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I. ABSTRACT

This paper is concerned with synchronization of complex stochastic dynamical networks in

the presence of noise and functional uncertainty. A probabilistic control method for adaptive

synchronization is presented. All required probabilistic models of the network are assumed to

be unknown therefore estimated to be dependent on the connectivity strength, the state and

control values. Robustness of the probabilistic controller is proved via the Liapunov method.

Furthermore, based on the residual error of the network states we introduce the definition of

stochastic pinning controllability. A coupled map lattice with spatiotemporal chaos is taken as

an example to illustrate all theoretical developments. The theoretical derivation is complemented

by its validation on two representative examples.

II. INTRODUCTION

Current and future emergent systems in nature can be viewed as complex dynamical networks

which are composed of nodes representing individuals in the system and links representing

interactions among them. As a typical collective behavior in nature, synchronization has been one

of the key issues that is investigated in the literature. Over the past decade chaos control, stability

(controllability) [16], [26], and synchronization [24], [25], [27], [29] of large scale dynamic

systems have been some of the issues with wide interest due to their potential applications in

power grid systems, biological systems, reaction diffusion systems and many others. Typically

because of the large number of nodes in real world complex dynamical networks, it has been

widely believed that it is impossible to add controllers to all nodes. Consequently, pinning

control has been proposed as a viable strategy which requires a significantly smaller number of

controllers which are injected to a fraction of network nodes. For a more detailed discussion on

pinning control see [3], [4], [17], [19]–[22].

In particular, previous pinning control methodologies are based mainly on linear feedback

control theory which is served as a simple and effective approach for stabilization and syn-

chronization. In [22], the stabilization problem of complex dynamical networks with general

coupling topology by pinning a small fraction of nodes with local negative feedback controllers

was discussed. The result that a network under a typical framework can realize synchronization

subject to any linear feedback pinning scheme by using adaptive tuning of the coupling strength

was proved in [23]. These studies largely focus on developing deterministic control algorithms,



therefore, necessitate perfect information exchange among the nodes. Since information exchange

between the nodes in the network are normally affected by noise and quantization error, the

development of control algorithms that can handle uncertain information has recently received

great deal of attention in the field. Examples include the extended result to the density of pinning

sites for spatially chaotic systems with linear quadratic optimal control, provided in [7]. It is

shown that the minimal density of the pinning nodes depends on the strength of noise in the

system. An adaptive control approach by adding an additional control input to all or a fraction

of nodes in the network was proposed in [28] to guarantee synchronization in the presence of

uncertainties. Another control scheme for synchronization of complex networks was proposed

in [5]. It is based on the local adaptive control approach. This scheme is claimed to be useful

in applications where the coupling gains cannot be chosen globally, or where synchronization

needs to be attained in the presence of uncertainties and noise [5].

However, in all of the control strategies described above either the adaptive control method was

implemented to solve the synchronization problem of uncertain systems or only uniform noise

was assumed to be acting on the dynamics of the systems. Moreover, the performance objectives

concerned were confined to be the mean value of the stochastic output and consequently control is

still confined to the deterministic control strategy. In this paper, by using neural network methods

and a cost function derived from a Kullback–Leibler distance between the joint probability

density function of the closed-loop system and an ideal joint probability density function, a

probabilistic controller is proposed for a stochastic uncertain complex dynamical network. This

method was originally proposed in [9] to obtain a general solution for stochastic systems subject

to random inputs and deterministic systems characterized by functional uncertainty with unknown

probability density functions. The synchronization problem of complex dynamical networks, on

the other hand, was not discussed.

The consensus problem of complex networks in the presence of formation leaders is shown

in [11], [15] to be similar to the pinning control problem. The formation leader defines the

common value that all other nodes in the network should converge to. Consensus problems

in a stochastic settings have received more attention. This can be referred to that the network

dynamics in consensus problems is linear while in pinning control the coupled systems can be

strongly nonlinear which complicates the problem further. In [10] a stochastic approximation

type algorithms are employed for individual states to converge in mean square to the same limit.



