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Reduction of the phase jitter in differential phase-shift-keying
soliton transmission systems by in-line Butterworth filters
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We examine reduction of phase jitter by use of in-line Butterworth filters in soliton systems in the context
of differential phase-shift-keying coding. We also demonstrate numerically that the use of a Butterworth
filter in a return-to-zero differential phase-shift-keying system can reduce continuum background radiation.
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Recent progress in the practical implementation of
the return-to-zero (RZ) differential phase-shift-keying
(DPSK) modulation format in fiber communication1

has rekindled interest in the statistics of the phase of
an optical pulse propagating along the transmission
line. The effect of f ilter control on the phase jitter
in phase-shift keying systems has been analyzed
in Refs. 2 and 3. In systems without filtering,
self-phase modulation causes strong dynamic coupling
between the amplitude and phase f luctuations, which
was first pointed out in Ref. 4. Such a coupling
causes the variance of the phase jitter to grow propor-
tionally to the cube of the propagation distance, which
is similar to the Gordon–Haus effect for the soliton
timing position. The use of f ilters reduces the ran-
dom walk of the soliton frequency and amplitude, and,
as a result, in a system with in-line filtering, phase
f luctuations grow only linearly with distance.2,3 This
provides a completely different scale for error-free
propagation distances and sets the scene for the RZ
DPSK transmission, in which the logical bits are coded
by the carrier pulse relative phases. The study of the
statistics of DPSK systems has recently attracted a
good deal of interest.3,5 – 7

In Ref. 8 the use of in-line Butterworth filters
(BFs) that can combat frequency and amplitude jitters
more efficiently than the usual shallow filters was
proposed. More important, BFs reduce the growth
rate for the radiative background generated because
of the applied extra gain. The reduction of the
amplitude jitter by use of BFs must also have a sig-
nificant effect on the phase jitter. Recent advances
in f iber-optic technologies offer new possibilities
for the fabrication of sophisticated system compo-
nents. In particular, fiber grating technology is well
adapted to making in-line f lat-top filters such as
BFs with controlled wavelength-dependent f inesse.
In this Letter we examine the effect of BF-based
soliton control on pulse statistics and demonstrate
how the phase jitter is suppressed by use of in-line
f lat-top BFs.

The path-averaged optical signal propagation under
the combined action of the in-line BFs and the addi-
tive white Gaussian noise is described by the following
equation (presented in soliton units)8:
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where 2n is the order of the filter, hn is the filter
strength, and a is an excess gain to compensate for the
filter loss. Additive white Gaussian noise is accounted
for by the term n, which has the following statistics:

�n�t, z�� � �n�t, z�n�t0, z0�� � 0 , (2)

�n�t, z�n��t0, z0�� � Dd�z 2 z0�d�t 2 t0� . (3)

Here D is the path-averaged amplif ied spontaneous
emission noise power in soliton units (see Ref. 2).

Both noise and filter action can be treated as per-
turbations. Applying standard perturbation theory
(see, for instance, Refs. 2 and 8–10) to a single soliton
ansatz,

u0�t, z� � A�z�sech�A�z� �t 2 T �z���

3 exp�2iV�z�t 1 if�z�� , (4)

one can derive the system of Langevin equations with
multiplicative noise for the soliton parameters.2 For
such a system it is possible to write (details will
be published elsewhere) a Fokker–Planck equation
(FPE) for the joint probability density function (PDF)
P �A, f, V, T jz� (see, for instance, Ref. 11):
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Here Mn are the 2nth derivatives of the gener-
ating function s	sin�s� calculated at s � 0 (see
Ref. 8). At the origin z � 0 soliton parameters
have deterministic values so that P �A, f, V,fj0� �
d�A 2 A0�d�f 2 f0�d�T 2 T0�d�V 2 V0�, where
index 0 stands for the initial value of the cor-
responding soliton parameter. Equation (5) de-
scribes the statistics (not necessarily Gaussian)
of a single soliton transmission in the presence of
filters. When the deviations of parameters from
the initial values are small, one can substitute the
diffusion coeff icients in the terms with second deriva-
tives in Eq. (5) for their initial values, since those
coeff icients are fairly smooth functions of soliton
parameters, whereas the PDF can remain a sharp
function. The same procedure applies to the drift
coeff icients in the terms with first derivatives, but
while approximating those coeff icients we must keep
linear terms such as V 2 V0 as well. In this approx-
imation the statistics of soliton parameters appear to
be Gaussian, which justifies the results obtained in
Refs. 3 and 5–7. In the remaining part of this Letter
we focus on the analysis of the phase jitter in the
presence of f lat-top filters.

The initial soliton parameters in the FPE correspond
to stable stationary propagation in a system without
noise. Before we proceed, it is convenient to redefine
phase f to include the deterministic part of the non-
linear phase modulation: f ! �f 2 �1	2�A2

0z�mod 2p.
To ensure the stability of the pulse propagation we
must choose the initial values of the soliton parame-
ters to equal their stationary values. The stationary
values of soliton parameters can be found as stationary
characteristics of Eq. (5) under the condition D � 0.

