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Abstract 

The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in 

recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in 

operation; however, their waste supply chains and business practices vary significantly. With 

over a hundred more plant developments being considered it is important to establish best 

business practices for ensuring efficient environmental and operational performance. By 

reviewing the 25 plants we identify four suitable case study plants to compare technologies 

(moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data 

collected from annual reports and through interviews and site visits we provide 

recommendations for improving the supply chain for waste incinerators and highlight the 

current issues and challenges faced by the industry. We find that plants using moving grate 

have a high availability of 87 – 92%. However, compared to the fluidised bed and rotary kiln, 

quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. 

The uptake of integrated recycling practices, combined heat and power, and post incineration 

non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We 

conclude that one of the major difficulties encountered by waste facilities is the appropriate 

selection of technology, capacity, site, waste suppliers and heat consumers. This study will be 

of particular value to EfW plant developers, government authorities and researchers working 

within the sector of waste management. 

 

Keywords: Energy from Waste (EfW); Municipal Solid Waste (MSW); green supply chains; 

waste-to-energy; incineration. 
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1. Introduction 

In 2009-10, 49% of domestic waste in the UK was disposed of by landfill, which represented 

a fall of 15% from 2005-06. This reduction in waste sent to landfill is primarily a result of the 

EU Landfill Directive (1999/31/EC). Under this directive, the UK is obligated to have 35% of 

its biodegradable municipal waste produced in 1995 sent to landfill by 2020 (Defra, 2012). In 

order to meet this target, the UK’s landfill tax is increasing rapidly from 28 €/tonne in 2007 

to 95 €/tonne by 2014, where it will remain until 2020 (HM Revenue & Customs, 2013). 

However, in comparison to the average European country, landfill rates in the UK are still 

12% higher. Recycling and composting, and incineration rates in the UK are also respectively 

4% and 8% lower than the EU27 average (Defra, 2011a). In England in 2011, 18% of MSW 

was incinerated, 42% (10.8 million tonnes) was recycled and composted, and 40% was sent 

to landfill (Defra, 2011b). In comparison, in 2009, Germany recycled and composted 67.3%, 

incinerated 31.9% and landfilled 0.4% of their MSW, see Figure 1 (Defra, 2011a). After the 

European Landfill Directive, it was suggested that as many as 170 new incineration plants in 

the UK could be required to meet the 2020 target (Burnley, 2001). According to Defra 

(2013), in 2010, there were 73 permitted incinerators in the UK, 18 of which processed 

MSW. As of May 2013, UKWIN (2013) reported that there were 32 permitted plants to 

incinerate MSW with an additional 100 potential plants being planned or considered. A 

significant number of these proposed plants will remain in planning for many years or 

eventually be cancelled as result of strong opposition from communities and 

environmentalists. Objections arise from concerns over health risks from emissions, visual 

impact, noise, traffic and the perception that incineration is detrimental to recycling and 

waste prevention efforts (Snary, 2002). Many of these issues are faced by all biomass energy 

developments in the UK (Upreti, 2004).  

 

The characterisation of emissions and the treatment of Air Pollution Control (APC) residues 

from waste incinerators have been the focus of many researchers (Amutha Rani et al., 2008; 

Porteous, 2001; Sam-Cwan et al., 2001). Incinerators in Europe today operate under strict 

emission regulations and state of the art technologies have radically reduced harmful 

emissions in comparison to those produced in the early 1990s (Porteous, 2001). It has even 

been reported that under certain conditions the incineration of waste can reduce green house 

gas emissions (Papageorgiou et al., 2009). Research has also shown that the health risks from 

waste incineration are five times lower in comparison to landfill (Moy et al., 2008). APC 

residues, which include fly ash, carbon, lime and dioxins and furans, are one of the main 



3 
 

drawbacks of incineration as they are hazardous wastes. APC residues in the UK are typically 

disposed of by hazardous landfill, stored in salt mines or used for acid waste neutralisation.  

