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Abstract: We investigate the energy optimization (minimization) for 
amplified links. We show that using the using a well-established analytic 
nonlinear signal-to-noise ratio noise model that for a simple amplifier 
model there are very clear, fiber independent, amplifier gains which 
minimize the total energy requirement. With a generalized amplifier model 
we establish the spacing for the optimum power per bit as well as the 
nonlinear limited optimum power. An amplifier spacing corresponding to 
13 dB gain is shown to be a suitable compromise for practical amplifiers 
operating at the optimum nonlinear power. 
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1. Introduction 

Optical links are generally designed to carry the maximum data capacity for the longest 
distance at lowest cost. Key design parameters available to planners are the signal powers and 
amplifier spacing. The specific performance achievable will in addition depend on parameters 
such as fibre loss, amplifier noise figure, nonlinear coefficient and modulation formats. Fibre 
nonlinearity limits the Shannon limited capacity and simple models of this ultimate limit have 
recently been derived [1, 2]. Advances in modulation format and FEC have allowed this limit 
to be approached in practical systems [3]. 

The optimum signal powers which allow the nonlinear limit for capacity to be reached are 
key results of these works. The majority of previous work sought to maximise the system 
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performance and optimised the signal power only in respect to performance [4–7]. We have 
recently shown [8] that contrastingly if the total optical power required for an entire system is 
considered the amplifier spacing which minimises this power may be identified, allowing 
systems to be designed with the lowest energy requirements. The underlying assumption is 
that the electrical power needed to operate an amplified optical link is directly related to the 
total optical power employed by the sum of the amplifiers. Previous work on optimum power 
[9] was restricted to the linear regime and showed that for a lossless amplifier the minimum 
power per bit is obtained with distributed amplification i.e. zero gain amplifiers. In this paper 
we review the results of [8] showing the impact of including nonlinearity on the optimum 
amplifier spacing. We further extend this work to provide a more generalised amplifier power 
consumption model and verify that a finite optimum amplifier spacing always exists, and 
provide concise prescriptions to provide bounds for this optimum. 

The results of the work here will be important both from a simple operating cost 
perspective as well as providing a significant contribution to the task of reducing energy in 
communication systems. In particular we will show that there is a very simple prescription for 
the optimum amplifier gain (and span length) to obtain the best power performance overall 
which is independent of the system parameters with the exception of loss. 

2. Initial analytical results 

In the following we will use the nonlinear noise model described in [2] which treats the 
impact of nonlinearity as a noise term proportional to the cube of the signal power and has 
been shown to be reliable for uncompensated coherently detected optical links. Here we 
consider a chain of N amplifiers with equal gain and express the signal-to-noise ratio (SNR) 
including the cubic nonlinear term. This SNR can be used to derive the channel capacity 
limit. The key results of this paper do not depend on the details of the modulation format 
employed and apply for any system where the nonlinear ‘noise’ term is proportional to the 
signal power cubed. We write the SNR as: 
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Where PS is the sum of the individual channel powers (W), Bamp represents the overall 
bandwidth of the system (Hz), G the amplifier gain (in the absence of excess loss G is given 
by eαL, where L is the span length and α the loss coefficient), Leff the nonlinear effective length 
of each span (m) and σASE, σNL are considered length independent parameters determining the 
strength of the amplified spontaneous (W/Hz) and nonlinear noise (./W2/s2/m) respectively. 
The key results detailed in this paper are independent of the actual values of σASE, σNL however 
in order to calculate achievable information spectral densities we have used a common form 
of the Gaussian Noise Model, assuming system bandwidths exceeding a few THz, a 
continuous spectrum and the incorporation of polarization effects into the nonlinear 
coefficient γ (./W/m), where these parameters are closely approximated by [2]: 
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where nsp is the spontaneous emission factor, ν the frequency (Hz), D the delay dispersion 
(s/m2) and α the loss coefficient (./m). However scaling these parameters to account for 
reduced bandwidth or spectral guard bands does not influence the final conclusion of this 
work. Equation (1) has a very simple optimum which occurs when the nonlinear term equals 
one half of the ASE term (the first term in the dominator of Eq. (1)). A simple analytic form 
for this optimum power has been derived [1, 2]. 

