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Abstract: This review offers new perspectives on the subject and highlights an area in need
of further research. It includes an analysis of current scientific literature mainly covering
the last decade and examines the trends in the development of electronic, acoustic and
optical-fiber humidity sensors over this period. The major findings indicate that a new
generation of sensor technology based on optical fibers is emerging. The current trends
suggest that electronic humidity sensors could soon be replaced by sensors that are based on
photonic structures. Recent scientific advances are expected to allow dedicated systems to
avoid the relatively high price of interrogation modules that is currently a major disadvantage
of fiber-based sensors.
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1. Introduction

Water is the most essential chemical compound for humans on the Earth. Life, as we know it, is
impossible without water. More than 70% of the surface of our planet is covered by water. Water is
present everywhere, in air, in soil, in rocks, in plants and an animals. In air or in other gasses water can
exist in two different forms. The term moisture refers to water in liquid form that is suspended in air or
gas in form of small droplets. The term humidity refers to the concentration of water vapor in air, where
the water is in a gaseous phase.
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Humidity is a physical quantity that has significant importance in a number of areas ranging from
life sciences [1,2] to building automation [3]. Hence humidity control, sensing and monitoring is
important in a number of areas. Fast humidity sensors are required for the diagnosis of pulmonary
diseases [4] and for mapping the human respiratory system [5] by monitoring the water vapor content of
exhaled breath. For meteorological applications [6] sensing of humidity is important as it indicates the
likelihood of precipitation, dew or fog. In the semiconductor industry, the performance of photo-resist
is critically dependent on the humidity. In the electronics industry, humidity monitoring is important as
electronic items may malfunction due to high humidity. Furthermore, humidity control is essential in
some buildings where humidity sensitive materials are stored such as museums, archives, warehouses.
For human comfort and to maintain the quality of a number of food products, it is important to control
humidity levels inside buildings, cars, shops and other places. Many different types of humidity sensors
are needed to cover all the previously mentioned applications. As a consequence, a wide range of sensor
types (see Figure 1) has been proposed for humidity measurements.

In Figure 1, humidity sensors have been organized into three groups. Electronic sensors are the most
common type of sensors today. This technology has a very long history and follows the first generation of
mechanical humidity sensors. These mechanical sensors were based mainly on change in the mechanical
properties of some materials. These materials were frequently of animal origin, for example, horse or
human hairs. These first mechanical sensors, which were slow and imprecise, were used throughout
human history until the second half of twentieth century. At that time, practically simultaneously with the
first electronic chips, the second generation of the humidity sensors has emerged. These were electronic
humidity sensors. Today, humidity sensing based on electronic sensors is the dominant technology.

Figure 1. Types of humidity sensors.

More recently, research has been carried out on the use of acoustic waves to measure humidity. So far,
this research has not led to the development of new sensors and little research is currently being reported
in this area in comparison with other humidity sensing areas. However, a third generation of sensors
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has now emerged with the development of fiber technologies. These sensors, which are mainly based
on interferometric techniques, are faster and more robust than the electronic ones. This technology,
which has been developed over the past twenty years, is now making its first attempts to compete with
the well-established electronic one. Today, humidity sensors based on fiber interferometers still have a
relatively high cost in comparison with electronic ones. However the fiber sensors have some important
advantages. These sensors do not generate electrical sparks because the optical humidity sensors do not
use electricity in the sensor head. This allows the use of optical humidity sensors in chemical industry,
where flammable solvents are frequently employed.

A comparison between response time of different types of humidity sensors is illustrated in Figure 2.
The acoustic sensors (red color) are slowest group. The second group (green color) are experimental and
commercially available electronic sensors. Finally, the blue color illustrates the performance of optical
humidity sensors. The fastest sensors, which are depicted on the left side of Figure 2, are interferometric
sensors and have a response time of less than one second. These sensors are based on photonic crystal
fibers and use poly-vinyl-alcohol as the hydrophilic material.

Figure 2. Response times of different types of humidity sensors.

Current research draws attention to the fact that important technological advances have been
made during the last ten years in all competing branches of humidity sensing technologies. A new
generation of nano-technology based humidity sensors, complimentary metal oxide semiconductor
micro-electro-mechanical system (CMOS-MEMS) humidity sensors have been investigated and
demonstrated [7]. These sensors have an extremely fast response time in comparison with the electronic
sensors that prevail in the market. The main advantages of these devices are their simplicity and the
availability of low cost interrogation modules. However, the sensitive head of these sensors is expensive
to produce in small quantities. Another kind of optical humidity sensor, which is based on nano-capillary
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interferometer [8–11] has been widely investigated in scientific literature. This sensor has a very simple
and cheap sensing element. The manufacturing of these elements does not require a large investment in
machinery, allowing on demand production. One purpose of this article is to examine the most current
research in the area of humidity sensing. This review offers new perspectives and highlights an area in
need of further research. Moreover, the report includes a review of recent scientific literature mainly
covering the last ten years. The second section of the article is devoted to a review of the latest advances
in the field of electronic humidity sensing. Progress in the field of acoustic humidity sensing is examined
in the next section. Finally, in the forth section, the state-of-art in optical humidity sensing is described.
The major findings indicate that a new generation of humidity sensing technology based on optical fibers
is emerging.

2. Electronic Humidity Sensors

This section discusses the main characteristics of state-of-the-art electronic sensors for humidity
detection and recent research in this area. Today these sensors are the dominant technology on the
world-wide market. They detect humidity by measuring changes in the electrical characteristics of a
humidity-sensitive thin film. The relatively simple design and low price of the interrogation module
are the two main advantages of electronic sensors. On the other side of the coin their disadvantages
are: the need for regular calibration; the difficulty in measuring relative humidity below 5% level;
poor linearity and relatively long response time, which typically is of several tenth of seconds or even
minutes. Moreover, the use of electronic humidity sensors in certain critical environments, remote places,
potentially explosive atmospheres and areas with high electromagnetic interference is either difficult or
some times impossible.