 

Bottom ash is the other main waste output from waste incinerators. Once left for a month to 

stabilise leachates, bottom ash is considered to be environmentally safe (although continual 

checks are required) and can be used in road, pavement and building construction or similar 

(Forteza et al., 2004). Considerable amounts of ferrous and non-ferrous metals can be 

recovered from bottom ash. It has been reported that bottom ash from a dry extraction 

process, rather than a typical wet extraction process, for a plant in Switzerland on average 

contains 11% iron, 2.2% aluminium, 0.5 copper and 0.003% gold (Sigg, 2012). In the UK, 

5% of MSW is ferrous and non-ferrous metals. 

 

As demonstrated by countries such as Germany (Figure 1), the incineration of waste does not 

have to impede recycling. Only 39% of MSW in the UK is recyclable materials (paper, 

plastics and glass) (Burnley, 2007). Thus, there is still a large amount of waste to be 

processed and metals can still be recovered after incineration. However, many difficult 

decisions need to be made during the planning phase of EfW plants to maintain an efficient 

green supply chain. The waste supply chain includes collection, storage, delivery, recycling, 

re-use, processing, post recycling, and ash and APC residue handling. Plants can also choose 

to utilise Combined Heat and Power (CHP) to improve efficiencies, however difficulties can 

occur regarding project financing due to ensuring a reliable demand for heat (DECC, 2012). 

CHP systems requiring a district heating network in the UK also suffer from high retrofitting 

costs (Enviros, 2008), consumer distrust, unwillingness to sign long off-take contracts 

(NNFCC, 2012) and lenghty return on investment (ElementEnergy, 2011). Issues can also 

arise as waste characteristics and generation rates can vary annually, seasonally and in 

different locations.  

 

The supply chains for waste incinerators in the UK and elsewhere are complex indeed. 

Approaches for managing each stage of the waste supply chain vary and it is therefore 

important to fully understand all the upstream and downstream activities for incinerators. As 

waste generation rates increase, more incinerators will come online; thus there is a need for 

establishing the best practices for operating incinerators before significant investments in 

infrastructure are made. This will increase revenues, waste prevention, re-use and recycling, 

minimise waste volume and mass, reduce landfill rates and alleviate social concerns. It is 
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therefore surprising that, to the authors’ knowledge, no assessment or comparison of MSW 

supply chains for waste incinerators in the UK or elsewhere has been carried out. Previous 

research has had a tendency to focus on specific stages of the supply chain for waste 

incinerators, such as residues and emissions (Nzihou et al., 2012; Van Gerven et al., 2005), 

rather than taking a holistic approach. To a further extent, this applies to the broader area of 

waste biomass supply chain management (Iakovou et al., 2010). 

 

This study aims to determine the best practices across the entire supply chain for EfW 

incinerators in the UK and elsewhere to ensure efficient environmental and operational 

performance. In order to achieve this, the technical, financial and operational aspects of 

different waste incinerators in the UK are to be evaluated and compared. Another specific 

objective is to identify the main issues and challenges faced by the industry and subsequently 

provide recommendations for further research. The following section outlines the 

methodology adopted to meet these objectives. Section 3 examines MSW incinerators with 

energy recovery throughout the UK and describes four selected case study plants. Data 

gathered on the four plants is provided in Section 4. Section 5 compares and discusses the 

findings on each plant and the paper concludes by recommending several best practices for 

EfW plants. 

 

2. Methodology 

Firstly, we review 25 operational EfW facilities incinerating MSW in the UK. Subsequently 

we identify four alternative incineration facilities as suitable case studies: SELCHP, London; 

Allington Quarry Waste Management Facility, Kent; Tyseley, Birmingham; and NewLincs, 

Stallingborough. These plants have been chosen as they provide a wide-ranging overview of 

the alternative methods of waste incinerator operations. Secondly, technical, financial and 

operational data on each facility have been collected from annual performance reports, during 

site visits and through structured interviews with plant managers and operators. Collected 

information includes the plants’ capacities, financing, business operations, waste supply 

chains and issues and challenges. The questionnaire used to structure the interviews can be 

found in the supplementary online annex. Further information on the extended waste supply 

chains (household collections to APC residue disposal) has then been gathered during site 

visits. Thirdly, the findings for the four case studies are summarised and the practices that 

have been adopted for deploying and operating the plants are compared. Based on the 

technical, financial and operational data for the alternative plants, their supply chains are 
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evaluated to enable conclusions to be drawn on the best practices for waste incinerators in the 

UK and elsewhere. Recommendations are also provided for further research needed to 

improve the operations management of EfW facilities. 