The agreement problem over random information networks, where the existence of information

channel between a pair of units is probabilistic is discussed in [8] and the asymptotic agreement of

the network is addressed via notions of stochastic stability. Necessary and sufficient conditions

for mean square consentability of the averaging protocol for a stochastic directed network is

discussed in [1]. The distributed average consensus for random topologies and noisy channels is

studied in [13], where noisy consensus is shown to lead to a bias–variance dilemma. It is worth

noticing that these researches are mainly concerned with achieving consensus by designing the

optimal link weights when the connectivity graph of the network is fixed or random. The current

work however, is concerned with achieving consensus by designing a probabilistic pinning control

algorithm.

Several research efforts have been devoted to the analysis of synchronization of complex

networks under uncertain and noisy conditions by adding additional deterministic control input

to all or fraction of nodes in the network [5], [7], [28], as discussed earlier. More often, under

noisy and uncertain conditions, it is more appropriate and effective to consider probabilistic

rather that deterministic control algorithms. To the best of the authors knowledge, this has not

been considered in earlier work in the field of pinning controlling complex dynamical networks.

To summarize, the aim of this paper is to study the problem of how to achieve synchronization

of complex stochastic dynamical networks via design of probabilistic controller, expanding and

integrating the results presented in [9]. In particular, the stochastic controllability condition

is introduced and the stability of the proposed probabilistic control methodology is proven.

Compared with the existing results on the topic, this paper has three distinct features that have not

been reported in literature. Firstly, based on the theory of dynamic programming and the Liapunov

method we design fully probabilistic controllers, as opposed to current existing deterministic

controllers, that are applied to a subset of nodes in the network. It will be demonstrated that

these probabilistic controllers guarantee synchronization in the presence of noise and functional

uncertainties. Secondly, the probabilistic models of the forward stochastic dynamics of the

network are assumed to be unknown and hence estimated adaptively as a function of the

connectivity strength, state values, and pinning control nodes. Thirdly, the Kullback-Leibler

distance between the joint probability density function of the closed-loop system and an ideal

joint probability density function is used as the cost function to relax the conservativeness on

the assumed generative distribution of the random noise. The proposed probabilistic control



methodology will be applied to controlling spatiotemporally chaotic systems with the coupled

map lattice taken as an example. To emphasize, probabilistic controllers proposed in this paper

provide a pragmatic method for achieving synchronization in complex stochastic dynamical

networks under uncertain conditions. It will be seen, that despite of the uncertainty embedded

in the information states of those stochastic networks at each instant of time one can still prove

synchronization results that resemble those for the certain and deterministic case.

The rest of the paper is organized as follows. In Section III the model description and

some preliminaries are give. The pinning controllability of stochastic networks is introduced in

Section IV. Synchronization of probabilistic control problem is given in Section V. In Section VI

the proof of asymptotic stability of the proposed probabilistic controller is detailed. Section VII

contains some simulation results to show the effectiveness of the proposed controller. The

conclusion is provided in Section VIII.

III. MODEL DESCRIPTION AND PRELIMINARIES

Consider the coupled map lattice consisting of L lattice nodes with periodic boundary condi-

tions [6], [7], [12],

zit+1 = F(zi−1
t , zit, z

i+1
t )

= f[(1− 2ϵ)zit + ϵ(zi−1
t + zi+1

t )], (1)

where i = 1, 2, . . . , L are the lattice sites, L is the system size, and the periodic boundary

conditions are given by zi+L
t = zit. The local map f(z) is defined to be a nonlinear function of

the following form

f(z) = az(1− z). (2)

This coupled map lattice exhibits chaotic characteristics in the regime 3.57 < a ≤ 4.0 and

has a homogeneous steady state z⋆ = 1 − 1/a. The aim is to synchronize network (1) onto a

homogeneous stationary state such that

lim
t→∞ ∥ zit − z⋆ ∥= 0, i = 1, 2, . . . , L. (3)