A simple analysis shows that the stationary solution
for frequency V0 � Vs is zero, the stationary phase
f0 � fs and the timing position T0 � Ts are arbitrary
constants (of course, 0 # f0 , 2p), and the stationary
amplitude is defined by the following relation between
the BF characteristics and the excess gain (see Ref. 8):

a � hnA2n
s Mn � hnA2n

0 Mn. (6)

Therefore, without loss of generality in what follows
we assume that the initial values of frequency V0 and
soliton position T0 are equal to zero. After we apply
the linearization procedure described above to Eq. (5),
we arrive at the FPE for the Ornstein–Ulenbeck pro-
cess in which the diffusion coefficients are constants
while the drift coeff icients are linear functions of vari-
ables A 2 A0, f 2 f0, V, and T (see, for instance,
Ref. 11). In this Letter we are primarily interested
in phase jitter, since it is the most important for the
DPSK system. Therefore we can use the well-known
Gaussian solution for the Ornstein-Ulenbeck process
and establish the variance of the phase jitter as
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First, note that using A0 � 1 and n � 1 (Gauss-
ian filter) in Eq. (7) yields the result derived in
Ref. 3. In the presence of filters the phase jitter
grows only linearly with distance, whereas without
filtering the phase jitter increases as z3. In what
follows we compare our results with the phase jit-
ter calculated in Ref. 3. For the system described
in Ref. 3, A0 � 1, n � 1, and h � 0.249, which
yields a � 0.083. The effective dimensionless noise
strength used in Ref. 3 is D � 2.9 3 1025. For
z � 8, 000 km this corresponds to the standard devi-
ation of D � ��df2��1	2	p � Det � 0.099. With BFs
we have an extra parameter n that actually allows us
to control the suppression of the jitter. From Eq. (7)
one can see that for large propagational distances
z the variance �df2� grows linearly in z, and the
rate of growth is smaller for higher orders of the
BF. Therefore the use of BFs significantly reduces
phase jitter compared with the case of the simple
Gaussian filter considered in Ref. 3. The higher the
filter order, the better the improvement.

Next we examine the possibility of minimizing
phase jitter by varying the filtering characteristics.
Let us f ix the propagation distance z. Then the vari-
ance �df2� is a function of four parameters: excess
gain a, filter strength h, filter order 2n, and soliton
amplitude A0, which is related to the soliton power
and pulse width. However, these parameters are not
independent—Eq. (6) imposes an obvious constraint.
Also, because the f ilters are accounted for in a per-
turbative manner, the values a and h must not be
large. The initial amplitude of the soliton, A0, is also
restricted in some range by the power constraints
and the bit rate. Taking this into account, for each
value of n we express A0 as a function of h for f ixed
a. Inserting A0�h� into Eq. (7), we note that �df2�
is a nonmonotonic function of h —there exists an
optimal value of filter strength hopt that provides a
minimum for the phase jitter �df2� for the given n and
a. One can easily find this extremum and calculate
the optimal values of the parameters. For long-haul
transmission systems we are interested in distances
for which the inequality anz ..1 holds so that we
can neglect the exponents in the f irst term on the
right-hand side of Eq. (7). Then the optimal value of
h and the corresponding jitter are given by

hopt�n,a� �
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where g � 221	2�321	2 1 323	2� �1 1 p2	12�3	4 
 0.854
is a numerical factor. In Fig. 1 we plot the relative op-
timum standard deviation D	Det versus the excess gain
a. Again we see that the use of BFs may reduce phase
jitter by at least f ive times, provided that the system
parameters have been optimized properly. The physi-
cal reason for this is that for the fixed value of the ex-
cess gain, a, the effective restoring force that shifts
the soliton back to the unperturbed position [the com-
ponents of this force are given by the drift coefficients
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Fig. 1. Optimal relative standard deviation of the soliton
phase, D	Det, plotted versus the excess gain a for different
values of f ilter order 2n.

Fig. 2. Logarithm of the field intensity plotted as a
density plot. The result is an intensity profile for
16 pseudorandom bits, averaged over 100 samples of the
amplified spontaneous emission noise. (a) RZ intensity
modulation format with conventional filters �n � 1�.
(b) Same bit pattern as in (a) but for the RZ DPSK format
with high-order Butterworth filters �n � 3�.

in Eq. (5)], is n times bigger than that for the etalon
system with n � 1. A simple analysis of Eqs. (8) and
(9) shows that for high-order f ilters �n $ 2� it is possible
to reduce phase jitter by at least five times compared
with the system using conventional f ilters, with the f il-
ter strength and excess gain still remaining relatively
small.
Equation (9) shows that the minimal value of the
phase jitter decreases with the increase in the filter
order n. The increase in the excess gain a that for-
mally also leads to jitter reduction is limited by the
constraint of the smallness of a. Additionally, the in-
crease in the excess gain is a trade-off between the
jitter reduction and the growth rate of the radiative
background between the solitons. Note, however, that
in the RZ DPSK systems there are no empty slots
between the pulses, and therefore the background gen-
eration should be considerably suppressed. To illus-
trate this, in Fig. 2 we provide the results of numerical
simulations of the propagation of a pseudorandom pat-
tern of 16 bits. One can see that the use of RZ DPSK
[Fig. 2(b)] is much more beneficial in terms of suppres-
sion of the continuum than a conventional f ilter of the
same strength [Fig. 2(a)].

In conclusion, we have examined the reduction of
the phase jitter by use of in-line Butterworth filters.
Flat-top in-line f ilters can be especially beneficial for
the RZ DPSK systems for which the radiative back-
ground generation is weaker than that for the tradi-
tional RZ formats. This provides for the important
possibility of a trade-off between phase jitter reduction
and generation of a radiative background caused by
filtering.
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