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Abstract: 
Two algorithms, based on Bayesian Networks (BNs), for bacterial subcellular location prediction, are explored in this paper: 
one predicts all locations for Gram+ bacteria and the other all locations for Gram- bacteria. Methods were evaluated using 
different numbers of residues (from the N-terminal 10 residues to the whole sequence) and residue representation (amino 
acid-composition, percentage amino acid-composition or normalised amino acid-composition). The accuracy of the best 
resulting BN was compared to PSORTB. The accuracy of this multi-location BN was roughly comparable to PSORTB; the 
difference in predictions is low, often less than 2%. The BN method thus represents both an important new avenue of 
methodological development for subcellular location prediction and a potentially value new tool of true utilitarian value for 
candidate subunit vaccine selection. 
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Background: 
Only proteins liable to surveillance by the immune system 
are likely candidate subunit vaccines. Thus, for bacteria, 
subcellular location can be a prime arbiter of 
immunogenicity. There are five principal subcellular 
locations in Gram- bacteria (extracellular, outer membrane, 
periplasmic, inner membrane, or cytoplasmic) and three 
locations in Gram+ bacteria (extracellular, membrane, or 
cytoplasmic). Components of the proteome contain signals 
which can direct proteins to one or more of these locations. 
Such signals are legion. They can, for example, be explicit 
sequence motifs recognised by a membrane transporter. 
They can also be coincidental physical properties that 
render certain proteins compatible with their environment 
and were derived through an evolutionary process. An 
organism can read such signals well enough in vivo, and 
there is thus much interest in effectively reproducing this in 
silico. Bioinformatician’s have, therefore, attempted to 
identify both sequence motifs and overall physical 
properties of proteins indicative of protein subcellular 
location.  
 
Many methods have attempted to predict subcellular 
location. There are two basic types of prediction method: 
manual construction of rules derived from factors thought 
to determine subcellular location and the application of 
data-driven machine learning methods that automatically 
identify factors that determine cellular localisation, using 
proteins of known location as training data. The degrees of 
accuracy differ markedly between methods and 
compartments, reflecting either a lack of data for a specific 
compartment or the complexity of factors controlling the 
location of certain proteins. 

However, there have been few, if any, real attempts to 
create prediction methods for all such compartments, since 
most methods predict only a subset of the ‘most interesting’ 
locations. An exception to this is PSORTB, which is a sub 
cellular location-prediction expert system developed 
specifically for bacteria. [1] PSORTB is a modular system 
based on 6 prediction algorithms. A query protein 
undergoes analysis by each of the modules and the results 
are then combined. The modules that form PSORTB are: 
SCL-BLAST, which uses sequence similarity to known 
proteins to identify location; PROSITE, which detects 
motifs indicative of subcellular location [2]; HMMTOP, a 
method for the prediction of TM domains, to identify 
membrane proteins [3]; outer membrane protein motifs are 
identified using sequences occurring only in TM beta barrel 
proteins; SubLocC, a support vector machine based 
method, which assigns a cytoplasmic or non-cytoplasmic 
location based on amino acid-composition; and a hidden 
Markov model trained to identify signal peptide cleavage 
sites. Prediction of a query sequence location is reported as 
the likelihood that a query protein belongs to a particular 
compartment. PSORTB has a precision of 96.5% and a 
recall of 74.8%. 
 
In the context of bacterial subcellular location prediction, 
methods based on Bayesian Networks (BNs) are explored 
in this paper. Two algorithms which predict all locations 
for Gram+ and Gram- bacteria were created. A range of 
variant methods was evaluated, with differences including 
the number of residues considered (from the N-terminal 10 
residues to the whole sequence) and residue representation 
(amino acid-composition, percentage amino acid-
composition or normalised amino acid-composition). The 
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accuracy of the best resulting BN was then compared to 
PSORTB. 
 