The first attempt in this direction was reported in [6], where M periodically pinning control

actions are applied at sites {i1, . . . , iM} in the following way

zit+1 = F(zi−1
t , zit, z

i+1
t ) +

M∑
m=1

δ(i− im)u
m
t , (4)



where um is the control action applied at site m. However, this required a very dense array of

pinning controllers Lp = L/M in the physically interesting interval of parameters 3.57 < a ≤

4.0. To further understand how pinning should be placed, a linearized form of (1), about the

homogeneous steady state zt = (z⋆
1

, . . . , z⋆
L

), is considered in [7] and the following standard

linear equation is obtained:

xt+1 = Ãxt + B̃ut, (5)

in which x = z − z⋆ represents the state vector, the L× L Jacobian matrix Ã, is given by

Ã = α



1− 2ϵ ϵ 0 . . . ϵ

ϵ 1− 2ϵ ϵ . . . 0

0 ϵ 1− 2ϵ . . . 0
...

...
... . . . ...

ϵ 0 0 . . . 1− 2ϵ


, (6)

where α = ∂f(z)
∂z

|z=z⋆ , and B̃ is an L × M control matrix with B̃ij =
∑

m δ(j − m)δ(i − im)

which depends on how the pinning sites are placed. Thus, to minimize the number of pinning

nodes, the limits of the control scheme is extended in [7] by making the system controllable as

opposed to stabilizable. The controllability condition of the system (5) is that the rank of the

following controllability matrix equal to L, or

rank(C[Ã, B̃]) = rank[B̃
...ÃB̃

... · · · ...ÃL−1B̃] = L. (7)

Since the system (1) has parity symmetry, it is shown [7] that the controllability condition is

satisfied using at least two pinning sites, M = 2, with the only restriction that L should not be

multiple of |i2 − i1|; or otherwise the mode with the period 2|i2 − i1| becomes uncontrollable.

On the other hand, the existence of an external random input that affects the dynamics of

the systems is very common in many areas of science and engineering. Therefore our aim in

this paper is to further discuss the controllability condition of the stochastic version of (5) and

propose a more general fully probabilistic control algorithm.

IV. PINNING CONTROLLABILITY OF STOCHASTIC NETWORKS

Further to the approach presented in [7] we define and assess the stochastic pinning control-

lability of the coupled map lattice networks defined in (1) with additive external random inputs.



For that purpose we consider the general time varying dynamics of the linearized equation (5)

with external random inputs added to its right hand side as follows:

xt+1 = Ãtxt + B̃tut + Ẽtκ̃t, (8)

where Ã, B̃, x and u have similar definitions as before, κ̃t is an additive noise signal assumed to

have zero mean Gaussian distribution of covariance Σ̃, and Ẽ is the noise matrix . The solution

to (8) can be easily verified to be given by

xt+L = ϕ(t+ L, t)xt +
∑L−1

j=0 ϕ(t+ L, j+ t+ 1)Ẽj+tκ̃j+t

+
∑L−1

j=0 ϕ(t+ L, j+ t+ 1)B̃j+tuj+t, (9)

with

ϕ(t+ L, t) = Ãt+L−1Ãt+L−2....Ãt. (10)

For the time invariant system where Ã, and B̃ are constant matrices we have

ϕ(t+ L, t) = ÃL. (11)

Because of the noise disturbances the state vector at time t + L differs from ϕ(t + L, t)xt, the

state vector at time t+ L with no disturbances by

dL = xt+L − ϕ(t+ L, t)xt,

=

L−1∑
j=0

ϕ(t+ L, j+ t+ 1)Ẽj+tκ̃j+t. (12)

Because κ̃t is an additive Gaussian noise signal with zero mean, the random variable dL is also

Gaussian with

E(dL) = 0,

Cov(dL) =

t+L∑
j=t+1

ϕ(t+ L, j)Ẽj−1Σ̃j−1Ẽ
T
j−1ϕ

T(t+ L, j).

