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Abstract
Background: The binding between antigenic peptides (epitopes) and the MHC molecule is a key
step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity
can greatly expedite epitope screening by reducing costs and experimental effort.

Results: Recently, we demonstrated the appealing performance of SVRMHC, an SVR-based
quantitative modeling method for peptide-MHC interactions, when applied to three mouse class I
MHC molecules. Subsequently, we have greatly extended the construction of SVRMHC models and
have established such models for more than 40 class I and class II MHC molecules. Here we present
the SVRMHC web server for predicting peptide-MHC binding affinities using these models.
Benchmarked percentile scores are provided for all predictions. The larger number of SVRMHC
models available allowed for an updated evaluation of the performance of the SVRMHC method
compared to other well- known linear modeling methods.

Conclusion: SVRMHC is an accurate and easy-to-use prediction server for epitope-MHC binding
with significant coverage of MHC molecules. We believe it will prove to be a valuable resource for
T cell epitope researchers.

Background
Major histocompatibility complex molecules (MHCs) are
polymorphic glycoproteins residing on cell membranes.
In the cellular immune system, MHC molecules bind
small peptide fragments, or epitopes, derived from anti-
gens and host proteins, and present them to T cells, thus
inducing downstream immune system responses. Com-
putational prediction and modeling of epitope-MHC
binding is of considerable interest because it can greatly
facilitate epitope screening, with tremendous concomi-
tant savings in time and experimental effort. Over the past
~15 years, many such computational methods have been

proposed (for a comprehensive review see [1]). While
some of these methods are structure-based (e.g., [2-5]) or
make use of structural information (e.g., [6]), the majority
of methods are sequence-based. While interesting and
bursting with potential, structure- based methods are cur-
rently less reliable than strongly data-driven sequence-
based methods. In terms of the types of predictions made,
sequence-based methods are of two types. Most methods,
including BIMAS [7], SYFPEITHI [8], RANKPEP [9],
SVMHC [10], MULTIPRED [11], and a few others, e.g.,
[12-14] are "qualitative methods", i.e., they make predic-
tions about whether a peptide is a "binder" or a "non-
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binder" or a "strong binder" or a "weak binder". Some
recent methods, including 3D-QSAR [15] and the additive
method [16,17], are "quantitative" data-driven tech-
niques, i.e., they predict the exact binding affinity of the
peptide.

We recently developed SVRMHC, a support vector
machine regression (SVR)-based method for modeling
peptide-MHC binding. SVRMHC is a sequence-based
quantitative method that makes predictions about the
exact binding affinity of the peptide. As a kernel-based
approach, SVRMHC demonstrates the excellent modeling
performance enjoyed by other SVM-based methods such
as SVMHC [10] and HLA-DR4Pred [18]. In a preliminary
test with three mouse class I MHC alleles (H2-Db, H2-Kb
and H2-Kk), we showed that SVRMHC produced models
that out-performed those generated using the linear addi-
tive method. Moreover, a Receiver Operating Characteris-
tic (ROC)-based comparison suggested that SVRMHC
out-performed prominent methods in identifying
strongly binding peptides [19].

Subsequently, we constructed and validated SVRMHC
models for over 40 MHC alleles. In this report, we
describe the SVRMHC server, which predicts T-cell
epitopes using these models. In addition to the predicted
binding affinity, the SVRMHC server calculates a percen-
tile score for each input peptide benchmarked against a
pool of ~528,500 peptides. These were derived from
1,000 proteins picked randomly from the Swiss-Prot data-
base. Construction of a large number of SVRMHC models
has allowed a better comparison to be made between the
SVRMHC and the additive method, which we discuss
briefly in this report.

Implementation
SVRMHC model construction was carried out in locally
developed C and Matlab programs. LibSVM was used for
SVR-related implementation [20]. The web server was
developed as a PHP project running under Apache 2.0 on
a Fedora Core II Linux system.

Results
Construction of SVRMHC models
The data used for constructing the SVRMHC models was
obtained from the AntiJen database [21] (March 3, 2006).
Each binding experiment was represented as a
(sequence:pIC50) pair in the dataset. We constructed
SVRMHC models for all class I MHC alleles with ≥ 30
affinity measurements and all class II alleles with ≥ 50
affinity measurements. In total, models for 42 MHC mol-
ecules (36 class I, 6 class II) were constructed (Tables 1
and 2). They included 37 human, 3 mouse, and 2 chim-
panzee MHC molecules. For each MHC molecule, we
attempted six different configurations resulting from three

different kernel functions (linear, polynomial and RBF) in
combination with two sequence encoding schemes
("sparse encoding", and "11-factor encoding" [19]). The
accuracy of prediction for each configuration was assessed
using cross-validated q2 (for class I models) or cross-vali-
dated r (for class II models). The configuration that offers
the highest prediction performance was chosen for the
final model. LOO (leave-one-out) or 7-fold cross-valida-
tion was used when assessing the performance of class I
models, and 5-fold cross-validation was used when evalu-
ating class II model performance. The final model set
included 39 nonamer models, together with 2 octamer
models (for H2-Kb and H2-Kk) and 1 decamer model (for
A*0207).