Methodology: 
Dataset 
An algorithm was used to mine the bacterial subset of 
SWISS-PROT release 40. [4] Initially, bacterial status was 
confirmed using the OC line code of the SWISS-PROT 
entry. Entries were split into Gram+ and Gram- at the 
superfamily level. The following were assigned as Gram+: 
actinobacteria; deinococcus; thermus; firmicutes; 
planctomycetes; and thermotogae, and the following 
assigned as Gram-: chlamydia; verrucomicrobia; 
cyanobacteria; chloroflexi; fusobacteria; nitrospirae; 
proteobacteria; spirochaetes; chlorobi; and bacteroidete. 
The SWISS-PROT subcellular location descriptions (lines 
labelled CC) were then searched to identify if the 
subcellular location was known. To remove proteins of 
uncertain location, only entries not labelled as ‘potential’, 
‘probable’, ‘hypothetical’, ‘possibly’ or ‘by similarity’, 
were incorporated into the final data-set. A non-redundant 
data-set of proteins was obtained using CLUSTALW. [5] If 
two or more proteins were found to have sequence 
similarity higher than 90% then all but one were removed 
from the data-set. The algorithm and subsequent 
CLUSTALW analysis produced a Gram- data-set of were 
272 extracellular proteins, 375 membranous proteins and 
1500 cytoplasmic proteins, while the final Gram+ data-set 
contained 185 extracellular, 159 outer membrane, 432 
periplasmic, 273 inner membrane and 2480 cytoplasmic 
proteins. 
 
Combined bacterial subcellular location predictor 
method 
When training the method, a variety of sequence 
representations were examined. Six different sequence 
lengths were used: residues 1-10 of the N-terminus, 
residues 1-20, residues 1-30, residues 1-40, residues 1-50, 
and the whole protein sequence. For each sub-sequence, 
amino acids were represented in three ways: as the residues 
themselves, as the amino acid-composition (for each 
residue, the total number of each amino acid in the sub-
sequence); and as the normalised amino acid-composition 
(for each amino acid, the residue composition divided by 
the total number of amino acids in the sub-sequence).  
 
Each representation was tested with each sub-sequence 
length, creating 18 Näive-Bayes networks. The amino acid-
composition and normalised composition sequence 
representations used BNs comprising 20 input nodes and 1 
output node. During training, a sub-sequence is extracted 
from the original protein sequence and its composition 
calculated. To train the BN for an individual sub-sequence, 
each of the 20 input nodes is assigned a different 
composition value: the first contains that of alanine, the 
second that of arginine, etc. This procedure is repeated until 
all sub-sequences have been used to train the network. The 

output node is given the value of the subcellular location of 
the training protein, which are different for Gram+ (5 
locations) and Gram- (3 locations).  
 
The directed acyclic graph (DAG) required when the 
residue representation was the actual amino acid sequence, 
varied when different sequence lengths were used. A length 
of 10 residues required a BN with 10 input nodes, for 
example. When the whole protein sequence was used, the 
DAG required as many input nodes as the protein had 
amino acids. Since the same network is used for all the 
proteins of the data-set, the longest protein determined the 
total number of input nodes used. For the Gram- predictor 
2248 input nodes were used and for the Gram positive 
predictor 1852 input nodes were used. The amino acids 
were converted to integers, 1 to 20 according to the 
alphabetical order of their single letter representations i.e. 
alanine (A) had the value 1, cysteine (C) was 2, etc. When 
training the network, the first input node takes as its value 
the first residue, the second the second, and so on until the 
end of the sequence. Input nodes that do not have a 
corresponding amino acid, due to the training sequence 
being shorter than the maximum length, were assigned the 
value 0. The output node is given the value of the 
subcellular location of the training protein. 
 
Testing of the network was performed using the training set 
under five-fold cross-validation. For all networks, the 
negative set chosen was the equivalent data-set of the 
opposite Gram-type. To assess the predictivity of the 
Bayesian approach, the same data-sets were submitted to 
the PSORTB predictor. 
 