Research over the past ten years has been largely aimed at improving these characteristics and this
will be discussed in the remainder of this section. In the electronic sensors, water vapor is absorbed
into some hydrophilic layer and this changes the impedance of the device. Contacts are applied to
the layer to measure this change. Commercially available humidity sensors are briefly reviewed in the
first subsection. In the following subsections, the detectors will be classified by whether changes are
measured in the capacitance or the resistance of the sensor. The second subsection is dedicated to a
description of the experimental advances in the field of capacitative humidity sensors. Finally, humidity
sensors that are based on resistivity changes are illustrated in the last subsection.

2.1. Commercially Available Humidity Sensors

Electronic humidity sensors, which are typically available for less than $10, are the most commonly
available low cost sensors today. Despite the low cost, these devices are quite sophisticated. Most of
these sensors can be connected directly to a microprocessor without requiring an external amplifier
or digitizer. The integration of a temperature sensor allows the measured data to be corrected for
temperature variations. In addition, an external microprocessor can calculate both the dew point and
the concentration of water vapor. However, these commercial devices fall short of requirements in some
areas as is listed below:
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• too long response time in some applications

• a poor accuracy, which is close to ±2%, especially at low and high humidity

• wide hysteresis and poor linearity

• insufficient temperature operational range and bad long term stability.

The response time of these sensors is typically in the range 5–60 s. Although this is adequate for
many applications, it is too long in some other areas such as for a breathing sensor. The accuracy is
limited to a few percent RH and is worse in the extreme ranges of 0%–10% RH and 90%–100% RH.
The devices have hysteresis, in other words the detector output for a given humidity depends on whether
the humidity is increasing or decreasing. The maximum width of this hysteresis is typically a few
percent RH. The maximum operating temperature is in the range 80–120 ◦C which is not high enough
for some industrial drying applications. Finally, if the temperature of a humidity sensor drops below the
dew point, condensation will prevent it operating until the temperature of the sensor has been increased
for long enough for the water to evaporate. This is a common problem with humidity sensors. Some
examples of performance of commercially available sensors are summarized in Table 1.

Table 1. Performance of commercial electronic humidity sensors.

Sensor Type Response, s Range, %RH Hysteresis, %

Inc Dec min max

SHT15 Polymer C 8 8 0 100 2
DHT22 C NA NA 0 100 2
HR202 R 10 10 20 95 1
DHT11 R 10 10 20 90 4

HMT330 1 Electronic 8 17 0 100 1
HMT330 2 Electronic 20 50 0 100 1
HMT330 3 Electronic 40 60 0 100 1

HC2-C Electronic 15 NA 0 100 NA
Fluke 971 Electronic 60 NA 5 95 NA

1 With grid filter; 2 With steel netting filter; 3 With sintered filter.

2.2. Capacitive Humidity Sensors

Capacitive sensors are typically produced by depositing a thin layer of a sensitive material on to
closely spaced electrodes. Sometimes, these electrodes take the form of two interdigitated comb
structures to increase the capacitance. This allows water vapor to interact with the top surface of the
sensitive layer. Moreover, the interdigitated electrodes are simpler to produce using photolithography
than a structure with electrodes on both sides. Capacitive sensors have the advantages of low power
requirements and a high output signal. Clearly, the performance of a capacitive sensor will depend
critically on the sensitive layer used. Table 2 lists the properties of capacitance sensors using different
sensitive layers.
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The trend to minimize the size of electronic devices reveals itself in the research and design of new
humidity sensors [12,13]. Recently a new generation of electronic sensors based on CMOS-MEMS [7],
nano-technology [14–18] and capacitive [19] technology has been reported in the scientific literature.
These new sensors are based on nano-structured TiO2 thin films and have a reaction time which is
approximately ten times shorter [19] than the devices that are widely used today. Figure 3 shows a
nano-structured thin TiO2 film that was deposited using glancing angle deposition (GLAD).

Table 2. Performance of capacitative humidity sensors.

Sensor Type Response, s Range, %RH Hysteresis, % Ref.

Inc Dec min max

Composite (PEPC + NiPc + Cu2O) C 13 15 40 100 13 [20]
Graphene oxide film C 10.5 41 15 95 5 [21]

MWCNTs C 45 15 11 97 NA [22]
Polyimide film C 1 1 30 90 2 [23]

3 µm polyimide film on parylene on silicon C 1 1 30 90 2 [24]
Polyimide film C 1.7 2.3 30 100 NA [25]
Polyimide film C NA NA 50 90 NA [26]

Standard CMOS polymer film C 70 70 10 95 5.5 [27]
Standard CMOS polymer film C 70 70 10 95 3.1 [28]

Polypyrrole C NA NA 25 95 small [29]
Mesoporous silica C NA NA 0 50 NA [30]

Capacitive-dependent crystal C 0.1 0.1 20 98 0.3 [12,13]

Figure 3. Cross-sectional SEM images of the thin TiO2 films deposited at different
flux angles. (a) α = 60◦; (b) α = 70◦; (c) α = 75◦; (d) α = 80◦, reproduced from [31]
with permission.
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Porous inorganic materials, such as porous silicon, have been investigated however organic materials
have the potential for significantly lower cost. These can be prepared by low cost techniques
such as spin coating, drop casting, dip coating or spray coating. Nickel phthalocynine (NiPc) and
poly-N-epoxy-propyl-carbazole (PEPC) have been found to be sensitive to humidity. Ahmad et al. [20]
have investigated the performance of mixtures of these compounds with copper oxide. The addition of
copper oxide will increase the surface roughness to produce a larger surface area and has the potential
to produce a greater sensitivity and reduced response time. Using this technique three times greater
sensitivity was obtained however this material was only suitable for an operating range above 40% RH.

