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We scrutinize the concept of integrable nonlinear communication channels, resurrecting and extending
the idea of eigenvalue communications in a novel context of nonsoliton coherent optical communications.
Using the integrable nonlinear Schrödinger equation as a channel model, we introduce a new approach—
the nonlinear inverse synthesis method—for digital signal processing based on encoding the information
directly onto the nonlinear signal spectrum. The latter evolves trivially and linearly along the transmission
line, thus, providing an effective eigenvalue division multiplexing with no nonlinear channel cross talk. The
general approach is illustrated with a coherent optical orthogonal frequency division multiplexing
transmission format. We show how the strategy based upon the inverse scattering transform method
can be geared for the creation of new efficient coding and modulation standards for the nonlinear channel.
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Optical fiber systems form the backbone of the global
telecommunication networks and currently carry the major-
ity of the world’s information traffic, with the “fifth
generation” of optical transmission systems operating with
advanced modulation formats, e.g., orthogonal frequency
division multiplexing (OFDM), digital signal processing
techniques, etc. [1]. Rapidly increasing data rates in the
core fiber communication systems are currently approach-
ing the limits of transmission technologies, many of
which were originally developed for linear (radio) com-
munication channels [2]. The paramount limit on channel
spectral efficiency is imposed by fiber nonlinearity [2–8].
Therefore, the applications of “linear techniques” in a
realistic fiber channel are limited by the nonlinear proper-
ties of the fiber medium itself. The increase in the signal
power to improve the signal-to-noise ratio (SNR) leads to
power-dependent nonlinear transmission distortions. Thus,
nonlinearity is an essential component in the design of
advanced fiber communication systems, but it is often
shunned by engineers in view of its complexity. There is an
evident need for radically different approaches to coding,
transmission, and processing of information in fiber com-
munication channels that would take into account the
nonlinear properties of the optical fiber. In this Letter,
we present a nonlinear inverse synthesis (NIS) method—a
highly promising alternative transmission technique based
on the integrability of the nonlinear channel.

The evolution of light in an optical fiber is modeled by
the nonlinear Schrödinger equation (NLSE) [2,4],
which accounts for the interplay between dispersion and
nonlinearity. Averaging over periodic gain and loss varia-
tion in practical systems leads to effectively conservative
signal dynamics governed by the renormalized NLSE [9].
Moreover, a recent experimental demonstration of a quasi-
lossless fiber span [10] shows that gain (loss) variations can
be compensated continuously along the fiber. Importantly,
the NLSE (without perturbations) belongs to the class of the
integrable nonlinear systems [9,11–14]. The integrability of
the NLSE means that one can present nonlinear field
evolution in a special basis, within which the dynamics of
individual “nonlinear normal modes” is effectively linear.
A powerful method—the inverse scattering transform (IST)
[9,12–14], that is a nonlinear analog of the Fourier transform
[14]—can be applied to find the solution of an integrable
equation.Within thismethod, the first step (decomposition of
initial conditions into spectral data) consists of solving
a linear spectral Zakharov-Shabat problem (ZSP) [12].
Any field evolving according to the NLSE can be described
by a set of scattering data evolving in a linearlikemanner, this
fact is the foundation of the nonlinear Fourier transform
(NFT) method [9,12–14]. The NFT does to the NLSE what
the FT does to the linear equations: Just as the linear FT
changes dispersion to a phase rotation in frequency space so
the NFT leads to a trivial phase rotation of the spectral data.
Thus, the fiber nonlinear effects are effectively included in
theNFT [9,12–14]. This property constitutes the general idea
of the eigenvalue communication introduced first in [15], the
essence of which is to use invariant ZSP eigenvalues to
encode and transmit information [16]. The use of NFT
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decomposition opens fundamentally new possibilities for
advanced coding and modulation schemes, resistant to
nonlinear fiber effects.
Note that, in Ref. [15], only the discrete part of the ZSP

spectrum was considered. This discrete spectrum corre-
sponds to the soliton part of the NLSE solution [9,12–14].
On the other hand, the vast amount of available degrees of
freedom contained in the continuous part of the spectral data
has been generally overlooked so far. In recent years, the
concept of transmission built on pure fundamental NLSE
solitons has lost much of its appeal in contemporary
wavelength division multiplexing systems due to problems
caused by soliton collisions and corresponding cross talk
[9,17] (though a recent study [18] indicated mechanisms for
the mitigation of intersoliton cross talk). Very recently there
has arisen a considerable renewed interest in transmission
based on the integrability and IST principles [19–21],
where, not the solitons themselves, but the IST spectral
data associated with each solitary degree of freedom were
utilized. In this Letter, we, however, apply the idea of
integrability in a completely novel context of nonsoliton
coherent optical communications. We introduce a new
approach to digital signal processing based on the encoding
of information directly onto the continuous nonlinear signal
spectrum that evolves linearly along the transmission line in
a nonlinear integrable channel. We call this approach
nonlinear eigenvalue division multiplexing. The main result
reported here is that, by applying the IST technique, one can
develop a straightforward signal processing routine for
compensating nonlinear distortions of arbitrary magnitude.
We consider, as the master model, the NLSE with