The class II SVRMHC model construction was more com-
plicated than the class I case because the longer input
sequences required alignment to the model's nonameric
"core sequence". We took an approach similar to the iter-
ative self-consistent (ISC) strategy described earlier [17].
First, we obtained the anchor position information about
the class II MHC molecule from SYFPEITHI [8]. The first
anchor position was used to limit the number of possible
alignments to be considered: only alignments with a
reported anchor amino acid at the first anchor position
were considered to be valid. At the beginning of model
construction, all validly aligned nonamer sequences, as
derived from all training set sequences, were included in
the model training. After the first model was trained, pre-
dictions were made for each aligned sequence. The align-
ment for each input sequence that resulted in the smallest
residual in the prediction was retained, and other alterna-
tive alignments were removed. A subsequent model was
then trained using the updated set of aligned sequences;
after this, another round of predictions was made. This
process continued until the model performance (as meas-
ured by cross-validated r) no longer improved, or when an
iteration threshold was exceeded (this number was set to
4).

Three different sequence alignment protocols – "mean",
"max", and "combi" – were used in [17] when making
predictions for a sequence with an established model. Our
present experience with the SVRMHC models indicated
that no significant difference was apparent among the
three alignment protocols. However, overall the "mean"
alignment method offered slightly better cross-validated r
scores. Therefore, "mean" alignment was implemented in
the SVRMHC server.

Benchmarking prediction results
In ROC-based comparisons, previous SVRMHC models
out-performed several well-known methods when identi-
fying strong binding peptides [19]. This suggests that
SVRMHC models perform well in sorting peptides in
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terms of their relative binding affinities. However, the
absolute values of predictions made by SVRMHC models
may be sensitive to bias introduced into the dataset used
to train the models. For instance, if the training dataset
mainly consists of strong binders (pIC50>7), then the
constructed model is likely to be biased towards a higher
affinity predictions range. To counter this potential prob-
lem, we benchmarked each SVRMHC model using a large
number of natural peptide sequences. We picked 800
human proteins and 200 mouse proteins at random from
the Swiss-Prot database. From these 1000 proteins, we
extracted all short subsequences of length 8, 9, and 10.
After removal of identical sequences, 528,409 octamers,
528,596 nonamers and 528,433 decamers were obtained.
These sequences constituted the benchmark sequence

pool. For each SVRMHC model, predictions were made
using all sequences in this pool, and the distribution of
predicted values was obtained. This distribution provides
an estimate of how the "general population" of peptides
would "behave" when calculated using the SVRMHC
model. The higher the rank of a peptide relative to the
"general population", the more likely it is to be a strong
binder. Likewise, a low ranked peptide may not be a
stronger binder even if its predicted binding value is high
(e.g. pIC50>7). Thus, for each peptide sequence submit-
ted by the user, the SVRMHC server provides not only the
predicted binding affinity of the peptide, but also a per-
centile score revealing how many sequences in the bench-
mark pool produced higher predicted binding affinity
values than the sequence of interest.

Table 1: The list of class I MHC alleles for which SVRMHC models have been constructed.

MHC allele Linear, 11-
factor

Linear, Sparse Polynomial, 11-
factor

Polynomial, 
Sparse

RBF, 11-factor RBF, Sparse

A*0101 0.228 0.172 0.237 0.353 0.339 0.344
A*0201 0.245 0.211 0.383 0.433 0.485 0.461
A*0202 -0.173 -0.709 0.115 0.273 0.205 0.228
A*0203 0.189 -0.009 0.352 0.291 0.346 0.297
A*0204 -0.695 -0.691 0.007 -0.01 0.031 -0.02
A*0206 0.066 0.325 0.266 0.369 0.272 0.38
A*0207 0.682 0.619 0.682 0.629 0.68 0.628
A*0301 0.204 0.284 0.361 0.431 0.534 0.374
A*0302 -0.057 0.189 0.174 0.208 0.172 0.207

A1 0.25 0.31 0.26 0.382 0.36 0.379
A11 0.1 -0.546 0.334 0.263 0.336 0.279

A*1101 0.09 -0.118 0.197 0.202 0.206 0.197
A2 0.158 0.109 0.315 0.304 0.342 0.316
A24 0.205 0.1 0.361 0.21 0.378 0.233
A3 0.023 -0.361 0.293 0.348 0.373 0.357
A31 -0.038 0.268 0.217 0.392 0.395 0.389

A*3101 0.743 0.385 0.743 0.487 0.741 0.492
A33 -0.777 0.079 0.004 0.245 0.16 0.224

A*3301 -0.777 0.079 0.004 0.245 0.16 0.224
A68 0.278 0.223 0.332 0.398 0.347 0.421

A*6801 0.00014 0.287 0.408 0.293 0.394 0.312
A*6802 -0.169 0.201 0.001 0.313 0.243 0.344
B*0702 0.19 0.221 0.349 0.398 0.422 0.413