 

3. Case studies 

In accordance with Article 12(2) of the Waste Incineration Directive (2000/76/EC), operators 

of waste incinerator facilities are required to provide a publically available annual report on 

the functioning and monitoring of their plant to the UK Environment Agency (2013). Using 

these reports to review waste incinerators in the UK reveals that, as of May 2013, there are 25 

operational incinerators recovering energy from MSW in the UK. Their capacities range from 

29,000 to 750,000 tonnes of MSW per annum (tpa), and that 23 utilise moving grate 

technology, 1 is based on the rotary kiln and 1 uses a fluidised bed (see Table 1). Four case 

study plants have been subsequently identified that provide a suitable overview of these 

plants in the UK as they vary in capacity (56 – 500 thousand tonnes of MSW per annum), 

technology (moving grate, fluidised bed, rotary-kiln), location (urban – rural), financing 

(merchant plant, private finance initiative) and processes for waste management in general. 

1. SELCHP (South East London Combined Heat and Power Ltd) is an energy recovery 

facility opened in 1994 and receives a total of 420,000 tonnes of MSW per year from 

the London boroughs of Lewisham, Greenwich, City of Westminster, Bromley, and 

Southwark, and the Greater London area. SELCHP is also operated by Veolia 

Environmental Services, a worldwide company specialising in the management of 

waste. London’s MSW generation rate is estimated at around 6 million tpa (SELCHP, 

2012). 

2. Allington Quarry Waste Management Facility is located in Kent and has been 

operated by Kent Enviropower Ltd since 2008. The facility can receive up to 500,000 

tonnes of non-hazardous waste per year and 80,000 tonnes of recycled waste to be 

sorted. In 2008/09, households in Kent were estimated to generate over 750,000 

tonnes of MSW per annum (Kent Enviropower Ltd, 2012b).  

3. Tyseley Energy Recovery Facility handles MSW and hazardous waste from the city 

of Birmingham. The plant is operated by Veolia Environmental Services and receives 

350,000 tonnes of MSW per annum.  

4. NewLincs Integrated Waste Management Facility is a small plant that has been 

operated by NewLincs Developments Ltd since 2003. The facility receives 56,000 

tonnes of MSW deliveries a year from North East Lincolnshire council. The plant also 
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receives recycled waste and green waste which is processed and sent on to recycling 

centres and a composting facility (NewLincs, 2013). 

 

4. Data collection 

The following data have been gathered for the aforementioned facilities during site visits, 

interviews with plant managers and operators, and from plant annual reports acquired from 

the UK Environment Agency. The collected information (shown in Table 2) has been 

categorised as technical (technology, issues and challenges), financial (capital and 

maintenance costs) and operational (stages of the waste supply chain), and provides an 

overview of the situation and practices of waste incineration plants in the UK. Table 3 

compares emissions recorded from the four plants and Table 4 provides a summary of the 

plants' key facts. 

 

5. Outputs of comparative study and discussion  

 The technical, financial and operational aspects for the four case study plants are now 

compared and discussed. With respect to maintaining a green waste supply chain and 

efficient operational performance, the advantages and disadvantages of different practices are 

identified. 