constant anomalous dispersion, describing the propagation
of a slowly varying optical field envelope qðz; tÞ inside a
single-mode nonlinear fiber [2]

iqz þ 1
2
qtt þ qjqj2 ¼ ηðz; tÞ; ð1Þ

where z stands for the propagation distance and t is the time
in the frame comoving with the envelope velocity. In Eq. (1),
time is normalized to the characteristic duration of our input
signal Ts, distance—by the dispersion length:Zs ¼ T2

s=jβ2j,
β2 ¼ −21.67 ps2=km is the dispersion coefficient; the
power is measured in units of ðγZsÞ−1, with the nonlinearity
coefficient γ ¼ 1.27 ðWkmÞ−1. The random quantity ηðt; zÞ
describes the noise generation due to amplifier spontaneous
emission (ASE) [2]: It is a symmetric additive complex
Gaussian white noise with zero average, fully charac-
terized by its autocorrelation intensity: hηðt; zÞη̄ðt0; z0Þi ¼
2Dδðt − t0Þδðz − z0Þ [the overbar means complex conjuga-
tion]. This model describes the amplification scheme, in
which the distributed Raman gain exactly compensates for
the fiber loss: Refs. [2] provide a detailed account of how
noise intensity D is related to the line parameters.
As the NLSE with zero right-hand side is integrable, the

explicit procedures for the forward and backward NFT are
known [9,12–14]. The decomposition of the signal into

spectral data (forward NFT) is achieved by solving the ZSP
equations for auxiliary functions v1, v2

dv1
dt

¼ qðtÞv2 − iζv1;
dv2
dt

¼ −q̄ðtÞv1 þ iζv2; ð2Þ

where the input pulse shape qðtÞ acts as a potential. Here ζ
is a (generally complex) eigenvalue, ζ ¼ ξþ iϱ, and qðtÞ
decays as t → �∞. To define scattering data, for real ζ ¼ ξ,
one fixes two linearly independent Jost solutions of Eq. (2),
Φðt; ξÞ ¼ ½ϕ1;ϕ2�T , and ~Φðt; ξÞ ¼ ½ϕ̄2;−ϕ̄1�T , with the
condition at the left end: Φjt→−∞ ¼ ½e−iξt; 0�T ; in the same
manner, we fix two other Jost solutions,Ψðt; ξÞ ¼ ½ψ1;ψ2�T
and ~Ψðt; ξÞ ¼ ½ψ̄2;−ψ̄1�T , at the right end:Ψt→∞ ¼ ½0; eiξt�.
These two sets are linearly dependent and relate through the
Jost scattering coefficients aðξÞ and bðξÞ: Φ ¼ a ~Ψþ bΨ,
~Φ ¼ −āΨþ b̄ ~Ψ. The (left) reflection coefficient is defined
as rðξÞ ¼ b̄ðξÞ=aðξÞ, and solitons correspond to the com-
plex eigenvalues ζn, where aðζnÞ ¼ 0. The forward NFT
operation corresponds to mapping of the initial field, qð0; tÞ,
onto a set of scattering data: Σ ¼ ½frðξÞ; ξ ∈ Rg; fζn; γn ¼
½bðζnÞaζ 0ðζnÞ�−1g�, where the index n runs over all discrete
eigenvalues of ZSP; rðξÞ plays the role of the nonlinear
spectral profile. The nonlinear spectral function (NS)
defined as NðωÞ ¼ −rðξÞjξ¼−ω=2, serves as the direct non-
linear analogue of the Fourier spectrum, tending to the
ordinary FT of qðtÞ in the linear limit [22]. The evolution of
rðξÞ is trivial: rðξ; LÞ ¼ rðξÞe−2iξ2L (with L being the
propagation distance), and substituting this expression into
the definition of NS, one finds that NðωÞ obeys the linear
dispersion law of the NLSE. Therefore, the orthogonality
of nonlinear normal modes is preserved during signal
propagation within the NLSE.
The backward NFT maps the scattering data Σ onto the

field qðtÞ: This is achieved via the Gelfand-Levitan-
Marchenko equation (GLME) for the unknown function
Kðt; t0Þ [9,12–14]. For the soliton-free case, considered
further in our study, the GLME can be written as