#213079 - $15.00 USD Received 13 Jun 2014; revised 31 Jul 2014; accepted 31 Jul 2014; published 8 Aug 2014
(C) 2014 OSA 11 August 2014 | Vol. 22,  No. 16 | DOI:10.1364/OE.22.01914119810 | OPTICS EXPRESS  19811



 
( )

33
1

2 2
opt ASE ASE

amp eff NL NL

P G G

B L

σ α σ
σ σ

−
= ≅  (3) 

where the approximation is valid for large G. In order to investigate the total power used in a 
system consisting of a chain of N (identical) amplifiers we now rewrite Eq. (1) in terms of the 
total (optical) power PT (at fixed span length L) 
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 T SP NP=  (5) 
We can consider the total power added, Padd-T, by the amplifiers by considering internal 

loss coefficients Λin and Λout at the input and output to the amplifiers respectively. In this case 
the generalized version of Eq. (5) is: 
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 Λ
= − Λ 

 (6) 

 

Fig. 1. Spectral density against total optical launch power for a fixed 3000 km system with a 
5.THz bandwidth, channels spaced at 50 GHz, a fiber loss of 0.2 dB/km, nonlinear coefficient 
of 1.4 /W/km, dispersion coefficient of 20 ps/nm/km and an amplifier noise figure of 4.7 dB. 
For a range of amplifier spans; 180 (dark blue dotted line), 150, 120, 90, 60 (blue dashed line), 
30, 20, 15, 10, 5, and 1 (solid red line) km, and showing the locus of ISD for operation at the 
nonlinear threshold as the amplifier spacing is varied (thick black line). 

In the following, to fully illustrate the implications of total power optimization, we will 
consider an example dual polarization system with system and fiber parameters (unless 
otherwise stated): dispersion 20 ps/nm/km, loss 0.046 /km (0.2 dB/km), nonlinearity 
1.4/W/km (taking into account polarization effects), system length 3000 km. But the results 
may be generalized to all current calculations of nonlinear capacity [2]. 

We will first consider the total power as the sum of the amplifier output powers 
(equivalent to considering Λin = 1 and Λout = 1 in Eq. (6)). In this limit we assume the relevant 
optical power which scales the required electrical power is the output power of the amplifiers. 
Whilst this is a limit which is accurate for significant amplifier gains it is not accurate for 
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very small amplifier gain (i.e. as the linear gain approaches unity) but we will show that this 
model leads to very simple, interesting and useful results. 

Figure 1 shows the result of using Eq. (4) to generate the information spectral density 
(ISD) plotted against the sum of the amplifier output powers for a range of amplifier spacing. 
The black line in the plot follows the peak of the curves, often referred to as the nonlinear 
threshold of the system and which may be readily calculated using Eqs. (3) and (4). This line 
has a clear turning point which shows that the total optical power employed by the system has 
a minimum. The figure illustrates that as the amplifier spacing is decreased the peak ISD also 
increases whilst the total power decreases down to a spacing of about 60 km after which the 
power increases. Alternatively rather than operate the system at the nonlinear threshold an 
amplifier spacing may be selected to minimize the required total launch power for a specified 
target ISD. For a wide range of ISD values, the minimum required total power under this 
strategy is indicated the green line which corresponds to an amplifier spacing of much less 
than 60 km but shows only marginal improvement over the ISD obtained with the ~60 km 
spacing. Note also that these graphs illustrate that after the turning point of the black line the 
line is almost flat with a log power dependence indicating that a very large increase in power 
is needed to obtain the small increase in capacity offered by very short spans. 

3. General analytical results 

In the below we derive some important and simple analytical results under the assumption of 
large amplifier loss considering only the optical output powers of the amplifiers in the chain. 
We will consider two approaches to calculate the minimum total signal power. The first 
corresponds to the conventional model of system operation, namely to operate at the 
nonlinear limited threshold of the system. Mathematically this is equivalent to taking the 
optical power given by Eq. (3) and finding the span length for which this is minimized by 
solving 0TP L∂ ∂ = . After some simple algebraic manipulation, this can be shown to give the 
following expression for the amplifier span 

 
3

aL
α

=  (7) 

This is a remarkably simple expression which is independent of the system parameters and 
the majority of the fiber parameters (dispersion, nonlinearity etc.). Indeed in terms of gain, 
this gives a universal optimum gain of 13 dB (or expressed linearly; e3) to ensure the 
minimum power consumption when the system is operated at the nonlinear threshold, as 
given by Eq. (3). This is not the global minimum power which, of course, will depend on the 
desired SNR. But this gain is at the point where increasing the amplifier spacing not only 
reduces the SNR but also increases the total required system power i.e. this is the turning 
point illustrated in Fig. 1. Thus it is desirable for both performance and power reasons not to 
exceed this amplifier span length which is 65 km for a routinely encountered loss of 0.2 
dB/km 

We will turn our attention to the more global case and optimize Eq. (4) with respect to 
amplifier gain. As will become clear later the minimum required total signal power is 
obtained through the solution of 0TP L∂ ∂ =  directly (without first insisting on operation at 
the nonlinear threshold of Eq. (3)). There is no direct analytical solution to the equation which 
results from rearranging Eq. (4) and taking the differential, however, by differentiating Eq. 
(4) with respect to length, and asserting the conditions that firstly this differential should be 
zero and secondly by selecting the solution which also requires that 0TP L∂ ∂ =  this process 
may be shown to correspond to finding the solution of: 
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Again, there is no exact general solution to Eq. (8) but it does have a very simple asymptotic 
solution when we take the limit towards zero power (and of course zero SNR). 