 

5.1 Technical 

Three alternative technologies are utilised for incinerating MSW: moving grate (SELCHP 

and Tyseley), fluidised bed (Allington) and rotary-kiln (NewLincs). The moving grate is the 

most widely adopted technology for MSW incineration in the UK (see Table 1). Waste is 

passed through a combustion chamber on grates with air being supplied from beneath to 

regulate combustion. Start-up time, parasitic loads, availability (annual period of operation at 

full load) and quantity of bottom ash as a percentage of the MSW input for the SELCHP and 

Tyseley plants are around 10 hours, 10%, 90–95% and 21–22% respectively. Where the 

parasitic load, given in this report as a percentage, is the proportion of generated electricity 

used for the plants auxiliary power requirements and therefore not exported. The fluidised 

bed consists of a hot sandbed and benefits of the technology include a compact furnace, 

versatility, ease of control and high combustion efficiency. However, bed agglomeration is 

particularly problematic for biomass fired fluidised beds which can result in low plant 

availability (Skrivfars et al., 2000; Yan et al., 2005). If plant shutdowns occur MSW has to be 

sent to nearby landfill sites. The fluidised bed technology also requires MSW to be shredded, 
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which consumes a large amount of energy – evidenced by Allington's 21% parasitic loads. 

Allington demonstrates that the fluidised bed produces a low amount of bottom ash, only 

10% of the MSW input. The rotary-kiln is a large oscillating drum, inclined to assist 

movement of combusting MSW. The kiln technology is limited to a capacity range of 4000 to 

90,000 tonnes per annum, thus it is suited to small scale applications such as NewLincs. The 

plant availability of NewLincs is comparable to SELCHP and Tyseley (approximately 90%), 

however, quantities of bottom ash are lower at only 16% of the MSW input and parasitic 

loads are higher at 15%. Other plants adopting the rotary kiln technology have struggled with 

obtaining a high availability due to the kiln’s complex mechanical equipment. Fawley High 

Temperature Incinerator, Hampshire, UK, uses a kiln to primarily dispose of hazardous 

waste. In 2008, they reported an availability of only 43%, however this increased to 72% in 

2011; shutdowns occurred from deslagging, quench throat clearing and feed screw, bearing, 

roller and other kiln repairs (Pyros Environmental Ltd, 2008; Tradebe Fawley Ltd, 2011).  

 

Some common technical issues and challenges occur for waste incineration plants. 

Maintaining a constant boiler temperature can be difficult as a result of fluctuating MSW 

calorific values and moisture contents. The incineration of volatile matters cannot also not 

always be avoided. Boiler tube ruptures are particularly problematic as accelerated corrosion 

occurs due to damage from molten ash and flame impingement. Other issues include 

blockages from bulky items, damaged refractory linings and fluctuating combustion chamber 

pressures (Shu and Swire, 2004). Thus a number of improvements are still required in plant 

design to avoid plant downtime. The fluidised bed technology also requires improvements for 

its application to MSW incineration and shredding should be avoided. Assuming an MSW 

energy content of 10 MJ/kg it can be determined that NewLincs has the highest net 

conversion efficiency of 31%. This is to be expected as a result of the CHP setup. Although 

Allington’s MSW to electricity efficiency is the highest at 27%, the net efficiency is 

significantly reduced to 21%. SELCHP and Tyseley’s net electrical efficiencies are higher at 

approximately 24%. 

 

The flue gas and water treatment processes and technologies adopted by the case study plants 

and other waste incinerators are relatively similar. Flue gas is re-circulated in the combustion 

chamber to reduce emissions of nitrogen oxides (NOx) and help maintain bed temperature.  

Urea and/or ammonia are also added to the furnace to control NOx emissions. Carbon 

monoxide and organic carbon emissions can be regulated via the combustion controls. Flue 
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gases then leave the combustion chamber and pass through electrostatic precipitators to 

separate residual ash. Depending on whether a dry or semi-dry gas scrubbing system is 

implemented, hydrated lime or lime milk is injected into the cleaning system to remove 

sulphur dioxide and hydrogen chloride. Activated carbon is also injected to absorb dioxins 

and furans, Polychlorinated Biphenyls (PCBs), mercury and other heavy metals. The final 

stage is a bag filter system which comprises a large number of tubular filter bags to separate 

particulate matter and dust. The cleaned gas then exits via a flue chimney(s) and conveyors 

are used to remove the APC residues. The gas scrubbing process does not result in a liquid 

effluent; however, demineralised water is required for plant operation due to boiler 

blowdown losses. Effluent water is passed through a caustic soda scrubber and sodium 

hydroxide and hydrochloric acid is used for ion exchange resin regeneration. Discharged 

effluent to sewerage system is monitored to ensure contamination levels remain below limits 

specified by the local water company. 