Kðt; t0Þ þ Fðtþ t0Þ

þ
ZZt
−∞

Kðt; λÞF̄ðλþ σÞFðσ þ t0Þdσdλ ¼ 0: ð3Þ

Here FðtÞ ¼ ð2πÞ−1 R dξrðξÞe−iξt is the linear backward
FT of rðξÞ; having solved the GLME (3) for Kðt; t0Þ, the
sought solution in the space-time domain is recovered as
qðtÞ ¼ 2Kðt; tÞ [22].
Transmission using the NIS.—The preliminary “proof of

concept” demonstration that the nonsolitonic part of NS can
be used for mitigating nonlinear distortions was presented
in Refs. [21,23]. However, these methods have limited
applicability being confined to low-power initial signals or
to the normal dispersion case, where no solitons generally
appear. The case studied in our work is rather more
challenging and practically important: For the focusing
NLSE, the eigenvalue spectrum of ZSP generally brings
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about complex discrete eigenvalues corresponding to sol-
itons; when the input is randomly coded, the eigenvalue
portrait of the ZSP can be extremely involved.
To get rid of this issue, we suggest synthesizing the profile

in the time domain starting from given encoded shapes in the
nonlinear spectral domain (see also discussion in the
Supplemental Material [24]). This idea is similar to that
widely used for the syntheses of corrugated waveguides [25]
and Bragg gratings [26,27]: one creates the input profile
having the desired properties, starting from the nonlinear
spectral data, and then, employs the backward NFT syn-
thesizing the profile in the time domain.During the evolution,
the spectral data undergo just a phase rotation, and hence,
after unrolling this “nonlinear dispersion” at the receiver, the
initial information can be recovered without nonlinear signal
degradation. The scheme of the NIS method vs the simple
conventional transmission is illustrated in Fig. 1; we show the
true profiles for the transmission of a truncated harmonic:
qðtÞ ¼ eiΩt, t ∈ ½0; T�,Ω ¼ 2π=T. TheNISmethod involves
two stages, see Fig. 1(b): (i) The backward NFT at the
transmitter, providing the profile qGLMð0; tÞ in the time
domain corresponding to a desired initial NS NðωÞ;
(ii) Recovery of the NS at the receiver by the forward
NFT, i.e., by solvingEq. (2), and consequent linear dispersion
removal (the latter is for recovering the initial phase infor-
mation). For the conventional transmission, Fig. 1(a), we also
removed the linear dispersion at the receiver. One observes,
that while the profile for the conventional transmission is
heavily degraded by the nonlinearity, the recovery of the
initial waveform after using the NIS method is perfect.
We now discuss the numerical complexity of the NIS as

compared to the popular digital back propagation (DBP)
method for the removal of the nonlinear distortions [28]. In

DBP, one reads the waveform at the receiver, inserts it in the
noiseless NLSE, and then solves the NLSE in the backward
direction. The numerical method for the NLSE integration
is usually the split-step Fourier method [4,28], which
requires NzMt logMt operations; Mt being the number
of discretization points in time, and Nz—the number of
steps in z, that grows with the transmission length and pulse
power. In realistic transmission problems, one typically has
Nz ≫ 1 . The NIS method involves just two nonlinear
transforms, each of those requiring ∼M2

t operations for
well-developed methods [27,29]. Even with such an
estimate, the complexity of the NIS can already be
comparable to that of the DBP [21]. However, the recent
advancements in numerical NFT indicate that the complex-
ity of NIS can be reduced even further. Namely, one of the
fastest methods for the GLME solution is based on a single
inversion of a Toeplitz matrix [27]. Using the newest
algorithms [30], this inversion can be performed in just
Mt logMt operations. For the ZSP, a recent study [31]
suggests, that the recovery of continuous NS can be made
in only ∼Mt log2 Mt operations. With these estimates in
mind, we believe that NIS-based transmission methods can
significantly outperform the DBP in terms of numerical
complexity for the digital signal processing.
To illustrate how NIS performs in a realistic digital

transmission scheme, we consider the popular OFDM
encoding [32] of the input waveform both in the linear
and nonlinear spectral domain. The first question concerning
the NIS implementation is what do the elementary OFDM
base functions look likewhen its spectral shape is used in the
NS domain? We present our results for two kinds of base
functions in Fig. 2(a)–2(d). Figs. 2(a) and 2(b) show the
results for the sinc base (a rectangle in the ω domain). This

FIG. 1 (color online). The flow chart depicting the operations for an example initial waveform qð0; tÞ ¼ e2πit=T if t ∈ ½0; T�, 0
otherwise. The upper part (a) shows the conventional transmission scheme, and the lower part (b) corresponds to the NIS-based
transmission. (a),(b) display the true profiles for T ¼ 1 ns, transmission length L ¼ 2000 km (noiseless case).
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base function is utilized in the Nyquist-format technique,
which provides the highest spectral efficiency [33]. As seen
in Fig. 2(b), the corresponding profiles in the time domain,
qGLMðtÞ, are already not symmetric, and the asymmetry
grows with the increase of c (see the Supplemental Material
[24] for analytical considerations). In theOFDMscheme, the
elementary base in the time domain is simply a rectangle (i.e.,
a sinc function in the ω domain) and, without loss of
generality, in what follows, we will focus on this format
[24]. The inverse NFT of the single OFDM spectral tone,
NðωÞ ¼ csincðωÞ is given in Fig. 2(c), (d) for different
values of amplitude c. We see that for a sufficiently large c
the waveform of qGLMðtÞ is significantly different from a
rectangular profile occurring in the linear case: While losing
its symmetry, the profile develops an oscillatory advancing
tail. The general form of the spectrum of an arbitraryOFDM-
encoded data sequence is [32]

