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1. INTRODUCTION

Soliton transmission in optical fiber lines is a research
area that belongs both to fundamental science (including
such different areas as the theory of integrable systems,
nonlinear optics, and statistics) and to applications. The
research in this field has already had a serious effect on
the design and development of practical systems that use
the return-to-zero (RZ) data format. The major limita-
tions imposed on the transmission distance in long-haul
fiber lines are due to amplifier spontaneous emission
(ASE), which introduces both noisy radiation and jitter
into the carrier pulses and thus causes the quality of the
transmission to deteriorate. In their pioneering work
Gordon and Haus' (see also Ref. 2 for the mathematical
theory of the effect) studied timing jitter in soliton trans-
mission and derived the celebrated result that the timing
fluctuations along the transmission line grow as the cube
of propagation distance. Later Mecozzi et al.®> showed
that the use of passive filters can reduce timing jitter and
thus extend the Gordon—Haus limit. Mollenauer et al.*
proposed a sliding-filters technique that permits the
propagation distance to be increased even further. Na-
kazawa and colleagues® successfully used amplitude
modulators and passive filters to reach a distance of more
than 10km. For reviews of the early developments in
soliton statistics see, for instance, Refs. 6 and 7. More re-
cently, Mecozzi® suggested the use of Butterworth filters
to effectively suppress the background excitation in zero
slots. As a result of recently renewed interest in phase
shift keying systems, a series of papers dedicated to the
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statistics of phase jitter in soliton—dispersion phase shift
keying systems was published.® 12

Note that the vast majority of the results have been ob-
tained with the assumption (sometimes implicit) that the
underlying statistics of soliton parameters are Gaussian.
The first results for non-Gaussian single-soliton statistics
have appeared only recently. Single-soliton statistics
were studied by means of a functional integration
technique®!%; this method allowed Falkovich et al. to ob-
tain a series of asymptotes for the tails of the probability-
density functions (PDFs) that turned out to be non-
Gaussian. The authors of Ref. 15 applied the Ito method
to analyze the statistics of the energy fluctuations in the
nonlinear Schrodinger equation (NLSE) and showed that
the energy statistics are substantially non-Gaussian.
Non-Gaussian phase statistics in optical communication
were also analyzed in Ref. 16. In Refs. 17 and 18 the sta-
tistics of amplitude and phase of individual solitons were
treated. In this paper we suggest an approach based on
the Fokker—Planck equation (FPE) for the PDF of all four
soliton parameters. This approach allows us to deter-
mine the area of applicability of classic Gordon—Haus re-
sults for the standard deviations of soliton parameters as
well as to study the asymptotic behavior of the tails of the
PDFs. We also discuss both the Ito and the Stratonovich
approaches, considering the stochastic dynamics of the
soliton parameters. The non-Gaussian statistics of the
soliton parameters are a direct consequence of the multi-
plicative nature of noise in soliton equations. In this pa-
per we derive a FPE for generic systems that include in-
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line filters. The FPE obtained contains exact and
complete information on the evolution of the soliton sta-
tistics, and solving this equation analytically or numeri-
cally provides one with a complete or marginal PDF for
soliton parameters. Some preliminary results have al-
ready been briefly reported.!® The Fokker—Planck ap-
proach has already been applied to the statistics of the
NLSE soliton (by use of a truncated Langevin system for
two soliton parameters).?’ Here we derive the FPE that
governs statistics of all four soliton parameters and that
is important for applications in optical communications.

2. MODEL

The perturbed NLSE, in soliton units, that describes the
combined action of filters and ASE has the following

form®8;
au i du ul? 92
—=——+iuu+ —lat+t p—|utyx, @
0z 2 92 2 77(%2 X

where « is the extra gain to compensate for filter loss and
7 is the filter strength (for more details about the units,
see Ref. 6). ASE is accounted for as additive white
Gaussian noise (AWGN) term y, with the following corre-
lation properties:

(x(t, 2))y = (x(t, 2)x(t', 2")) = 0, (2)
(x(t, z2)x*(t', 2"))y =D&z — z'")6(t — t'). 3)