Results and Discussion: 
For both Gram+ and Gram- predictors the same 
combination of residue representation and sub-sequence 
length produced the most accurate results: amino acid-
composition and a sub-sequence length of 50 residues. See 
Tables 1 and 2. The accuracy of both predictors increased 
with increasing sub-sequence length, up to 50 residues. 
Generally, both predictors were more accurate when using 
amino acid-composition. The worst performing 
representations is the one based on residues, which tries to 
capture residue position specific information. Apparent 
inadequacies of the representation may arise from the 
structure of the BN DAG requiring it: the number of input 
nodes equalled the length of the longest sequence; all other 
sequences therefore had many nodes assigned a value of 0 
during training. For each compartment, the longest 
sequence was many times larger than the average sequence, 
thus many input nodes for most sequences had little 
predictive benefit. 
 
The sub-sequence length affected accuracy more obviously. 
Unsurprisingly, the accuracies of all locations are highest 
when the first 50 residues are considered, since this will 
encompass the entire length of the vast majority of signal 
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sequences. Shorter lengths may neglect important regions 
within such signal peptides. Charge, length, and 
composition, among other properties, will vary between 
different signal sequences and can therefore be used to 
distinguish accurately between different signal peptides.  
 
A surprising feature of the results was that in most cases 
the accuracy of amino acid-composition for the whole 
protein was close to the accuracy of just the first 50 
residues. However, for the extra-cellular compartment 
Gram+ predictor, the whole protein composition had a 
higher accuracy. This was unexpected as the un-normalised 
composition varied significantly with sequence length. A 
possible explanation is that Gram+ extracellular sequences 
have a very different length distribution to sequences from 
other compartments. The average length of sequences from 
each compartment was calculated. For the Gram+ proteins 
the average sequence length of the extracellular set was 
397, compared to 491 (membranous proteins) and 442 
(cytoplasmic). Further support comes from the Gram- 

sequence lengths, which were found to be 549 
(extracellular), 568 (outer membrane), 322 (periplasmic), 
400 (inner membrane), and 448 (cytoplasmic). If the BN 
based on composition draws its predictivity from the 
atypical Gram+ sequence length distribution, then the 
accuracy for the negative set should be low, since sequence 
length is nearer that of Gram+ extracellular sequences.  
 
Comparing the best performing multi-location BNs to 
PSORTB indicates that their accuracy is roughly 
equivalent; the discrepancy between predictions is typically 
low, often less than 2%. See table 3. Exceptions include the 
extracellular compartment (both Gram- and Gram+) and 
membrane prediction. The prediction of extracellular 
location is more accurate for both Gram- (8.57% higher 
than PSORTB) and Gram+ (7.86 higher). For membranous 
prediction, PSORTB has an accuracy which is 20.54% 
higher than that of the Gram+ multi-location predictor. This 
may be because PSORTB is specifically trained to identify 
TM spanning regions.

  
Sequence 

representation 
Sub-sequence 

length 
Cytoplasmic 
accuracy (%) 

Membrane 
accuracy (%) 

Extracellular 
accuracy (%) 

Negative set 
accuracy (%) 

10 98.84 3.73 8.20 32.25% 
20 94.15 19.20 45.08 29.43% 
30 93.94 41.07 52.87 51.11% 
40 93.94 52.53 52.05 77.62% 
50 94.89 70.93 78.28 92.25% 

Amino acid-
composition 

All sequence 94.49 59.20 48.77 94.71% 
10 60.11 0.00 0.37 21.14% 
20 79.71 0.80 4.41 23.51% 
30 85.64 3.73 8.82 31.23% 
40 87.81 23.73 13.97 42.24% 
50 90.06 24.27 25.00 43.25% 