Note that, obviously, for complete controllability of the stochastic network (8), the residual error

defined in (12) should remain bounded. Within this framework, we can introduce the following

mathematical definition for the concept of stochastic controllability.

Definition 1: Let Cov(dL) = ΨL, then if the matrix ΨL is positive definite and ∥ ΨL ∥ remains

bounded for all L, where ∥ . ∥ is a norm in an Euclidean space, then the residual error dL will



remain bounded for all L [2]. Therefore ΨL is called the stochastic controllability matrix of the

stochastic dynamical network (8).

For the stationary system where Ã, B̃, ϕ and Ẽ are constant matrices and Σ̃ > 0 the criterion

of complete controllability is that the rank of the stochastic controllability matrix, SC[ϕ, Ẽ] equal

to L,

rank(SC[ϕ, Ẽ]) = L. (13)

V. SYNCHRONIZATION PROBABILISTIC CONTROL PROBLEM

Consider a stationary dynamics of the time variant stochastic coupled map lattice defined

in (8) as,

xt+1 = Ãxt + B̃ut + κ̃t, (14)

where here without loss of generality Ẽ is taken to be the identity matrix. The synchronization

control problem confronted here is to design a control strategy for pinning nodes to synchronize

the state of the coupled map lattice to the homogenous state, i.e z → z∗ or x → 0. Then

according to Definition 1 all nodes should synchronize such that the residual error, dL of the

stochastic dynamics is bounded. However, because of the noise input κ̃t the present state and

present and future controls do not completely specify the future state, but instead determine

only the probability distribution of these states, s(xt+1 | ut, xt) . It is assumed that the node

disturbances κ̃t are unknown and hence the probability distribution of the states is unknown. Thus,

the synchronization strategy must be robust to unmodelled stochastic dynamics and unknown

disturbances.

The gaol of this synchronization control problem fits naturally with the probabilistic con-

trol theory. Therefore, to achieve this goal we consider designing a probabilistic controller

c(ut | xt) such that the joint probability density function (pdf) of the closed loop system,

f(D) =
∏L

t=0 s(xt+1 | ut, xt)c(ut | xt) is made as close as possible to a desired pdf, If(D) =∏L

t=0
Is(xt+1 | ut, xt)

Ic(ut | xt). This design method was originally presented in [9], [14], where

the probabilistic controller is obtained such that it minimizes the following cost to go function

derived from the Kullback-Leibler divergence (KLD) between the actual joint pdf f(D) and the



ideal joint pdf If(D) and defined as follows,

− ln(γ(xt)) = min
{c(ut|xt)Lt≥τ}

L∑
t=τ

∫
f(xt+1,ut, . . . , xL+1,uL)

× ln
(

s(xt+1 | ut, xt)c(ut | xt)
Is(xt+1 | ut, xt) Ic(ut | xt)

)
d(xt+1,ut, . . . , xL+1, uL),

for arbitrary t ∈ {1, . . . , L}. Using this definition minimization is then performed recursively to

give the following recurrence functional equation [9]

− ln(γ(xt)) = min
c(ut|xt)

∫
s(xt+1 | ut, xt)c(ut | xt)

×
[

ln
(

s(xt+1 | ut, xt)c(ut | xt)
Is(xt+1 | ut, xt) Ic(ut | xt)

)
︸ ︷︷ ︸

≡partial cost =⇒ U(ut, xt)

− ln(γ(xt+1))︸ ︷︷ ︸
optimal cost-to-go

]
d(xt+1,ut). (15)

Furthermore, to overcome the curse of dimensionality problem arising from the probabilistic

control (15), adaptive critic methods were proposed in [9] to approximate the optimal cost

to go function and the probabilistic controller. Unknown pdfs were also estimated using recent

development from neural network models. Numerical experiments and previous analytical studies

have shown the usefulness of this control approach to obtain the control efforts for general

stochastic systems subject to functional uncertainty and random inputs [9]. The synchronization

problem of complex dynamical systems on the other hand was not discussed. Furthermore, A

pressing open problem to the probabilistic control approach is to prove analytically the asymptotic

stability of the controlled system.

