2005, vol. 3342, pp. 10–20.

[4] K. Lerman, C. Jones, A. Galstyan, and J. Maja, “Analysis of dy-
namic task allocation in multi-robot systems,” International Journal of
Robotics Research, vol. 25, pp. 225–242, 2006.

(a) (b)

(c) (d)

Fig. 4. Number of useful (4a and 4c) and failed (4b and 4d) visits to chains with total travel time T as a function of Na, for task selection policies STSP (4a
and 4b), and GSTSP (4c and 4d)

[5] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg, “Fixed response
thresholds and the regulation of division of labor in insect societies,”
Bulletin of Mathematical Biology, vol. 60, no. 4, pp. 753–807, July
1998.

[6] G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg, “Response threshold
reinforcements and division of labour in insect societies,” Proceedings
of the Royal Society B: Biological Sciences, vol. 265, pp. 327–332,
1998.

[7] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257–1270, August 2006.

[8] S. Nouyan, R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Team-
work in self-organized robot colonies,” IEEE Transactions on Evolu-
tionary Computation, vol. 13, no. 4, pp. 695–711, 2009.

[9] G. Pini, M. Gagliolo, A. Brutschy, M. Dorigo, and M. Birattari,
“Task Partitioning in a Robot Swarm : a Study on the Effect of
Communication,” Swarm Intelligence, no. February, 2013.

[10] G. Pini, A. Brutschy, M. Birattari, and M. Dorigo, “Task partitioning in
swarms of robots: reducing performance losses due to interference at
shared resources,” Informatics in Control Automation . . . , pp. 217–228,
2011.

[11] C. Parker and H. Zhang, “Collective unary decision-making by decen-
tralized multiple-robot systems applied to the task-sequencing problem,”
Swarm Intelligence, vol. 4, no. 3, pp. 199–220, 2010.

[12] A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, and M. Dorigo, “Self-
organized task allocation to sequentially interdependent tasks in swarm
robotics,” Tech. Rep. TR/IRIDIA/2012-008, 2012.

[13] M. Frison, N.-L. Tran, N. Baiboun, A. Brutschy, G. Pini, A. Roli,
M. Dorigo, and M. Birattari, “Self-organized task partitioning in a
swarm of robots,” in Swarm Intelligence, ser. Lecture Notes in Computer
Science, M. Dorigo, M. Birattari, G. Caro, R. Doursat, A. Engelbrecht,
D. Floreano, L. Gambardella, R. Gro, E. Şahin, H. Sayama, and
T. Sttzle, Eds. Springer Berlin Heidelberg, 2010, vol. 6234, pp. 287–
298.

[14] A. Brutschy, “Task allocation in swarm robotics. Towards a
method for self-organized allocation to complex tasks,” Tech. Rep.
TR/IRIDIA/2009-007, 2009.

[15] G. Pini, A. Brutschy, M. Frison, A. Roli, M. Dorigo, and M. Birattari,
“Task partitioning in swarms of robots: an adaptive method for strategy
selection,” Swarm Intelligence, vol. 5, no. 3-4, pp. 283–304, 2011.