QðωÞ ¼
X∞
j¼−∞

XNsc

k¼1

cjksinc

�
Ωk − ω

2

�
eiðΩk−ωÞj; ð4Þ

where cjk is the jth informational symbol in the kth
subcarrier, Nsc is the total number of subcarriers, Ωk is the
frequency of the kth subcarrier. The frequencies are spaced at
multiples of the inverse of the symbol rate: Ωk ¼ 2πðk − 1Þ
(normalized slot duration Ts ¼ 1), which ensures the ortho-
gonality of subcarriers. In Figs. 2(e)–2(f) we present the

spectrum of a single OFDM slot with 10 subcarriers with
ck ¼ 1, and a corresponding inverse NFT, qGLMðtÞ. In this
case, the structure of the advancing tail is more involved and
reflects the structure of the pulse itself.
For illustrative reasons, we now employ random quad-

rature phase shift keying (QPSK) encoding of the coef-
ficients cjk [34]: The absolute value of cjk is the same for
each coefficient, jcjkj ¼ c, and the phase of each cjk
randomly takes one of four discrete values Argfcjkg ¼
ϕjk ¼ 2πp=4, p ¼ 0;…; 3. Let us turn to the performance
of the digital NIS transmission as opposed to the ordinary
one, Fig. 1, using the inverse linear FTof Eq. (4), qðtÞ, as an
input for the ordinary transmission, and its inverse NFT
counterpart, qGLMðtÞ, for the NIS transmission. We quantify
the noise influence on the transmission by optical signal-to-
noise ratio (OSNR), defined as OSNR ¼ Ps=2DLBref
[2,32], where Ps is the average power of the input signal
and Bref is a reference bandwidth (it is the simulation
bandwidth in our case). The lower the value of OSNR, the
stronger is the signal degradation by the noise. We show the
results of our simulations on the constellation diagram
indicating positions of the normalized coefficients Cjk ¼
cjk=c after the transmission. For ordinary transmission, we
use the scheme given in Fig. 1(a), the coefficients are
recovered by a linear FT in the time domain. For NIS
transmission, the scheme in Fig. 1(b) is used: The QPSK-
OFDM coefficients are recovered from the NS domain. Our
results are given in Fig. 3 for the OSNR ¼ 7 dB (medium
noise). We observe that the conventional transmission
performs poorly leading to an almost complete smearing
of the constellation picture. In contrast, the locus of
coefficients Cjk for the NIS-based transmission is still close
to the initial values (blue rectangles), indicating that the NIS
method significantly outperforms its linear counterpart. The
plots for different OSNR levels and lower input power are
given in the Supplemental Material [24], indicating that our
results are general. In Figs. 3(b)–3(c) we present the
probability density functions (PDFs) for the angular and
radial distributions of Cjk: These distributions also demon-
strate the superior performance of the NIS as compared to
the ordinary transmission.
In this Letter, we have demonstrated that the nonlinear

spectral data can be used for high-quality long-haul
information transmission. The advantage of using the NS
is that it plays the role of the linear spectrum for the
nonlinear integrable problem, and the encoded spectral
content undergoes just the trivial phase rotation obeying the
linear dispersion law. We have introduced the nonlinear
inverse synthesis method that has its roots in the theory of
fiber Bragg grating synthesis and consists in the direct
encoding of the nonlinear spectral domain followed by
reconstruction of the field profile in the time domain by
solving the GLME.We illustrated the robustness of the NS-
based transmission not only against nonlinearity, but also
against the ASE noise using a popular OFDM modulation
format as an example.

FIG. 2 (color online). The profiles of NS jNðωÞj with different
amplitudes, and the corresponding profiles jqGLMðtÞj in the time
domain, obtained by solving GLM equation (3). (a),(b) for the
rect-shaped NðωÞ ¼ rectðω=2πÞ (Nyquist OFDM); (c),(d) for the
sinc-shaped NðωÞ (standard exponential-based OFDM); (e),
(f) NðωÞ and corresponding qGLMðtÞ for a single slot of
exponential-based OFDM (10 modes were used), encoded onto
the NS, Eq. (4), with cjk ¼ 1. The insets show the corresponding
linear FTs of the spectrum.
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