Both noise and filter action can be considered perturba-
tions. Using the standard single-soliton ansatz

uo(t, z) = A(z)sech{A(z)[t — T(z)]}exp[—iQ(z)t
+ i¢(2)] (4)

and soliton perturbation theory for arbitrary perturbation
R (see Refs. 6, 21, and 22), one can obtain the following
dynamic equations for the soliton parameters:

dA
- = Ref digs* (t)R(t, z), (5)
d 1
Yoo
dz 2
+ ReJ dtg,*(t, 2)R(¢, 2), (6)
dQ
5:R6J‘dtg(l*(t7 Z)R(ty Z)y (7)
dT
- = -0 + ReJ ditgr* (¢, 2)R(¢, z),
(8)
where
gA(t’ 2) = uO(t’ Z, A7 ¢’ Q’ T)’ (9)

i
t,z) = —{1 — At
g4(t, 2) A{

X tanh[A(t - T)]}uo(t, z, Ar ¢) Q’ T)7
(10)
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8alt, z) = —i
X tanh[A(¢ — T)]uy(t, z, A, ¢, Q, T),
(11)
t—T
grt,z) = ) uolt, z, A, ¢, Q, T). (12)

In a noisy system with filtering, perturbation R(¢, z) has
the form R = (1/2)[a + 7(8,)%lug + x.

3. LANGEVIN EQUATIONS FOR SOLITON
PARAMETERS: ITO AND STRATONOVICH
APPROACHES

Taking the projections of the perturbation onto the func-
tions g;, after some algebra we arrive at the following
system of equations (see Ref. 6):

dA

o aA — p(Q% + A%/3)A + S,(2), (13)
d¢ 1

e 5(A2 - 0?) + Sy2), (14)
dQ 2

E = —g 7]A2Q + SQ(Z), (15)
T

E - + Sq(z). (16)

S, are the projections of AWGN on perturbation functions
(9)-(12):

Si(z) = Ref deg;*(t, z)x(t, 2). a7
This system can be viewed as a Langevin system with
multiplicative noise?3:
dg; "
Fi fila) + Re | dtg;*(¢, @) n(z, ¢),

i=A, $,Q0,T. (18)

The set of Egs. (13)—(16) [or Eq. (18) in compact nota-
tion] is a master set of equations that describe the adia-
batic stochastic evolution of the four soliton parameters.
Some special instances of this system were studied before,
and the main results for soliton statistics (including the
Gordon—Haus effect) were derived under certain assump-
tions. Note that, despite the perturbation theory that
was used to derive Eqgs. (13)—(16), these assumptions are
valid not only for small propagation distances z < 1 when
the soliton parameters do not change significantly from
their initial values A, ¢q, Oy, and Ty: Equations (13)—
(16) can be valid even for large deviations from the initial
values, i.e., for large distances, assuming that perturba-
tion functions g; in Egs. (9)—(12) depend on the current
values of soliton parameters rather than on the initial
values. Therefore, to study soliton statistics for large
distances and to determine the probabilities of large fluc-
tuations given by the tails of PDEs, one needs to recog-
nize the system of Eqs. (13)—(16) as a system with multi-
plicative noise because projection functions g; in Eq. (17)



Derevyanko et al.

depend on the stochastic variables A, ¢, (), T by means of
Egs. (9)—(12). This fact was probably first emphasized in
Ref. 2. The majority of the results obtained so far were
obtained under the implicit assumption that functions g;
do not depend on the variables or rather depend on the
initial values Ay, ¢q, Qy, and Ty. Under such an as-
sumption S; become independent AWGNs, and one can
readily calculate their variances. With AWGN S, the sta-
tistics of the solutions of Egs. (13)—(16) becomes Gauss-
ian, and the variances of those Gaussian distributions
give well-known results.®

Considering the problem of random perturbations to
the NLSE, Eq. (18) at first glance seems to be ambiguous:
It admits of two different interpretations, namely, those of
Ito and of Stratonovich.2> The two interpretations are
equally acceptable from the mathematical point of view.
However, they produce different results for the soliton
statistics, and the corresponding FPEs differ for the two
approaches (by an advection term). In the Ito approach
the functions g; on the right-hand side of Eq. (18) are as-
sumed to be statistically independent of the noise. That
significantly simplifies the reasoning because at each
point z one can treat each noise part in Eq. (18) as real
uncorrelated Gaussian noise with zero mean and variance
n;, depending on the current values of the soliton param-
eters:

D oo
n(q) = —f |g:(¢, q|*de. (19)

In the Stratonovich approach the noise term on the right-
hand side of Eq. (18) is symmetrically regularized in dis-
tance z,'%%3 and it no longer decouples from projection
function g; .

In the research reported in Refs. 17 and 18 the Ito ap-
proach was used, whereas in Ref. 19 the Stratonovich
interpretation was applied to derive the FPE for soliton
parameters.