 
( )22 2 /
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=  (9) 

where W(.) represents the Lambert W function, the inverse function for f(W) = WeW. For span 
lengths below Lb the minimum required total power only increases. There is an obvious 
similarity between Eqs. (7) and (9) in that both indicate a universal optimum span length only 
dependent on loss, and in consequence a universal amplifier gain. Ignoring the correction 
factor W(.) the difference in optimum linear gains is simply e, and including it the difference 
increases to 6 dB. Note that in practice, the impact of nonlinearity is to reduce Lb slightly. 

4. Exemplar graphical results 

We will now plot Eq. (4) and results (5) to (9) on a single graph shown in Fig. 2. 

 

Fig. 2. Achievable ISD (contours) as a function of total amplifier output optical power vs 
amplifier spacing with dispersion 20 ps/nm/km, loss 0.046 /km (0.2 dB/km), nonlinearity 
1.4/W/km and a system length of 3000 km. Blue dotted line is the optimum nonlinear capacity 
for a given amplifier span. The red line is the minimum total power for a specific capacity. 

The figure shows contours of nonlinear Shannon capacity for a polarization multiplexed 
system (2 Log2(1 + SNRT)) in the (amplifier spacing, total power) space typically used by 
system designers (also shown is the amplifier gain which is useful for the fiber independent 
interpretation). The blue dotted line is the optimum capacity against amplifier span. It runs 
along the SNR contour ridge and diverges as the amplifier spacing tends to zero. This shows 
that, although the vanishingly small amplifier spacing will give the maximum performance, 
the overall power requirement tends to infinity. 

The solid red line in Fig. 2 highlights the minimum total power for a given SNR i.e. the 
solution to Eq. (8). This power is always below that of the blue dotted line and intercepts the 
x-axis at a spacing given by Eq. (9). A simple illustration will show how to use Fig. 2 and 
what potential energy savings are available. The black square is the optimum possible 
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capacity with 100 km span length. The open blue circle is the point with the same capacity, 
but at the spacing given by Eq. (5). There is a substantial reduction in power (69%) whilst 
retaining the same performance. Thus the desired capacity could have been achieved with less 
than half the power if the amplifier spacing had been reduced from 100 to 65 km. A reduction 
is almost as large (46%) going from 80 to 65 km can also been seen. For the 100 km case a 
further power reduction of ~28% can be achieved by continuing on the contour to intercept 
the red line which for the optimum value to match the 100 km capacity (34.5 km) is almost 
indistinguishable from the asymptotic value in Eq. (9) i.e. 34.6 km. 

5. Extension to generalized amplifier model 

All of the above is based on a model where the sum of the output powers of the amplifiers 
was taken as the appropriate quantity for optimizing (minimizing) the required system power. 
Now we extend the work to include the model given by Eq. (6) for the power added, Padd-T, 
by the amplifier. This is an important consideration for amplifiers operating close to the 
optima discussed here, since the input power represents small but observable fraction of the 
output power, and the coupling losses a small but observable fraction of the total loss. Now 
we will repeat the calculations above but varying Λin and Λout (note these are linear losses with 
zero loss represented by 1 and infinite loss, 0). Using Eq. (6) for the power leads only to a 
simple analytical results for operation at the nonlinear threshold, and for the minimum total 
power solution we will have to content ourselves with simply providing graphical results in 
what follows. By combining Eq. (6) and Eq. (4) the deliverable signal to noise ratio becomes: 
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Figure 3 shows a contour plots for two cases; the ideal case, with no insertion losses, and 
a more practical case with around 1.5 dB loss at the amplifier input and 1.5 dB loss at the 
output i.e. Λin = 0.7 and Λout = 0.7 . The left hand (3a) plot, calculated for negligible input and 
output losses, corresponds to the case considered in [9]. However if coupling losses are 
neglected the lowest overall output power strategy suggests that distributed amplification 
represents the minimum power consumption, consistent to [9], although we find that an 
optimum amplifier spacing for a system operated at the nonlinear threshold (46.7 km) still 
remains. The first conclusion is clearly unphysical, as common sense suggests that there must 
be some energy penalty for the infinite number of pump couplers associated with 
infinitesimally short amplifier spacing. The optimum associated with the nonlinear threshold 
occurs due to the increasing impact of nonlinearity for amplifiers spaced below the fiber 
effective length. Including practical insertion losses resolves the unphysical issues for the 
shortest amplifier spacing, and has the consequence of transforming the achievable ISD plot 
to one very similar to Fig. 2 showing essentially the same features. Widening the range of 
amplifier spacings for which Eq. (6) is a good approximation and we find that the optimum 
amplifier spacing for systems operated at the nonlinear threshold is 59.3 km, close to the total 
output power result. The asymptotic minimum power corresponds to an amplifier spacing of 
28.3 km for this choice of input and output losses. 
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Fig. 3. Achievable ISD (contours) as a function of total added optical power and amplifier 
spacing with a dispersion 20 ps/nm/km, loss 0.046 /km (0.2 dB/km), nonlinearity 1.1/W/km 
and a system length of 6,000 km. The insertion loss of each amplifier is 0 dB (a) and 3 dB (b) 
equally distributed between the amplifier input and output. 