We start by first discussing the estimation problem of unknown probabilistic models of the

lattice network and giving some definitions that will be used throughout the rest of the paper.

To estimate the probabilistic model of the lattice network we adopt the method proposed in [9],

where neural network models are used to provide a prediction for the conditional expectation

of the system output and calculating the global average variance of its residual error. For the

linearized coupled map lattice (14) generalized linear neural network (GLNN) models can be

used to provide estimates for all unknown pdfs. Therefore using GLNN models, the stochastic

model of the coupled map lattice defined in (14) can be shown to be given by,

xt+1 = Axt + But + κt, (16)



where Axt + But represents estimated conditional expectation of the lattice state with A and B

being estimate of the jacobian and control matrices respectively, κt is the noise of the residual

error of the lattice output which is shown [9] to be close to Gaussian random noise with zero

mean and Σ covariance. According to the developed stochastic model in (16), the distribution of

the state values will be Gaussian distribution with expected means provided by the approximating

GLNN and a global covariance Σ given by the residual value of the error between actual and

estimated states E[{xt+1 − (Axt + But)}{xt+1 − (Axt + But)}
T ],

s(xt+1 | xt,ut) Nxt+1
(Axt + But, Σ). (17)

For the synchronization problem of the coupled map lattice, the ideal state distribution is

assumed to be given by
Is(xt+1 | ut, xt) Nxt+1

(0, Σ). (18)

It reflects the synchronization problem with the aim of reaching the zero state, with the spread

determined by the covariance of innovations Σ. The randomized controller to be designed is

described by the following stochastic model

ut = Cxt +ωt,

c(ut|xt)  Nut
(Cxt, Γ), (19)

where C is the matrix of the controller parameters, ωt is the residual error of the control input,

and Γ is the covariance of the residual error of control. The distribution of the ideal controller

is also assumed to be
Ic(ut|xt) Nut

(0, Γ). (20)

VI. PROOF OF ASYMPTOTIC STABILITY

If we use the randomized controller (19), the governing stochastic equation of the network (16)

can be recast as follows:

xt+1 = (A+ BC)xt + Bωt + κt. (21)

The probabilistic control design problem is then to determine a stabilizable probabilistic model

c(ut|xt) of the randomized controller under the following assumption:



Assumption 1: All eigenvalues, λk of the matrix (A + BC) in (21) lie inside the unit circle.

Similar to the asymptotic stability of deterministic control systems [18] this is equivalent to,

rank(AS[((Σ−1)1/2)T , A]) = L. (22)

The above control objective can be achieved by minimization of (15) subject to the constraint

equations specified by (17), (18) and (20). This, leads to the probabilistic optimal feedback

control law specified in the following theorem.

Theorem 1: The feedback control law minimizing optimal cost to go function (15) subject to

the pdf of the system dynamics (17) and ideal distributions given by (18) and (20)

ut = Cxt +ωt, (23)

with

C = −(BTMB+ BTΣ−1B+ Γ−1)−1(BTMA+ BTΣ−1A), (24)

is a stabilizing control law and

− ln(γ(xt)) = 0.5xT
tMxt +Q0, (25)

with

M = ATΣ−1A+ATMA− (ATMB+ATΣ−1B)(BTMB+BTΣ−1B+ Γ−1)−1(BTMA+BTΣ−1A),

(26)

is the quadratic cost function. Here Q0 ≥ 0 is some positive constant.