The two approaches gave different results for the PDF
for the amplitude of the soliton. Here we clarify this is-
sue. It is important to note that the initial model for our
soliton system is not the Langevin system with multipli-
cative noise but rather the modified NLSE with additive
noise [Eq. (1)]. For systems with additive noise the Ito—
Stratonovich dilemma simply does not exist: both ap-
proaches should yield the same results.'®?® However,
the soliton perturbation theory brings forth a system with
multiplicative noise that, at first glance, produces differ-
ent results that depend on the approach chosen. An ex-
planation of this issue is rather simple: The perturba-
tion theory for the soliton parameters is different for the
two approaches. One has to bear in mind that the rules
of the Ito calculus are different from those of normal cal-
culus (which can still be applied in the Stratonovich ap-
proach). In particular, the ordinary chain rule for differ-
entiation no longer applies to Ito calculus. For an
arbitrary function f(q, z), where vector q is a solution of
Eq. (18), the Ito chain rule reads as
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af  of af dg;
_— + —_———
dz 0z 7 dq; dz
D e P>f
+ —Re Y, f deg*(t, @)gx(t, q) .
4 ik | J—o 9999,
(20)

We can prove this formula by introducing the real and
imaginary parts of complex noise 7 and discrete time ¢;.
Equation (18) then becomes discrete in time and real val-
ued. For such a system the multidimensional Ito chain
rule can be found in Refs. 23 and 24. The last term in
Eq. (20) reveals the difference between Ito calculus and
ordinary calculus. However, the adiabatic soliton pertur-
bation theory used to drive Egs. (5)—(8) was based on the
assumption of ordinary calculus (see, for example, Ref. 6).
In particular, the solution of perturbed NLSE (1) is
sought in the form

u(z, t) = uO[A(Z)> ¢(Z)9 Q(Z), T(Z)5 t] + Urad
(21)

where u, is a single-soliton ansatz with adiabatically
slowly varying parameters and u,,q is a radiative part
(continuum). One has to insert Eq. (21) into Eq. (1) and
perform linearization [see formula (5.53) of Ref. 6]. How-
ever, during such a linearization a conventional chain
rule is used, which is inconsistent with the Ito rule [Eq.
(20)]. Therefore the ordinary perturbation theory is in-
applicable to the Ito stochastic perturbations unless some
changes are made. Stratonovich calculus, however, uses
the same symbolic rules as does ordinary calculus, and
therefore the perturbation analysis of Ref. 6 and Eqgs. (5)—
(8) is still valid, provided that the Stratonovich conven-
tion is used throughout.

So we have shown that Egs. (5)—(8) must be used with
the Stratonovich convention and not that of Ito. How-
ever, one can still employ Ito calculus for studying the sta-
tistics of soliton parameters, provided that extra advec-
tion terms are inserted into the system of Eqs. (5)—(8).
Indeed, the Stratonovich system [Eq. (18)] is equivalent to
an Ito system in which the following substitution has
been made:

fila) — fila) + ZRef At g*(t, @ ————.
J

(22)
Using perturbation functions g; given by Eqs. (9)—(12),
one can show that the only equation that changes in the
Ito representation is Eq. (5). It reads as

dA
o D + Re f ditga* (t)n(z, t). (23)

The remaining equations are the same as Eqgs. (6)—(8).

This extra advection term partially explains the dis-
crepancies between soliton amplitude statistics in Refs.
17 and 19 and the correct results given in Ref. 19.

4. FOKKER-PLANCK EQUATION

For the most general system, such as Eqs. (13)—(16), it is
possible to write a FPE for the joint PDF,
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P(A, ¢, Q, T|z). For our system of Egs. (13)—(16) the
FPE has the following form (see Appendix A):

dP

1 JP d J
— = —(A%2-0%— + —{QP} — —{DP + aAP
0z 2 0A

ap  IT

2 J (2
- 5 Q%2+ —|AP} + —{—9A2%QOP
3 a0 |3
1 1 w2\ %P
+ D{-AT?* + — |2+ —||—
6 12A 6 ,9¢,2
D PP D &
+ —AT + ——[AP]
3 dpaQ) 2 9A2
D P  Dx? $’P
+ —A—— + —_— (24)
6 902  24A° 9T?