Graphene oxide is an interesting material for achieving a high sensitivity and fast response time due
to its single layer nature and hydrophilic surface. Bi et al. [21] have investigated the use of these films
as a humidity sensor. They improved the sensitivity by a factor of ten compared with conventional
capacitance sensors and their sensor had a reasonable response time of 10.5 s for increasing humidity
although this increased to 41 s for reducing humidity. The variation of the impedance of these structures
with frequency was complicated and the devices only operated over a range of 15%–95% RH.

Multi-wall carbon nano-tubes (MWCNTs) [22] where the tube diameter varies are of interest
for improving the performance of humidity sensors at low humidity due to capillary condensation.
This is an effect where condensation can occur in thin capillaries at significantly below the saturation
vapor concentration. The radius r required for condensation at a vapor pressure p is given by the
Kelvin equation:

r = −2γVLcos(Θ)

RTln( p
p0

)
(1)

where γ is the surface tension, VL is the molar volume, Θ is the contact angle, R is the gas constant,
T is the temperature, p0 is the saturation vapor pressure and p

p0
is the relative humidity. The Kelvin

radius r typically has a value of a few nanometers and increases as the RH increases. This allows more
nanotubes to become filled with water. A sensor based on this principle was proposed by Chen et al. [22].
The sensor has improved sensitivity at low levels of humidity in comparison with a standard sensor
without MWCNTs.

The relatively slow response of standard humidity sensors is a disadvantage in applications involving
transient humidity changes such as in industrial process control and for monitoring atmospheric
humidity. Kang and Wise [23] have developed a faster sensor based on polyimide that has a response
time of around 1 s. Their design was based on an analysis of the diffusion into the sensor material. By
etching the sensitive material into an array of pillars, they find that the increased surface area reduces the
diffusion time by a factor of ten. By using pillars with diameters of 15, 10 and 5 µm the response time was
reduced to 6.9, 1.9 and 1.0 s respectively. A second feature of their design was to include an integrated
poly-silicon heater and temperature sensor. This was used to prevent the temperature dropping below
the dew point to maintain a short time of response and also to measure high humidity without having the
sensor exposed to it. Using the heater, the relative humidity was calculated using the formula [23]:

RHT=T1=
p0(T2)

p0(T1)
RHT=T2 (2)

where T1 and T1 are the temperatures before and after heating and p0(T ) is the saturation pressure at a
temperature T .
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For a low-cost device, there is considerable advantage if the sensor material is compatible with
silicon processing. Thin organic films fall into this category and several papers have described sensors
compatible with MEMS [25,26] or CMOS [27,28] technology. The CMOS used top level metal and a
standard passivation layer as the sensor. A self-calibration circuit was added to simplify the operation.
MEMS technology allows multiple sensors (for temperature, humidity, pressure, wind speed and wind
direction) to be integrated on a single chip.

2.3. Resistive Humidity Sensors

As with capacitive sensors, recent research on resistive sensors has been aimed at improving their
sensitivity, response time, linearity and hysteresis characteristics.The characteristics of some recently
reported resistive humidity sensors are listed in Table 3. Arshaka et al. have investigated the use of
thermally deposited In2O3 [32] and sintered pastes of MnZn ferrite [33] and achieved low hysteresis and
good linearity.

Kuang et al. [34] have investigated the properties of a single SnO2 nano-wire as a resistive humidity
sensor. The use of a single nano-wire will lead to a very small sensor and may lead to a faster response
time. The growth process resulted in a high concentration of oxygen vacancies leading to the surface of
the nano-wire being very sensitive to oxygen and water vapor in the air. Characterization of this device
showed a reproducible linear response with response and recovery times in the range 120–170 s and
20–60 s respectively. Lee [35] has researched the properties of nano-structured carbon nitride CNx films
deposited by radio-frequency (RF) sputtering. The CNx bonds are expected to react reversibly with
hydrogen and hydroxyl groups to generate a hydrophilic surface which can absorb and release water
molecules. The resulting layers were found to have a reasonably linear response with a hysteresis which
depended strongly on the substrate used. This was due to the formation of ink bottle shaped defects
which trap water in the interior.

Table 3. Performance of resistive humidity sensors.

Sensor Type Response, s Range, %RH Hysteresis, % Ref.

Inc Dec min max

In2O3/SiO R NA NA 40 90 NA [32]
MnZn Ferrite R 17 25 30 90 0.97 [33]

Fe-Al-polyaniline on CMOS R NA NA 32 55 NA [36]
SnO2 nanowire R 120–170 20–60 5 85 NA [34]

CNx deposited by RF sputtering R 150 175 5 95 3 [35]
Sulfonated Polycarbonate R NA NA 11 90 4 [37]

Polyaniline/PVA R NA NA 25 85 NA [38]
MWCNT/polyimide composite film R NA NA 10 95 NA [17]

Polyimide films have been successfully used as capacitive humidity sensors however they have also
been considered for use as resistive humidity sensors. Although the resistance of these devices is very
sensitive to humidity, with the resistance changing by many orders of magnitude, they are not ideal
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humidity sensors due to their variability (requiring calibration), highly non-linear response and poor
response at low humidity. Yoo et al. [17] have investigated a sensor that was manufactured by adding
plasma-treated MWCNs to the polyimide film to improve its performance. As the doping level was
increased, the resistance of the films remained very high until the density exceeded the percolation
threshold of 0.05% where the resistance dropped rapidly. At sufficiently high concentrations, the
resistance is governed by transport of electrons through the continuous paths, which the nano-tubes
form. Increasing the humidity is found to increase the resistance due to a combination of charge
transfer between the MWCNs and the water molecules, which reduces the mobile carrier concentration
in MWCNs, and increased pressure due to swelling of the polyimide. For a nano-tube concentration of
0.4%, this leads to a highly linear variation of resistance with humidity.