Proof: To prove the theorem we start by evaluating the partial cost U(ut, xt) in (15) repeated

here,

U(ut, xt) =

∫
s(xt+1 | ut, xt)c(ut | xt)× ln

(
s(xt+1 | ut, xt)c(ut | xt)
Is(xt+1 | ut, xt) Ic(ut | xt)

)
d(xt+1,ut). (27)

The Evaluation of (27) yields,

U(ut, xt) = xT
t [C

TΓ−1C+ (A+ BC)TΣ−1(A+ BC)]xt, (28)

where we made use of (23) and where Γ and Σ are positive definite real symmetric matrices.

Under Assumption 1, there exists a Liapunov function that is positive definite and whose

derivative is negative definite as follows,

xT
t [C

TΓ−1C+ (A+ BC)TΣ−1(A+ BC)]xt = −
∫
[xT

t+1Mxt+1 − xT
tMxt]d(xt+1,ut)

= xT
t [−(A+ BC)TM(A+ BC) +M]xt. (29)



Comparing the two sides of (29) and noting that this equation must hold for any xt, it is then

required that

CTΓ−1C+ (A+ BC)TΣ−1(A+ BC) = −(A+ BC)TM(A+ BC) +M. (30)

Equation (30) can be modified as follows

ATΣ−1A+ATMA−M+ CT(Γ−1 + BTMB+ BTΣ−1B)C+ CTBTΣ−1A

+ATΣ−1BC+ CTBTMA+ATMBC = 0. (31)

This last equation can further be modified as follows{
(Γ−1 + BTMB+ BTΣ−1B)1/2C+ (Γ−1 + BTMB+ BTΣ−1B)−1/2(BTMA+ BTΣ−1A)

}T

×
{
(Γ−1 + BTMB+ BTΣ−1B)1/2C+ (Γ−1 + BTMB+ BTΣ−1B)−1/2(BTMA+ BTΣ−1A)

}
−(BTMA+ BTΣ−1A)T(Γ−1 + BTMB+ BTΣ−1B)−1(BTMA+ BTΣ−1A)

+ATΣ−1A+ATMA−M = 0. (32)

Minimization of the performance index (15) with respect to C requires minimization of the left

hand side of (32) with respect to C. Since{
(Γ−1 + BTMB+ BTΣ−1B)1/2C+ (Γ−1 + BTMB+ BTΣ−1B)−1/2(BTMA+ BTΣ−1A)

}T

×
{
(Γ−1 + BTMB+ BTΣ−1B)1/2C+ (Γ−1 + BTMB+ BTΣ−1B)−1/2(BTMA+ BTΣ−1A)

}
,(33)

is nonnegative, the minimum occurs when it is zero or when

(Γ−1 + BTMB+ BTΣ−1B)1/2C = −(Γ−1 + BTMB+ BTΣ−1B)−1/2(BTMA+ BTΣ−1A). (34)

Solving this last equation for C yields the optimal control law specified in (24). Substitution

of (24) into equation (31) gives (26).

The proof is thus completed.

VII. NUMERICAL RESULTS

This section will demonstrate the effectiveness of the probabilistic control approach specified

by Theorem 1 in the non chaotic and chaotic regimes of the lattice. It is shown that the approach

effectively enforces synchronization using only two pinning nodes for unknown system dynamics

and unknown random input at each node.



A. Non Chaotic Map Lattice

The example considered here is for the logistic coupled map lattice, f(z) = az(1 − z) in its

non–chaotic regime with a = 3.0, ϵ = 0.33 and L = 5 and with an external Gaussian random

input affecting the dynamics. The two control actions are placed next to each other at the sides

of the lattice. Hence the equation of the coupled map lattice becomes:

xt+1 = Axt + But + κt, (35)

where

A =



−0.34 −0.33 0 0 −0.33

−0.33 −0.34 −0.33 0 0

0 −0.33 −0.34 −0.33 0

0 0 −0.33 −0.34 −0.33

−0.33 0 0 −0.33 −0.34


,

B =



1 0

0 0

0 0

0 0

0 1


E[κtκ

T
t ] = 0.001I5×5.