At the origin, z = 0, soliton parameters have determinis-
tic values, so P(A, ¢, Q, ¢|0) = 5(A — Ay (e
— ¢)6(T — Tys(Q — Q). It is desirable that we
choose initial parameters close to the stationary solution
of Egs. (13)—(16) without noise, because doing so will en-
sure the stability of soliton propagation. A simple analy-
sis of Eqgs. (13)—(16) shows® that stationary frequency Q,
is zero and that stationary soliton position 7' is an arbi-
trary constant, whereas for the stationary amplitude we
have the relation « = A %/3. A stationary solution for
phase ¢ does not exist; however, if we renormalize the
phase to include stationary self-phase modulation, ¢
= (¢ — A.22/2)mod 2, the quantity ¢, is an arbitrary
constant from 0 to 277. Therefore we choose Qg = T,
= 0. And the requirement that A, be a stationary solu-
tion will fix the value of excess gain «, which so far has
been arbitrary:

a = pAy%/3. (25)

We also choose ¢y = ¢y = 0. The boundary conditions
in Q and T are as follows: P should decrease rapidly for
|Q| — o, |T| — ». In ¢ the boundary conditions are
those of periodicity: PA, ¢+ 27, Q, T|z)
= P(A, ¢, Q, T|z), with 0 < ¢ < 27. As for ampli-
tude A, we assume that the A component of probability
current vector j is zero everywhere at plane A = 0:

A2
Jalaco = {DP + aAP — 7| Q2 + ?AP
D 9
- ——[AP] =0.
2 0A Ao

Such a boundary condition ensures that we neglect soli-
ton creation and annihilation, which are beyond the scope
of applicability of the adiabatic soliton perturbation
theory anyway. Because at A=0 function P may have an
integrable singularity only, it follows that always

P(0, ¢, Q, T|z) = 0. (26)

Equation (24) is quite complicated and not easy to solve.
Therefore we dedicate Section 5 below to specific cases for
which we can find exact solutions for (marginal) PDFs,
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whereas in the rest of the paper we consider some ap-
proximate methods of solving Eq. (24).

5. EXACT SOLUTION FOR AMPLITUDE-
FREQUENCY JITTER: SYSTEMS
WITHOUT FILTERING

Equation (24) cannot be solved analytically in general.
However, often we are not interested in the full PDF
P(A, ¢, Q, T|z) but rather in some marginal distribu-
tion functions. In some cases we can obtain an autono-
mous equation for the marginal PDF by integrating out
the redundant degrees of freedom in Eq. (24). Here we
derive and solve such an autonomous equation for a mar-
ginal PDF for amplitude and frequency only, P(A, Q|z),
in the system without filtering (i.e., « = » = 0). The
corresponding FPE describes soliton statistics for a pure
NLSE with AWGN:

IP 1 ,. P J J
— = —(A?- 0% — + —{QP) — —{DP
dz 2( )(9(]5 aT{ i aA{ '
1 1 w2\ é2P
+D{-AT* + — |2+ —|—
6 12A 6/)o¢?
D 9P D & D P
+ —AT + ——[AP] + —A—
3 Q) 2 5A2 6 502
Da? %P
+ —_—. 27)
24A° 9T?

Now we can integrate this equation over ¢ and 7, using
integration by parts and boundary conditions in ¢ and 7.
We arrive at a simpler equation for the marginal PDF,
P(A, Ql2):

= —A—+ —A— (28)
dz

P D P D P
27542 6 402

The initial condition reads as
P(Q, Al0) = §(Q)5(A — Ay). (29)

The boundary conditions in ) are the usual ones, which
provide a rapid decrease of P as |()] goes to infinity. For

the amplitude we write, following Eq. (26),
Ply—g=0, Ply..—0.

As A goes to infinity, P should decrease rapidly to provide
normalization. To solve Eq. (28) we apply a Fourier
transform with respect to () and a Laplace transform with
respect to A:

P,(\z) = J’ dQJ- dAP(A, Qlz)exp(—\NA + ikQ).
—eo 0

(30)

Then, after the transformation, the equation takes the
form

—— — D\P,. (31)
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The initial condition is P,(\|0) = exp(—N\A,). Equation

(31) can be solved by the method of characteristics.
Omitting the details, we present the result in the form

1 E3
P(Q, Alz) = %J: P,(A|z")exp(—ikQ)dE, (32)

where
A\ 12 a,
P,(A = _ —a,(A
p(Alz") = (Ao) sinh(akz’)eXp[ a(
2ak \/AAO

+ Ag)coth(agz') ]I, (33)

sinh(a,z") |’

I, is the modified Bessel function, z’ = (D/2)z, and «;,
= k/\3.