The extremely small size of these sensors drastically improves characteristics. The typical design of
p-MWCNT/PI composite sensor is shown on Figure 4. Standard silicon micromachining was used to
produce a thin film suspended over a silicon substrate. One major advantage of these sensors is their
high linearity over the entire operational range. These sensors exhibit a sensitivity of 0.0047% RH.

Figure 4. (a) Scanning electron microscope (SEM) image of active layer; and (b) schematic
view of the resistive-type RH sensors based on p-MWCNT-PI composite film, reproduced
from [17] with permission.

3. Acoustic Humidity Sensors

In this section humidity sensors based on acoustic wave technology are reviewed. Acoustic methods
of humidity measurements can be classified as mechanical methods. This measurement technique is
based on the variation of mechanical properties of a hydrophilic material when water molecules are
absorbed on to it. Existing methods of humidity measurement are based on surface acoustic waves
(SAW), the change in the resonance frequency of a quartz crystal microbalance (QCM), quartz tuning
forks (QTF) and on bulk acoustic waves (BAW) technology. The change in frequency of the acoustic
resonance is typically used for detecting the change of material density that occurs because of absorption
of water vapor from the surrounding atmosphere [39,40]. The change of density of the hydrophilic
material changes the resonance frequency. This frequency shift has been theoretically analyzed by
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Sauerbrey [41]. The Sauerbrey equation gives the frequency shift of a quartz oscillator due to absorption
of a small mass ∆m of water:

∆f = − 2f 2

A
√
µρ

∆m (3)

where f is resonant frequency of the circuit, ∆f is the frequency change, ∆m is change of mass due to
vapor absorption, A is the area of active crystal, ρ is quartz density (ρ = 2.648 g/cm3) and µ is Shear
modulus of quartz for AT-cut crystal (µ = 2.947 × 1011 g/cm·s2).

This section is organized as follows: in the first subsection we provide a review of most relevant
achievements in the branch of SAW sensors, the second subsection describes the state-of-art in the sector
of quartz crystal microbalance humidity sensors. Although, there are not many publications devoted to
investigating of BAW and QTF humidity sensors we have included a short description of advances in
this area in the third subsection. Moreover, we have gathered together the most relevant characteristics
of all these types of acoustic sensors in Tables 4 and 5.

Table 4. Performance of acoustic humidity sensors.

Sensor f Sensitivity Response PH (%) Ref.

(MHz) (ppm 7/%RH) Time (s) min max

MWCNT/Nafion nanofiber film 1 ∼500 885.2 10 10 80 [42]
APTS-P 1 [43] 433 15 10 10 100 [44]

PVA-coated dual resonator 1 ∼468 11–395 1,800 20 80 [45]
Cellulose acetate film 1 302 3.31 NA 10 80 [46]

Nafion layer 1 ∼302 2.75 ≤20 10 100 [47,48]
NPF-LSAW 1 60–110 0–6 6 0.25 10 90 [49]

Monodisperse mesoporous silica 1 10 250–720 10 10 100 [50]
Nanocrystalline Zn oxide 2 0.032 1.1597 ≤150 10 100 [51]
Fluorinated polyimides 3 5 2 300 15 85 [52]

Nano-tubes/Nafion composite 3 9 0.1123 5 100 23.4 5 3,030.5 4 [53]
Polypyrrole AgTiO2 nano-part. 3 10 0.0246 5 12 0 5 10,000 5 [54]

Nanofibrous membrane 3 5 0.1–10 80–150 20 95 [55]
ZnO nano-tetrapods 3 10 0–3.3 NA 30 90 [56]

Carbon nano-tube film 3 25 ≤4 60/70 8 5 97 [57]
ZnO nanostructure film 3 25 0.26 90/120 8 5 97 [58]

Nanostructured ZnO 3 10 ≤1 NA 20 90 [59]
ZnO on silicon base 4 35/86 400/16 ≤25 20 92 [60]

ZnO-FBAR 4 1,430 1.4 NA 25 85 [61]

1 SAW configuration; 2 Quartz tuning fork; 3 Quartz crystal microbalance humidity sensors; 4 Bulk humidity
sensors; 5 In Hz/ppmv; 6 dB/PH(%); 7 Parts per million; 8 Response/recovery time.
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Table 5. Linearity and hysteresis of acoustic humidity sensors.

Sensor Linearity Hysteresis 5 Ref.

MWCNT/Nafion nanofiber film 1 Linear between 10% and 75% ≤10% [42]
APTS-P 1 [43] Linear NA [44]

PVA-coated dual resonator SAW 1 Non linear NA [45]
Cellulose acetate film 1 Linear between 10% and 60% ≤7% [46]

Nafion layer 1 Linear between 10% and 60% ≤12% [47,48]
NPF-LSAW 1 Non linear NA [49]

Monodisperse mesoporous silica 1 Linear between 0% and 80% ≤5 [50]
Nanocrystalline Zn oxide 2 Linear between 40% and 100% NA [51]
Fluorinated polyimides 3 Non linear NA [52]

Carbon nano-tubes/Nafion composite 3 Linear NA [53]
Polypyrrole AgTiO2 nano-particles 3 Linear NA [54]

Nanofibrous membrane 3 Exponential between 20% and 95% NA [55]
ZnO nano-tetrapods 3 Non linear NA [56]

Carbon nano-tube film 3 Linear NA [57]
ZnO nanostructure film 3 Linear NA [58]

Nanostructured ZnO 3 Non linear NA [59]
ZnO on silicon base 4 Non linear NA [60]

ZnO-FBAR 4 Non linear NA [61]

1 SAW configuration; 2 Quartz tuning fork; 3 Quartz crystal microbalance humidity sensors; 4 Bulk humidity
sensors; 5 The width of hysteresis in relation to whole measured interval.