The lattice is initially at time t = 0 in state x = 0.9 and the aim is to return the lattice state to

the origin (the fixed point position) or a state close to the origin. As a first step in the solution,

the Gaussian probability density function of the stochastic lattice model described by (35) is

estimated off–line using generalized linear model and a global diagonal covariance matrix Σ =

[0.00095, 0.00105, 0.00097, 0.0009, 0.0011] as discussed in Section V. The covariance matrix of

the controller is taken to be Γ = 0.01I2×2. The states of the lattice network and the control efforts

are illustrated in Figures 1(a) and (b), respectively, which show that the controlled network is

globally synchronized and that the designed probabilistic control approach is very effective.

Using the estimated global average covariance matrix, Σ the rank of the asymptotic stability

matrix, rank(AS[((Σ−1)1/2)T , A]) is found to be 5, hence satisfying Assumption1. This is further

verified by finding the eigenvalues, λk of the matrix (A+BC) which all are found to be inside

the unit circle as can be seen from Figure 1(d). Figure 1(c) gives the solution of the control



matrix C. The control effort Cmi is larger for those sites that are far away from the pinning site

im. This is expected since the probabilistic feedback effort is applied indirectly through coupling

to the neighbors which in turn means that the perturbation introduced by the controllers decays

with the increasing distance to the pinning sites. This agrees with the result reported in [7] for

the conventional deterministic linear quadratic optimal control.
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Fig. 1. Non chaotic coupled map lattice with, L = 5, a = 3, and ϵ = 0.33: (a) Evolution of states. (b) Control efforts. (c)

Control Gain. (d) Eigenvalues of the asymptotic stability matrix.

B. Chaotic Map Lattice

Generally chaotic systems are more difficult to synchronize than non–chaotic systems. For the

coupled map lattice defined in Equation (5) chaos can be obtained when 3.5 < a ≤ 4. In this

section we show the control result in this chaotic regime by taking a = 4 and ϵ = 0.25. The



length of the lattice is taken to be 10, L = 10, and the covariance matrix of the controller is

assumed to be Γ = 0.01I2×2.

The probabilistic model of the lattice is estimated using GLNN and a global diagonal covari-

ance matrix Σ = [0.00094, 0.0017, 0.00109, 0.00089, 0.0008, 0.00097, 0.00104, 0.00092, 0.0011,

0.00101]. Using this matrix the rank of the asymptotic stability matrix, rank(AS[((Σ−1)1/2)T , A])

is found to be 10, hence satisfying Assumption1. This is further verified by finding the eigen-

values, λk of the matrix (A + BC) which all are found to be inside the unit circle as can be

seen from Figure 2(d). Figures 2(a) and (b) confirm the result obtained for the non-chaotic map

lattice. The designed probabilistic control approach is capable of globally synchronizing the

stochastic network. The solution to the control matrix C is shown in Figure 2(c). The result is

again consistent with what is obtained for the non-chaotic example.
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Fig. 2. Chaotic coupled map lattice with, L = 10, a = 4, and ϵ = 0.25: (a) Evolution of states. (b) Control efforts. (c) Control

Gain. (d) Eigenvalues of the asymptotic stability matrix.



VIII. CONCLUSION

In this paper pinning synchronization of a stochastic class of complex dynamical coupled

map lattice with spatiotemporal chaos network has been investigated in detail. We have proven

that a probabilistic adaptive control approach can be successfully used to globally synchronize a

network of complex stochastic systems in the presence of uncertainties and noise. We also have

defined the concept of stochastic pinning-controllability with the help of the covariance matrix

of the residual error of the lattice state. The theoretical findings presented was then validated on

two examples in the chaotic and non chaotic regimes of the network. Both examples confirm

the effectiveness of the proposed probabilistic control approach in globally synchronizing the

states of the network. Current work is addressing the analytical estimation of the bounds of

the maximum controllable length and the stochastic controllability of the non–stationary lattice

networks.
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