Integrating Eq. (32) over frequency we obtain the PDF
for soliton amplitude jitter P(A) = [ P(Q), A|z)dQ:

P(Alz) = Py(Alz")
1/A\Y2 A+ Ay [2VAA,
= —|—| exp I, - .
z

z'"\Ag z'

(34)

Equation (34) represents an explicit form of the non-
Gaussian PDF, P(A). Using an asymptotic expansion for
the Bessel function, one can verify that P(A) has an ex-
ponential tail, as was predicted in Ref. 13:

A [ GE- A
P(A) ~ (A—) exp| ———— |,

0 z'

— o,

(35)

Now we can use the exact PDF, P(A|z’), to calculate
higher-order moments:

(A"y = 2L, Y(—Aq/z"), (36)

where L,! are the generalized Laguerre functions. Note
the expression for the first-order moment, (A) = A,
+ Dz, which implies a systematic increase of the soliton
amplitude as a result of the noise. This fact had been
overlooked in the literature until recently and was
pointed out in Ref. 13. We can also calculate the mo-
ments for the frequency () by using Egs. (32) and (33) (the
only nonvanishing moments are even ones):

»  PP"PL(Alz")
Q) = (71)"j dA ————
0 k™" k=0
*"G(k|z")
e 87
ok b0
where generating function G has the form
G(k|z') = sech?(a,z')exp[ —a;, tanh(a,z")A ]
In particular, for the variance we have
9 DAoz DZZZ
0% = + 38
Q%) 3 5 (38)

If we compare this result with that obtained with the
Gaussian approximation [see formula (5.113) of Ref. 6] we
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observe a correction of higher order in Dz, which stems
from the non-Gaussian statistics.

Equations (32) and (34) represent accurate results for
the marginal PDFs obtained directly from the FPE. We
use these results in the subsequent sections for compari-
son with results obtained by the approximate methods.

6. WEAK-NOISE LIMIT: WKB
APPROXIMATION

FPE (24) is a special case of a generic FPE [Eq. (A3) of
Appendix A], with advection and diffusion coefficients
given by Eqgs. (A4) and (A5). Here our goal is to build a
perturbation theory for the corresponding FPE [Eq. (A3)]
for small values of noise D. We use the WKB method and
the procedure described in Ref. 25.

We search for a solution in the form

S
P = exp )

where the function S is an effective action, and we expand
it in powers of D:

S:SO+D81+D2S2+

and then substitute it into Eq. (A3). In leading order in
D we obtain a Hamiltonian—Jacobi equation for the func-
tion W = S;:

oW oW

— +EF‘—+2 Qi— — =0, (39
[ ij 0ql ‘?qj

where

Fi = lim D,
D—0

QY = lim .
D—0

The solution of Eq. (39) is obtained in terms of the
Lagrange function

W=dez=fpdq—Hdz, (40)
where the Lagrangian is given by

L(q, q') = YQ(@)(q"" — F')(¢” - F/), (41

where @;; is the inverse of matrix QY and primes denote
differentiation with respect to z. It has the following
form:
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Q—l
[ 2/A 0 0 0 T
0 724 T2AT 0
12 + 72 12 + 72
=1 72A 6 12 + 72 + 124272 o
12+ 72 A 12 + 72
24A°8
0 0 0
- ﬂ-z

(42)
Momenta p; are introduced as canonically conjugated
variables of ¢; :

oL oW
pPi = = T,
aq o
and the effective Hamiltonian is

H(q, p) = Q(q)p,p; + Fi(a)p; - (43)

(Einstein summation rules are implied here and through-
out). The solution of Hamilton—Jacobi equation (39) is
the action taken along the Hamiltonian trajectories,
which are given as solutions of Hamilton’s equations:

d¢* oH y

— = — = F" + 2QY -

- QY(q)p;

dp, oH  oFi(q) IQ*(q)

e - = —p; — —p;pp. (44)
aq* aq* aq*

We are interested in the special solution of the FPE that
has deterministic values qg = (Ag, ¢, Oy, Ty) at the
origin z = 0. Such a solution P(q|qy; Z) is called a
propagator and in the weak-noise limit is given by?