3.1. Surface Acoustic Waves Humidity Sensors

Generally, SAW sensors are based either on organic molecules or on polymers whose interactions with
the absorbed water molecules leads to a change in the velocity of surface waves. During the last decade
experimental efforts have been focused on improving the surface quality and testing new hydrophilic
materials. Various techniques such as drop coating [62], the Langmuir-Blodgett technique [63], spin
coating [64], coating using the method of fast expansion of a supercritical solution (RESS) [65],
electro-sprayed silicon-containing polyelectrolyte [66] and air-brush coating [67] have been considered
for the deposition of the active material. For the electro-spray coating process, Li [44] has examined
the influence of the polymer deposition rate and polymer solution concentration on the properties of the
humidity sensor.

The effect of droplet diameter on intrinsic acoustic losses in the sensor have been investigated by
Sarcar and co-workers [68]. Sarkar compared the coating film quality and performance of the sensor
that was coated using the AC electro-spray technique with similar ones that were coated using the DC
electro-spray technique, the air-brush and RESS. They concluded that much lower acoustic losses were
obtained using the DC electro-spray process due to the rapid evaporation of the nano-droplets.

Very fast SAW sensors based either on thin films of poly-vinyl-alcohol (PVA) or on thin
films of poly-vinyl-pyrrolidone (PVP) have been described by Buvailo [69]. These sensors show
response/recovery times 1.5/2.5 s respectively in the humidity interval of 5%–95%.
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3.2. Quartz Crystal Microbalance Humidity Sensors

These sensors tend to be quite slow in comparison with SAW sensors, with a response time of
hundreds of seconds and quite non-linear behavior. However, some interesting findings have recently
been published.

A hybrid sensor has been demonstrated by Shinbo [52]. This sensor was fabricated by depositing
either slab or ridge optical waveguides made of fluorinated polyimides on the quartz crystal
microbalance. Accurate discrimination of adsorbed chemical species has been successfully performed
by observing the change in the mass load and either the optical transmittance or optical spectrum.

Su and co-workers [53] have compared the behavior of a sensor using composite of nafion with
single-wall carbon nano-tubes (SWCNTs) with a sensor using multi-wall embedded carbon nano-tubes.
This sensor showed quasi-linear behavior and a recovery time close to 100 s. Novel low-humidity sensors
were fabricated in situ using photo-polymerization of polypyrrole nano-particles [54]. These sensors
showed good sensitivity at low humidity and an unusually short response time. The authors associated
this phenomenon with high local electrostatic charge of TiO2 nano-particles, which caused dissociation
of water molecules.

In [55] it was shown that the sensitivity of fibrous composite polyacrylic acid (PAA)/polyvinyl-alcohol
membranes was two times higher than the sensitivity of a corresponding flat film at 95% RH. The
membranes based on fibrous composite have the highest sensitivity because of their extremely high
surface area.

The use of zinc oxide has been investigated in [56,58,59]. These experiments have confirmed the
well known fact [50] that the thickness of the sensitive film needs to be optimized in order to achieve
the best possible performance. In addition, it was concluded that the structure of the zinc oxide film
was important for sensor performance. Films structured in the form of either nano-rods or nano-wires
showed slightly better performance than films structured in form of nano-tetrapods.

Finally, the hydrophilic potential of MWCNT [57] was investigated using measurements with QCM.
The sensor, operating in the range between 5% and 95% of RH, has the response/recovery times of
60 and 70 s respectively and exhibits linear behavior.

3.3. Bulk Acoustic Waves and Quartz Tuning Forks Humidity Sensors

The resonant frequency of these devices strongly depends on temperature and research aimed at
reducing the sensor temperature dependence is presented in [60]. This sensor takes advantage of
the coexistence of fundamental and higher order resonance modes in the interval 30–100 MHz. The
temperature dependence of the sensor has been successfully compensated in the range from 20% to 92%
RH over the temperature range from 25 to 70 ◦C.

Zhou et al. [51] have presented the application of QTF coated with nano-crystalline ZnO film as a
relative humidity sensor. Moreover, the interferences, which can be induced by either ethanol or acetone
vapors have been discussed. The results shown that the uniformity of the ZnO film is important for the
performance of the sensor.
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4. Optical Humidity Sensors

The intensive investigation of the potential of optical fiber sensors began in the middle of the
1980s, after the first optical fibers became commercially available. At that time, the technology for
electronic sensing was already well established. However, from the beginning, optical sensors have
been successfully employed for a range of specific applications which electronic sensors are unable to
perform. These include electromagnetic compatibility, multi-point measurements and the possibility of
remote interrogation. Additional advantages of fibre sensors include miniature size and small weight. All
these features make optical fibre sensors suitable for applications where electronic or acoustic ones are
either not recommended or inappropriate. For example, fibre sensors offer a solution for monitoring
parameters such as temperature and humidity inside microwave ovens. Optics sensors do not use
electricity and consequently they can be used for monitoring of inflammable liquids or gases because
of the absence of sparks. Fibre sensors are also a viable alternative in harsh environments such as those
with corrosive substances [70]. Some of these sensors are also chemically inert, which allow their use in
chemical reactors. Moreover, these sensors have been successfully used for monitoring historical objects
in remote places [71]. For these reasons the acceptance of fibre sensors in several industrial sectors is
growing steadily. Characteristics of some optical humidity sensors, which are commercially available
today are summarized in in Table 6.

Table 6. Performance of commercial optic humidity sensors.

Sensor Accuracy Response, s Range, %RH

min max

Nanosonic Inc. 6% at 20 ◦C 0.1 0 100
O-eland FBG-based 4.5% fast 10 100

The research on optical humidity sensors started about 25 years ago. During the last 20 years the
prices of fiber components have fallen and the quality of these components has been improved. The
available range of fiber based sensors has significantly increased and can replace traditional sensors in
many applications such as gyroscopes, tension and bending sensors, stress sensors, humidity and water
level sensors.