B35 -0.132 0.333 0.171 0.363 0.382 0.36
B*3501 -0.397 0.113 0.193 0.26 0.24 0.26

B51 0.492 0.145 0.424 0.408 0.507 0.408
B53 0.073 0.508 0.25 0.445 0.289 0.507

B*5301 0.073 0.508 0.25 0.508 0.289 0.507
B54 0.468 -0.212 0.468 0.269 0.429 0.277

B*5401 0.468 -0.212 0.468 0.269 0.429 0.277
B7 0.343 0.223 0.328 0.528 0.443 0.543

H-2Db 0.504 -0.038 0.552 0.412 0.521 0.416
H-2Kb -0.09 -0.526 0.259 0.18 0.28 0.178
H-2Kk 0.731 0.501 0.738 0.502 0.763 0.513

Mamu-B*17 0.621 0.595 0.554 0.64 0.602 0.653
Patr-A*0602 -0.143 0.412 0.318 0.447 0.171 0.476

The table also contains statistics for the performance of the models (expressed in cross-validated q2) for various configurations of parameters. The 
configurations offering the best performance are marked in bold, and these are the models implemented in the SVRMHC server.
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Utility
At the SVRMHC prediction server, the user can paste a pro-
tein sequence (either as plain text or in FASTA format)
into the "Input Sequence" text area, or upload a local
sequence file to the server. The user then selects the target
MHC allele. Optionally, the user can enter either a pIC50
threshold or a percentile score threshold. The prediction
results (pIC50 values and percentile scores) will be dis-
played either in the order in which they occur in the input
protein sequence or sorted as a list in descending order of
predicted pIC50 values.

Discussion
Model configuration statistics
Of the 42 final SVRMHC models included in the server
(see Tables 1 and 2), 23 were constructed using the RBF
kernel, 18 were constructed using the polynomial kernel,
and one was constructed using the linear kernel. In 23 out
of the 42 final models, the "11-factor encoding" scheme
was adopted; the remaining 19 final models used the
"sparse encoding" scheme. The number of final models
that adopted the four configurations "RBF/11-factor",
"RBF/sparse", "polynomial/11-factor", and "polynomial/
sparse" were 16, 7, 7 and 11, respectively. These statistics
suggest that although the configuration "RBF/11-factor" is
most likely to generate the best performing model, it is
possible for other configurations to produce better mod-
els. It is therefore sensible, given a new dataset, to explore
all configurations and identify that which offers optimal
performance.

Performance comparison with linear modeling methods
In our previous report [19], we showed that SVRMHC
models offered better performance than models con-
structed using the linear "additive method" using binding
datasets for three mouse class I MHC alleles. Having con-
structed larger numbers of models, we could now com-
pare the two approaches more completely. We built
"additive method" models for the 42 MHC molecules as
described in [16,17], with the same datasets used to con-
struct corresponding SVRMHC models. A comparison

between the SVRMHC models and the "additive method"
models indicated that the SVRMHC models produced sig-
nificantly higher cross-validated q2 than the "additive
method" models before outlier removal [19,22]. How-
ever, after we removed outliers, the performance of
SVRMHC and "additive method" models was compara-
ble, though fewer outliers were removed for the SVRMHC
models. More details of the comparisons can be found at
[23].

Conclusion
SVRMHC server is an accurate and easy-to-use server for
predicting epitope-MHC binding. It offers significant cov-
erage in terms of MHC molecules and this study has
reconfirmed model performance. SVRMHC will continue
to expand as more binding data becomes available. We
believe the SVRMHC server will become a valuable
resource for researchers interested in predicting T cell
epitopes.

Availability and requirements
SVRMHC server is publicly accessible from the URL http:/
/SVRMHC.umn.edu/SVRMHCdb. Questions and com-
ments are welcomed through the site.
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Table 2: The list of class II MHC alleles for which SVRMHC models have been constructed.

MHC allele Linear, 11-
factor

Linear, Sparse Polynomial, 11-
factor

Polynomial, 
Sparse

RBF, 11-factor RBF, Sparse

DRB1*0401 0.526 0.556 0.551 0.612 0.582 0.61
DRB1*0101 0.531 0.5 0.568 0.616 0.634 0.61
DRB1*1501 0.659 0.622 0.703 0.693 0.7078 0.671
DQA1*0501 0.456 0.568 0.529 0.581 0.546 0.537
DRB1*0405 0.249 0.48 0.364 0.415 0.295 0.412
DRB5*0101 0.408 0.479 0.391 0.589 0.374 0.532

The table also includes statistics of performance for the models (expressed in cross-validated r) for various configurations of parameters. The 
configurations offering the best performance are marked in bold, and these are the models implemented in the SVRMHC server.
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