4 ( a2W)
et
27D)? LD

z
X exp(f Gpdz)
0
1 (2  &H
X exp ——J Tr dz
2Jo dqip

1
—BW(q, Qo Z)}, (45)

1/2

P(qlqo; Z) = (

X exp
where
1
DD

and W(q, qy; Z) is the action of the Hamiltonian trajec-
tory from qg to q during the interval Z. The Hamilton
equations for the system of Egs. (13)—-(16) read as

dA
a = aA — 7](02 + A2/3)A + ApA7 (46)
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do 1 1
— = (1/2)(A%? — Q%) + |-AT? + —
dz 3 6A
7_1_2
X |2+ E Py + (AT)/3pq, (47)
dQ
< —(2/8)nA%Q + (AT/3)p 4 + (Al3)pq,
(48)
a7 2
E = _Q 3pT7 (49)
dpA 9 2
——=[-a+ nA°+ Q% ]ps — Ap,
dz
+ (43)7AQ,0 — (12)pa® — | (1/6)T*
1 ( 2 y 9
_ 2+ — - (1/6
oA 5| |Pe (1/6)p o
7T2
+ _pTZ, (50)
8A*
dpd’
— =0, 51
= (51)
dpg 9
- - 270Apy + Qp, + (218)nA“pg + pr,
(52)
dpr 9

The trajectories in Eq. (45) are the solutions of Eqs. (46)—
(53) subject to the following boundary conditions:

A(0) =Ay, A(Z)=A,
#(0) = do,  $(Z) = ¢,
20) =0, Q2Z)=0Q,
T(0)=T,, TZ) =T. (54)

Without loss of generality we may assume that ¢,
= Ty=0. The Hamiltonian system above possesses two
types of stationary state: those with p = 0 and those
with p # 0. The former are the stationary solutions of
Eqgs. (13)—(16) without noise that were considered in Sec-
tion 4. Henceforth we are interested only in these sta-
tionary solutions.

A. Classic Results: Gordon—-Haus Formula

In this section we calculate the PDF when propagation
distance z is not large and also when the arguments of the
PDF are close to the initial values; i.e., we describe the
bulk of the PDF for short distances. Under such condi-
tions Eq. (44) can be linearized about the stationary solu-
tionq = q,, p= 0:
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déq . .
o = Léq + 2Qp,
dp .
i ~L7p, (55)
where  sq=q-q,  @=[Q¥q)],  and

= JF'(q,)/dg’. The PDF of the linearized problem is
Gaussian. It was calculated in Ref. 25:

P(oq, 6q9; 2)
_ 1 1 1 TH—-1
" (4mD)? [detf?(z)]l/zexp( Tap POE )
(56)
where matrix R(z) is defined as
R(z) = f:dz' exp(Lz")Q exp(L7z"). (57)

The variances of the soliton parameters are given by
the diagonal components of matrix R. For Eqgs. (46)—(53)
we obtain

DA,
(6A(2)%) = 2DR 4y = 5[1 — exp(—2pBz2)], (58)

A®D
(8¢(2)%) = [2Bz + 4 exp(—pz)
233
Dz 772)
— exp(—2Bz) — 3] + E 1+ E s
(59)
A,D
(6Q(2)?) = ——[1 — exp(—2p2)], (60)
63
(6T(2)%) = [4 exp(—pBz) — exp(—2pz)
633
D2z
-3+ 2Bz] + , (61)
1243

0

where B = (2/3)9A,2. These results coincide with those
given in Ref. 6. In particular, the formula for timing jit-
ter (6T?) coincides with the classic Gordon—Haus result!
in the limit of zero filtering, 8 — 0. So we have obtained
classic results for Gaussian statistics of the soliton pa-
rameters for small propagation distances z and for the
core of the PDF.

B. Asymptotic Solution for the Tails of the Probability-
Density Function

The Hamiltonian system of Eqgs. (46)—(53) in general can-
not be solved analytically. Therefore we make a series of
simplifying assumptions here that will allow us to obtain
some results for the PDF in closed form. First, note that
phase ¢ does not enter into the coefficients of FPE (A3)
and is a cyclic coordinate in Hamiltonian (43). This
means that if one is interested not in the statistics of
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phase ¢ but only in the marginal PDF for the rest of the
soliton parameters PA,QO, T, Z)
= [PA, Q, T, ¢|Z)d¢ we can obtain a closed Fokker—
Planck equation for such a PDF by simply integrating Eq.
(A3) by parts and using periodic boundary conditions.
For the effective Hamiltonian description that we adopt,
this means that we obtained a reduced Hamiltonian sys-
tem that does not contain the equation for the phase and
Dy is set to zero. However, the system obtained is still
too complicated, and one needs to simplify it even further
to obtain analytical results. We assume large values of
the amplitude, A > 1. In this limit, neglecting the terms
~A™", n > 0, we obtain the following system:

dA

i aA — p(Q% + A%/3)A + Apy, (62)
do

o —(2/3)A%0 + (A3)pg, (63)
dar 0

— = -0, 64
P (64)
dpa 2 2
i [—a+ n(A% + Q%) ps — (4/3)nAQpg

— (1/2)ps* = (1/6)po?, (65)

dpg 9
E = 27]QApA + (2/3)7]A Pa + pPr, (66)
dprp
—=0. (67)
dz

Here we consider the simplest case when the filtering is
absent: « = 7 = 0. In this case equations for the mo-
menta become decoupled from those for the soliton pa-
rameters. Equations for pr and pg yield

pT(Z) = pT09 (68)

pa(z) = prz + pa, (69)