For humidity sensing, a range of different techniques and approaches have been proposed including
spectroscopy, change of reflectance of surfaces [72], evanescent wave interactions [73], Bragg and long
period gratings [74–78], interferometers [79], carbon nano-tubes [14] and more recently, photonic crystal
fibres [8,80]. Most fibre optic humidity sensors require a hygroscopic material, which is typically
deposited on a section or on the tip of the optical fibre [81]. Humidity changes the optical properties
of the material, which in turn, modifies a feature of the guided light giving rise to a detectable signal.
Bedoya [82] has discussed an interesting fiber-optic humidity sensor based on the optical properties of
indicator dyes.

In this section we will summarize the technological advancements that have recently emerged in the
branch of sensors based on optical fiber technology. In the first subsection the latest achievements in
the interferometric humidity sensing are reviewed. The second subsection is dedicated to the humidity
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sensors that are based on long period gratings. Advances in hybrid relative humidity sensors are
illustrated in the third section. Finally, in the fourth and the fifth subsections the progress in humidity
sensing based on evanescent-waves interactions and some other exotic humidity sensors are described.
The main features of some optical fibre-based humidity sensors are summarized in Tables 7 and 8.

Table 7. Performance of optic humidity sensors.

Sensor Sensitivity Response, s Range PH (%) Ref.

Inc Dec min max

ZnO nanoparticles in solgel 1 0.0103 dB/%RH 0.86 0.54 5 95 [83]
SiO2 Nanoparticles 1 0.3 dB/%RH 0.15 0.1 40 98 [84]
Silica xerogel film 1 7.9× 10−2 nm−1 ·%−1 10 120 4 100 [85]
Hollow core fiber 1 3.02 mV/1%RH 60 NA 0 90 [86]

Surface Plasmon Resonance 1 0.943 nm per RH% <0.5 NA 5 95 [87]
CoCl2 into a PVA composite 1 0.5 dB/%RH 120 NA 25 65 [88]

Di-ureasil coated FBG 2 22.2 pm/%RH 600 NA 15 95 [77]
Bent single mode optical fiber 2 <0.1 dB/%RH 0.05 NA 25 90 [89]

Gelatin film 2 <0.1 dB/%RH 0.07 NA 9 94 [90]
Polyimide-coated FBG 3 −0.000266 V/%RH 5 NA 11 98 [75]

PVA coated FBG 3 1.994 µW/%RH 2 NA 30 95 [91]
Tilted FBG with PVA 3 14.947 dBm/%RH 2 NA 20 98 [92]
Polyimide coated FBG 3 5.6 pm/%RH 2,700 NA 20 98 [93]

PVA 4 0.60 nm/%RH 3× 10−4 5× 10−4 30 90 [94]
FBG in a polymer fibre 35.2 pm/%RH 1,800 NA 50 95 [95]

Luminescent Ru(II) complex NA <90 NA 4 100 [82]
SiO2 nanospheres 5 0.2 nm/%RH <0.02 NA 20 80 [96]

1 Absorption measurements; 2 Evanescent wave; 3 Strain; 4 Interferometric; 5 LPFG.

4.1. Interferometric Humidity Sensors

Interferometric techniques are the most exact and fastest of all the existing optical methods of
measurement. Interferometric relative humidity sensing has been successfully tested in medicine [97]
to monitor human breathing. This application in particular is useful for the diagnosis and study of the
progression for such serious diseases as the sleep apnea syndrome. The most significant characteristics
of humidity sensors based on interferometric measurements are their relative simplicity, extremely
high sensitivity and short time of response. The main advantage of interferometric humidity sensing
is the absence of hydrophilic material that can be easily damaged when the sensor works in a harsh
environments [70]. The main disadvantage of these sensors is their low selectivity. This sort of sensors
measures the changes in the refractive index of the atmosphere next to the fibre, consequently they are
sensitive to a variety of contaminants. For this reason the interferometric techniques have sometimes
been complemented by the use of hydrophilic materials. Numerous research groups have investigated
diverse sensor architectures to improve sensor sensitivity and robustness.
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Table 8. Linearity and hysteresis of optic humidity sensors.

Sensor Linearity Hysteresis 6 Ref.

ZnO nanoparticles in solgel 1 Linear NA [83]
SiO2 Nanoparticles 1 Linear 40%–98% 0.25% [84]
Silica xerogel film 1 Linear 0%–60% NA [85]
Hollow core fiber 1 Linear NA [86]

Surface Plasmon Resonance 1 Linear NA [87]
CoCl2 into a PVA composite 1 Non linear <3% [88]

Di-ureasil coated FBG 2 Non linear NA [77]
Bent single mode optical fiber 2 Linear 25%–90% NA [89]

Gelatin film 2 Non linear NA [90]
Polyimide-coated FBG 3 Linear NA [75]

PVA coated FBG 3 Non linear <4% [91]
Tilted FBG with PVA 3 Linear 20%–80% <10% [92]
Polyimide coated FBG 3 Linear <5% [93]

PVA 4 Non linear 15% [94]
FBG in a polymer fibre Linear NA [95]

Luminescent Ru(II) complex Non linear 4% [82]
SiO2 nanospheres 5 Non linear NA [96]

1 Absorption measurements; 2 Evanescent wave; 3 Strain; 4 Interferometric; 5 long period fiber gratings (LPFG);
6 The width of hysteresis in relation to whole measured interval.

The sensor based on the fiber Sagnac interferometer was developed by Chen [98]. The hydrophilic
material called chitosan has been used in this sensor. Chitosan swells when the humidity is increased.
This was used to produce strain and changes the polarization properties of the fiber. This sensor was
compared with the sensor implemented in Fabry-Perot geometry using the same material [81]. The
sensor based on Fabry-Perot geometry showed an extremely short response time of 380 ms.