Amino acids 

All sequence 99.12 26.93 36.40 47.14% 
10 100 30.67 56.15 25.26% 
20 100 31.73 61.48 29.43% 
30 100 46.93 56.56 42.15% 
40 100 59.47 57.38 56.45% 
50 100 65.00 75.00 78.26% 

Normalised 
amino acid-
composition 

All sequence 100 65.00 55.33 76.15% 
Table 1:  Results of the Gram+ all compartments predictor. The best performing network is highlighted in bold 
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Sequence 
represent-

ion 

Sub-
sequence 

length 

Cytoplasmic 
accuracy 

(%) 

Inner 
Membrane 

accuracy (%) 

Periplasmic 
accuracy (%) 

Outer 
Membrane 

accuracy (%) 

Extracelluar 
accuracy (%) 

Negative 
set 

accuracy 
(%) 

10 78.14 13.31 61.14 1.13 55.14 80.14 
20 81.61 49.14 63.73 7.14 59.62 84.72 
30 85.25 52.51 69.09 34.15 76.15 83.62 
40 86.14 74.62 72.24 59.25 71.17 89.25 
50 84.74 91.16 79.96 70.75 86.12 92.42 

Amino acid-
composition 

All sequence 89.14 84.57 71.15 55.25 80.24 87.59 
10 32.55 22.21 2.14 0.24 8.36 27.73 
20 35.25 27.52 7.36 2.51 14.82 32.15 
30 29.83 32.15 12.93 7.37 17.93 34.85 
40 40.24 37.86 18.74 8.52 24.99 41.84 
50 41.84 32.41 34.14 12.41 28.25 36.83 

Amino acids 

All sequence 40.34 44.83 27.41 15.84 22.51 40.14 
10 63.26 22.15 52.36 0.42 40.25 57.12 
20 64.37 53.87 58.25 2.35 43.95 58.51 
30 69.73 68.46 65.36 12.94 51.64 68.20 
40 72.63 81.36 73.36 33.73 52.72 71.14 
50 74.89 92.97 71.l4 60.26 66.67 74.28 

Normalised 
amino acid-
composition 

All sequence 71.46 91.73 70.73 52.24 63.26 71.75 
Table 2: Results of the Gram- all compartments predictor. The best performing network is highlighted in bold 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3: Accuracy of PSORTB bacterial subcellular location predictor in comparison to the most accurate methods 
produced  
 

Conclusion: 
Good levels of accuracy were achieved, yet PSORTB 
outperformed the BN method. Since our approach attempts 
to utilise a single method and sequence representation to 
capture all information relevant to bacterial subcellular 
location, the performance of the BN method reported here 
is most encouraging. When comparing our method to 
PSORTB, we see a single methodology competing against 
an expert system, which is specifically designed to 
capitalise on best-in-class methods. Constructing a 
successful multi-outcome predictive method is difficult. 
Prediction is made between input variables that are very 
difficult to separate using any method. The generally lower  
 

degree of prediction accuracy of the BN approach is most 
likely due to PSORTB applying many algorithms, each 
specifically trained to address the individual requirements 
of each particular location. Clearly, this strategy is more 
likely to produce a significantly greater level of accuracy. 
However, the BN method described here is nonetheless 
very competitive, notwithstanding such arguments. Thus, 
we can aver that BNs represent an important new avenue in 
subcellular location prediction and that our implementation 
is in itself a potential powerful new tool for candidate 
subunit vaccine selection with real utilitarian value. 
 
 
 
 

Gram-type Subcellular location PSORTB accuracy (%) Multi-location 
predictor accuracy 

(%) 
Cytoplasmic 96.38 94.89 
Membranous 91.47 70.93 
Extra-cellular 70.42 78.28 

Gram+ 

Negative set 93.86 92.25 
Cytoplasmic 91.37 84.74 

Inner membrane 94.68 91.96 
Periplasmic 84.69 79.96 
Outer membrane 83.70 70.75 
Extra-cellular 77.55 86.12 

Gram- 

Negative set 90.02 92.42 
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