The equation for p, is a Riccati equation and does not
have a compact-form solution. Therefore we assume
here that p, < p4 and later provide the necessary appli-
cability conditions. Then the solution for the momentum
P4 is given by

The solution of the amplitude equation that satisfies
boundary conditions (54) is given by

2
z
Ae) = | VA, + (VA = VAg) |, (70)
while momentum p, is

o VA — A,
zZ) = .
ba VAoZ + (VA — VAg)z

(71)
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The remaining equations for 7(z) and Q(z) subject to
boundary conditions (54) can be solved. The expressions
for the Hamiltonian trajectories are quite bulky and are
not given here. In particular, one can find constants pr,
and Pa, that in the leading order in A ™! are

1807  36Q

pﬂo - AZ2 E’
240T 604

br, = + —. (72)
AZ3 AZ?

The applicability condition for the above analysis is
AZ? AZ
2407 600

Pa

Pa

~ max > 1; (73)

i.e., the found solution of the Hamiltonian system is valid
for values of () and T that are not large.

Next we need to calculate the action defined by Eq.
(40). It consists of two parts: the conserved Hamil-
tonian (pseudoenergy) and the reduced action. We calcu-
late the contribution of each part separately. Conserved
Hamiltonian H [Eq. (43)] for the reduced system without
phase and filtering reads as

7_[_2

1 1
H=E=—-Qpr+ —Ap,> + —Apo® + prt.
2 6 24A3

(74)

Because the energy is an integral of motion, it can be
evaluated at the origin z = 0. Because of boundary con-
ditions (54), the first term is zero. The third term can be
neglected under condition (73), and the fourth term can
be omitted, provided that z = 1. The main contribution
comes from the second term, and it can be written as

(VA - \ay?

Z[2

E= (75)

The calculation of reduced action W' is more involved but
can be done, producing in the leading order in A !

(VA — VA2 240T2  60TQ
= + + .
Z/4 AZ? AZ?

’

(76)

From Eq. (45) we can conjecture that, up to a prefactor,
the asymptote sought for the PDF is

(VA — VA,)? 24072
InP(A, T, Q|Z) ~ —W/D ~ -
DZ/2 DAZ3
60TQ
+ s A> A, 77)
DAZ?

where condition (73) is assumed as well as z = 1. This
result is in excellent agreement with the asymptote for
the marginal PDF P(A) given by relation (35). It also
shows that for large values of A the tails of the PDF are
Gaussian in 7. However, this does not mean that the
marginal statistics of the soliton position are Gaussian,
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because these statistics are determined by the behavior of
the PDF for arbitrary values of A and not only for large
values.

7. DISCUSSION

The equations of adiabatic perturbation theory for soliton
parameters in the presence of ASE are Langevin equa-
tions with multiplicative noise. They give rise to the
non-Gaussian statistics of soliton parameters. These
statistics can be adequately described by the Stratonovich
Fokker—Planck equation (or the Ito Fokker—Planck equa-
tion, provided that the advection vector is redefined). In
this paper we have derived a generic FPE for all four soli-
ton parameters in the presence of in-line filtering. Al-
though it is not possible to solve this equation in general,
except in a few special cases that we have considered, it is
still possible to obtain asymptotic results for small noise
intensity D by using the WKB method. In this approach
one has to solve a boundary problem for a system of
second-order ordinary differential equations (46)—(54) in-
stead of partial differential equation (24). We used this
approach to derive the tails of the joint PDF P(A, Q, T|z)
in the absence of filtering. The WKB approach can also
be beneficial when one is considering a numerical solution
of the problem. The classic formulas for the Gordon—
Haus effect and Gaussian statistics are recovered from
the FPE in the limit of small propagation distance z. A
joint PDF for frequency and amplitude jitter was calcu-
lated from the FPE and has proved to be non-Gaussian.
Note that any other control devices, e.g., Butterworth fil-
ters and amplitude and phase modulators, can be incor-
porated into the problem. The only restriction is that
they have to be treated perturbatively as required by
adiabatic soliton perturbation theory. Adding such
devices will change the advection terms of the FPE, which
will affect the steady state of the system.