A miniature optical RH sensor based on a polymer infiltrated photonic crystal fiber was reported
by Mathew [99]. Experiments showed that the sensitivity of a sensor based on photonic crystal fiber
can be improved [100] by infiltrating the voids of the photonic crystal with a hydroscopic polymer.
At a later date, Wong [94] combined PVA, which is considered to be a very promising material for
humidity sensing, with the interferometric technique proposed by Mathew [100]. The sensor is illustrated
in Figure 5. The sensor with a 9% (w/w) coating achieved a sensitivity of 0.60 nm/% RH, exhibited
little hysteresis, high repeatability, low cross-sensitivity to temperature and ammonia gas and stable
performance during a seven day testing period. Moreover, the sensor showed short rise/fall times of
300/500 ms respectively.

Finally, Liang [101] investigated the combination of a PVA coating and loop mirror based on
polarization maintaining fiber. His experiments showed quite a narrow range of sensitivity between
20% and 85% RH.
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Figure 5. The sensor based on PVA coated photonic crystal interferometer, reproduced
from [94] with permission.

4.2. Humidity Sensors Based on Long Period Grating

This subsection will review research on humidity sensors based on long period fiber gratings (LPFG).
In this kind of sensor a LPFG is used to excite cladding modes [102]. In Figure 6 the theoretical
distribution of intensity of some cladding modes are illustrated. The experiential images of intensity
distribution of HE15 and HE16 cladding modes can be find out, for example, in [103]. Cladding
modes are extremely sensitive to changes in the refractive index of the material that surrounds the fiber.
This property of the cladding modes is widely used for sensing applications. However, these sensors
have some disadvantages. For example, Alwis [104] reported that the attenuation bands formed by the
coupling between the propagation mode in the core and the cladding modes are very broad when an
LPFG based sensor in transmission mode is used.

Figure 6. The intensity distribution of the first cladding modes (a) l = 1, ν = 1; (b) l = 1,
ν = 3; (c) l = 1, ν = 4; (d) l = 1, ν = 5). The modes were simulated using [105].

Often, the segment of fibre with the exited cladding modes is coated with some hydrophilic material.
This improves the sensitivity and selectivity of the sensor so that it is mainly sensitive to humidity
changes. Other fiber coatings, which have been investigated recently were based on thin films of calcium
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chloride [106], poly(ethylene oxide)/cobalt chloride (PEO/CoCl2) [107], diamond-like carbon [108],
hydrogel [109,110], polyimide coating [111].

Venugopalan [112] reported LPFG with a PVA coating. Surprisingly, this sensor showed a relatively
long response time of 50 s. The range of humidity sensing was only from 33% to 97% RH. In other types
of humidity sensors this coating has achieved significantly better performance. Viegas [113] achieved an
improvement in the sensitivity in a range 20% to 80% of a sensor, which was coated with a film of SiO2

nano-spheres using deposition through electrostatic self-assembly. As a result, the wavelength shift was
increased from 5 to 15 nm.

4.3. Hybrid RH Sensors

Most of the sensors, that are available today provide humidity measurements in relative humidity
units. At a constant pressure of gas the relative humidity will change if the temperature changes, even
if the concentration of water vapor in the gas remains the same [114]. Therefore, the development of
hybrid sensors that are capable measuring RH and temperature changes simultaneously is a necessary
step to enable optical sensors to work over a range of temperatures for a variety of applications.

A fast sensor with a linear response has been developed by Gu [79] using a thin-core fiber modal
interferometer with a fiber Bragg grating written in the interior of the interferometer. Poly (N-ethyl-4-
vinylpyridinium chloride) and salt of poly-vinyl-sulfonic acid and sodium were used as the hydrophilic
material. The FBG was used to compensate for changes in the temperature. The implementation of the
photonic crystal fibre interferometer [100] with FBG and using agarose as the hydrophilic material was
proposed by Mathew et al. [114]. Figure 7 illustrates the scheme of the proposed sensor. This sensor
produced a variation in the detected optical power of over 7 dB for a RH range of 75% and had a low
level of temperature-humidity crosstalk. Other sensors based on a LPFGs include: a Mach-Zehnder
interferometer based on cascaded long-period gratings coated with a thin-film of hydro-gel [110]; a
Michelson interferometer using a LPFG grating pair formed by coating a mirror at the distal end of the
LPFG [104]; and an LPFG using a tailored layered polyimide coating on the grating region [111] were
put into operation. The former detector only operated over a limited (60%–100%) RH range. However,
the second and third sensors showed operability over a range of 20%–80% RH, which was wider than
the range where the former one operated.

4.4. Evanescent Wave Humidity Sensors

The principle of operation of evanescent field humidity sensors (EFHS) is quite simple.
Electromagnetic field propagating inside the core of a waveguide do not confined completely inside
it [115]. The fraction of the field that is confined inside of the core of a waveguide is called either
the guided wave or the guided mode. In the same time, the part of the field that propagates outside of
the waveguide is called either the evanescent wave or the evanescent field. The guided field and the
evanescent field are related by condition of continuity of electromagnetic field on the border between
the core and the cladding. This means that the guided field will be affected by any changes that the
evanescent field experiences. When some water molecules are absorbed into the hydrophilic material
the refractive index of the hydrophilic material changes. If the evanescent field propagates inside of the
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hydrophilic material, this change will affect the evanescent field and can be detected as a change in the
guided mode. One of the common way to detect the changes in the evanescent field is, for example, by
using an interferometer [79].

Today, efforts to improve of the performance of EFHS are mainly focused on research into novel,
more sensitive hydrophilic materials as, for example, mats of electro-spun nano-fiber [116], layer of
di-ureasil xerogel containing lithium bits [76,77], titanium dioxide nano-particles [117] or thin film of
silica sol-gel [118]. In addition, different ways to generate evanescent field were tested, as for example,
hetero-core optical fibers [119], no-core fiber structures [120], sub-wavelength diameter fiber taper [90]
and multi-modal fibres [121].