As explained above we have two ‘optimum operating scenarios’. The first is to operate 
with the amplifier spacing which has the minimum total system power where the amplifiers 
are adjusted to their appropriate nonlinear thresholds. The second is simply the minimum 
power per bit for the system. Figure 4 shows the amplifier spacing for these two limits as a 
function of Λin (in dB) for various values of Λout (in dB). 

 

Fig. 4. Optimum amplifier spacing versus insertion loss of all components at the amplifier 
input for a fiber with 0.2 dB/km loss, assuming operation at the nonlinear threshold (blue 
curves) and the minimum possible added signal power (red curves). Lines represent; thin solid 
– 0 dB output loss, short dashed – 1 dB, medium dash – 2 dB and long dashed - 3 dB output 
losses. Thick solid lines represent analytical approximations based on total output power (Eqs. 
(7) and (9) respectively). Note that the amplifier population inversion (nsp) rather than effective 
black-box noise figure is held constant in this plot. 

The first point to note is that for the lossless amplifier Λin = Λout = 1 (0dB) the minimum 
spacing for the optimum power per bit is zero which is the result given in [9]. However for 
the nonlinear optimum even for the perfect amplifier the optimum spacing is finite and equal 
to 46.7 km for a fiber loss of 0.2 dB/km. In both cases, as the insertion losses increase, the 
optimum amplifier spacing asymptotically approaches the simple values expressed in Eqs. (7) 
and (9), suggesting that the simple 13 dB (or 63 km) amplifier is a good target for a 
nonlinearly limited system with a practical amplifier. Indeed, we can find no scenario where it 
is energy efficient to utilize a net amplifier gain in excess of the value predicted by Eq. (7). 
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The importance of the nonlinear threshold limit is that having installed a system with a 
chosen length it is almost inevitable that this would be used up to its limit defined by the 
nonlinearity. Therefore this limit would be used regardless of any other intentions. 

It is interesting to note that whilst the optimum amplifier spacing for operation at the 
nonlinear threshold (minimum total power) for conventional fiber is 65 (35) km, for ultra-low 
loss fiber with a loss coefficient of 0.149 dB/km [10], this increases to ~90 (48) km, in line 
with current network deployments. Of course, optimization based on the functional power 
requirements as described here tells only part of the story, with overheads associated with 
control and management also contributing to the total power consumption [9], and hence 
optimization as described here. We note however that since their first introduction in the 
1990s [11], a wide range of power overheads have been associated with optical amplifiers 
ranging from zero [11] to several Watts per amplifier. If such excess power exists, the total 
electrical power consumption is given by: 

 
1s in

elect overhead
out

P
P N P

Gη
  Λ

= − +   Λ  
 (11) 

where Poverhead is the power overhead per amplifier and η the overall power conversion 
efficiency of the amplifier including cooling, insertion losses and all appropriate conversion 
efficiencies (typically η ~0.1). The equivalent SNR ratio equation is straightforward to 
calculate, but as the range of possible overheads is immense we leave the details of this 
exercise to the reader, noting however that the result will be to push the optimum towards 
slightly longer amplifier spacing, and that both the importance of this correction and the 
excess power consumption associated with control and management may be readily judged 
from Eq. (11). 

6. Conclusions 

The simple model presented here produces some very clear and widely applicable results on 
the power minimization of amplified fiber links. In particular we have shown that there are 
high potential savings in energy demands for optically amplified links which can be obtained 
by the appropriate selection the amplifier spacing (and associated output power). This spacing 
is generally significantly less than the current designs. We observe that a span length 
requiring a 13 dB gain will give, universally, most of the benefit. But even shorter amplifier 
spans will give further benefit. 

Of course the savings identified here are for power or equivalently operational costs. 
Increased amplifier count would contribute to the capital costs. The 13 dB optimum gain may 
seem low compared with currently operating land based systems, however, for advanced 
fibers with losses of 0.16 dB/km the spacing returns to the standard 80 km. Note that in this 
respect, if new fibers are to be deployed, loss is the only parameter which has any impact on 
the optimum amplifier spacing and for this any many other reasons, loss remains the key fiber 
parameter on which to concentrate. 
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