APPENDIX A: DERIVATION OF THE
FOKKER-PLANCK EQUATION BY USE OF
THE FURUTSU-NOVIKOV FORMULA

The system of Eqgs. (13)—(16) is a special case of a general
system with complex white Gaussian multiplicative noise
[Eq. (18)], where q is an N-component real field, f; is a de-
terministic advection term, g; are the projection functions
that themselves depend on the random field q, and, fi-
nally, x is complex white Gaussian noise with statistical
properties given by Eqgs. (2) and (3). Here we assume the
Stratonovich interpretation of the Langevin system. We
are interested in the equation that governs the evolution
of the PDF:

N
P(qlz) = <1_[1 dlg; — CIiS(Z)]>, (A1)

where q, is the solution of the Langevin system [Eq. (18)].
Differentiating formula (A1) with respect to z, we obtain

d dg;®
= —; <—H Sq; — qﬁ<z>15’>,

dP
0z aq; i
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where we can now substitute the derivative dg;*/dz di-
rectly from Eq. (18):

P

Ty (s

H 6[QL - qls(z)]
0z

_] i

()

|

d d
—> —I[f{(@P(qlz)] = >, —Re
j 99; d

j 99;

+ Ref dtg;*(qs, t)x(z, )

X f, dtg;*(q, t)<H g, —q.°(2)1x(z, t)>~

To calculate the average in the last term we employ the
Furutsu—Novikov formula,?®?” which for white noise
states that

(A2)

SR x, X*]>
Sx*(¢, )|’

(RLx, x*1x(z, 8)) = D<

where R[ x, x*] is an arbitrary functional of white Gauss-
ian noise y. Applying this formula, we obtain

<H 8(q; — ¢)x(z, t>>

2 e (1 10~ v

6q;°(2)
_DE ﬁqk<1:I dq; — q; (Z)]m>-

Now all that remains is to calculate functional derivative
8q1°5(2)/ 6x*(z, t). Using Eq. (18), we can write

q:°(z) = q;°(0) + LdZ'fk(qs)

1 (= o
+ Ef dz’f dt'g,*(q® t")x(z', t')
0 —o0

1 (= °
+ Ef dz'f dt'g,(a% t")x*(z', ¢').
0 —w
Now we can calculate the derivative sought as a formal
limit:

6q,°(2) B
Sx*(z, t)

) L o), ]
m = - Z b b
ey 2 end
t'—t

where #0) is the value of the Heaviside function at the
origin, which is of course an ill-defined quantity. How-
ever, putting 6(0) = 1/2 will correspond to the assumed
Stratonovich interpretation of the Langevin equation be-
cause the multiplicative noise term in the Stratonovich
framework is symmetrically regularized. Therefore the
desired average reads as
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<H 3(q; — ¢ )x(z, t>>

D 9
= _ZE —I[gr(q, t)P(qlz)]
k 0qp

and we can finally write the FPE in closed form:

dP(q, z)

d
- —; gj[fj(q)mq, 2)]

D J o
—2 Re f dtg*(a, ¢)
45 -
J
x > —I[gua, t)P(q, 2)]
. 0qp

J
= - —[D(@P(glz)]
i 29

(92

+2

[Djr(@)P(qz)].  (A3)
Tk 9909}

Here D; and D, are the components of the advection vec-
tor and of the diffusion matrix, respectively. They are
given by the following expressions:

D » dg;*(q, t)
Di(@ = fi(@ + 2 Re | digi(a, t) ————,
k o0 I9qy,
(A4)
D oo
Dj.(q) = ZREJ dtg;*(a, t)gx(q, t). (A5)

All that is left is to calculate those functions by using defi-
nitions (9)—(12). This yields Eq. (24). Note that the FPE
[Eq. (A3)] can be written as a conservation law:

P 9

0z 7 (?qj’

where probability current J is given by

d
J; = Di(qP — X, —[Dj(q)P]. (A6)
09

The approach described here is valid also for the deri-
vation of the Ito FPE. One must bear in mind only that
the Ito interpretation requires that the theta function
that occurs in the derivation above be put to zero: 6(0)
= 0. Also, in differentiating Eq. (A1) with respect to z
one must remember the chain rule of Ito calculus [Eq.
(20)].
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