Figure 7. Schematic diagram of the hybrid fiber optic sensor system for simultaneous
measurement of RH and temperature. (SLED—Super luminescent diode. FOC—Fiber
optic circulator. SMF-Single mode fiber. FBG—Fiber Bragg grating. AI-PCFI—Agarose
infiltrated-photonic crystal fiber interferometer. OSA—Optical spectrum analyzer. Dotted
arrows represent the light path), adapted from [114].

Fuke [122] has published the results of synthesis of Ag-polyaniline nano-composite for application
in a fiber-based humidity sensor using wave absorption spectroscopy. The sensor has been tested and
optimized by varying the size of silver particles and the cladding length. The sensor has been operate
over the range of humidity 5%–95% RH. It has been shown that a reduction in the size of the deposited
particles leads to a dramatic improvement in the sensor sensitivity and the speed of response. A similar
effect has also been observed for acoustic sensors. However even after optimization, the sensor had
relatively long response time of 30 s and a recovery time of 90 s.

A humidity sensor based on a multi-mode fiber taper coated with polyvinyl alcohol has been
investigated by Li [91]. The principle of operation of this sensor was based on the interaction between
the optical evanescent field and the coating along the taper waist. This sensor showed maximum
sensitivity of 1.994 µW/% RH over the humidity range 30%–95% RH, fast response of 2 s and small
temperature crosstalk.

Another interesting result has been published by Lui. In his experiments with regularly aligned
nano-rods, Liu [123] has showed that a structure based on zinc oxide nano-rods radially grown on a
silica fiber allows improved sensitivity of a sensor more than 50 times in comparison with the case of a
fibre covered with disordered nano-particles of zinc oxide. The sensor showed good sensitivity over a
wide range (10%–95% RH) of sensing.
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4.5. Other Optical Humidity Sensors

A new concept in optical-fiber humidity sensor called either the active fiber core optical sensor or
AFCOS, has been presented by Tao [124]. In this sensor, the fiber core plays the role of a transducer (see
the example in Figure 8).

Figure 8. Example of an AFCOS sensor, adapted from [124].

This type of sensor is based on a technique for doping porous sol-gel optical fibers with chemical
reagents (CoCl2). These sensors are sensitive down to very low humidity levels (2% RH) but are not
useful for an environment with higher than 10% RH humidity.

A simple, inexpensive optode for relative humidity (RH) monitoring in air has been fabricated by
Bedoya [82] using the water-sensitive luminescent dye. The optode was able to measure humidity in the
range from 4% to 100% RH, but had a very long response time of 1.4 min. The stability of the sensor
was verified over 2.5 years for weather monitoring and measuring the humidity level in food. The sensor
showed good stability and had the ability to recover completely after been soaked.

Figure 9. The guided-mode resonance sensor configuration, adapted from [125].

A non-fiber sensor has been developed by Lee and coworkers [125]. This sensor was based on
changes in a guide-mode resonance using an agarose-gel transducer layer integrated with a periodic
silicon-nitride film. The operation principle of the sensor is illustrated in Figure 9. The incident beam
of light is phase matched to the periodic structure and is reflected along the layer of fused silica. The
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resonance wavelength changes when the hydrophilic material absorbs water. This change was used to
detect humidity variations.

5. Conclusions

Today, the standard low-cost humidity sensors are the capacitance and resistance based electronic
sensors. Significant advances have been made over the last ten years in addressing the limitations of these
sensors and improving their ease of use. In particular, there has been progress in improving the speed of
response to below 1 second and in developing sensors that are compatible with silicon technology. This
compatibility has been exploited to allow integration with temperature and other sensors; generate an
easy to use digital output; incorporate a heater which allows both the operation in atmosphere with the
high humidity and either fast recovery from condensation or avoidance of it.

Today, a new generation of humidity sensing technology based on optical fibers is emerging.
Humidity sensors based on the concept of the photonic crystal fiber are expected to be available soon.
These sensors will be faster than the electronic humidity sensors that are available today. The current
trends suggest that for many applications, electronic humidity sensors could soon either be replaced or
complemented by sensors that are based on photonic crystals.

Furthermore, we highlight what we believe are two of the most significant achievements in the area
of humidity sensing in the recent scientific literature. Polyvinyl alcohol (PVA) has emerged as a new and
very promising material for humidity detection. This material allows fabrication of very fast and selective
sensors with response times of less than one second. The second area which has seen significant advances
is in the field of interferometric sensors. This novel sensor technology, presented by Gerald Farrell,
Yuliya Semenova and Sunish Mathew from Dublin Institute of Technology, constitutes an important
advance in sensing technology. It was demonstrated experimentally [99] that a simple design, using a
laser diode as an interrogator is possible to use with this kind of sensors. Meanwhile, most of the sensors
that are based on optical fibers require the use of a spectrum analyzer as the interrogator. The technology,
which allows the use of low cost laser diodes as the interrogators, is expected to be attractive for
industrial exploitation.

Today the first humidity sensors based on fiber optics are starting to appearing on the markets. We
expect that the application of fiber-based sensors will grow exponentially throughout the next decade.
Initially, optical humidity sensors will satisfy specific unfulfilled applications in the chemical industry,
where humidity control would be beneficial but present electronic sensors cannot satisfy the need. There
are applications in the chemical industry, where there is the need to monitor tanks with corrosive,
flammable or explosive atmospheres, and where fiber optic humidity sensors, such as those based on
the interferometric technique or fiber Bragg gratings could offer a unique solution. Another attractive
feature of the fiber based technology is the relative ease of integrating centralized remote monitoring and
control over a number of separate facilities related with the low cost and low weight of the optical fiber
cable in comparison with a copper cable . An optical interrogation module can be designed to allow
simultaneous interrogation of tens or even hundreds of sensors. This can be installed in a remote office
allowing the operator to monitor a set of sensors covering an area of up to a few miles in radius. In
addition, recent scientific advances should allow lower cost dedicated systems by avoiding the relatively
high price of interrogation modules which are presently a significant disadvantage of fiber-based sensors.
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