 

Continuously monitored gaseous emissions from waste incinerators include sulphur dioxide 

and hydrogen chloride, carbon monoxide and organic carbon, particulate matter and dust, and 

oxides of nitrogen. Periodically measured emissions include dioxins and furans, PCBs and 

mercury. Table 3 shows these key emissions, represented as a percentage of the emission 

limits. The emissions of nitrogen oxides (NOx) are the highest at all the plants with up to 

90% of the limit being reached at SELCHP. Allington achieves significantly lower NOx 

emissions with 59%. Except for carbon monoxide (CO), Allington has the lowest emissions 

for all continuously monitored variables. However, Allington produces far more APC 

residues than the other plants – 9% of the MSW input. Interestingly, NewLincs has 

significantly lower CO and dioxin and furan emissions with only 6% and 3% respectively of 

the limit being reached. Periodically measured emissions of other metals and non-metals are 

available from: (Kent Enviropower Ltd, 2012a; NewLincs, 2012; SELCHP, 2012; Veolia, 

2013a). 

 

Emissions from waste incinerators pose a serious concern to human health and the 

environment. Particulate matter can cause a range of respiratory problems. Dioxins, furans 

and PCBs are carcinogenic. And mercury, along with other heavy metals, is toxic. The Green 

House Gases (GHG) emitted in the flue gas from waste incinerators are significant and 

estimates for carbon dioxide (CO2) emissions are in the region of 0.5 kgCO2/kWh. However, 

the quantity of CO2 and other emissions emitted during combustion of MSW is highly 
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dependent on the composition of waste. Calabrò (2009) investigates the effects of alternative 

MSW separation methods on CO2 emissions and energy content.  He found that although non 

separation of plastics increase energy content, the potential increase in energy production will 

not offset the increase in GHG emissions released from waste incinerators. Therefore he 

concludes that plastics must be separated and recycled from MSW before incineration to 

reduce GHG emissions and that overall an increase in separation rates will reduce GHG 

emissions. Given incinerators’ relatively high levels of CO2 and other GHG emissions, 

energy recovery plays an important role to mitigate their environmental impact and therefore 

incineration without energy recovery should not be practiced other than in special cases 

(Astrup et al., 2009). Calabrò (2010) further researched the effects of  waste separation on 

MSW finding that (i) separating organics and recycles has a negligible effect of the Lower 

Heating Value (LHV), (ii) separating organics and recyclables, except plastics, increases 

LHV and, (iii) separating recyclables only (no organics) rapidly decreases LHV. 

 

5.2 Financial 

The plant economics for the four case studies are comparable. The capital costs for the plants 

range from approximately 3.5 – 4 million €/MW (electrical and thermal).  The majority of 

revenue is generated from gate fees, which are related to the UK’s landfill tax (currently 85 

€/tonne, increasing to 95 €/tonne by 2014), with exported electricity (and heat in the case of 

NewLincs) an additional benefit. One of the case study plants reported that they even 

sometimes reject high plastic and energy content wastes, or charge a premium gate fee, as 

they can then not burn as much waste with a lower calorific value. Small additional quantities 

of commercially sensitive trade wastes (around 5%) are also disposed of at the plants for a 

high gate fee. Hazardous waste is also processed at Tyseley for a high gate fee. 

 

Financing of EfW facilities is complicated, but they are typically private finance initiatives 

(PFI). However, SELCHP is a merchant plant operated by Veolia Environmental Services 

and SELCHP whom will retain ownership after 25 years. Operating costs for the emission 

cleaning systems are the major expense for EfW plants and can range from 5 to 17 €/tonne of 

MSW incinerated (Kedrowski et al., 2010). This is a concern as expensive scrubber systems 

may not be implemented in countries that do not conform to strict EU emission regulations or 

similar. 
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Revenue from recycling has increased dramatically in recent years. In Europe, between 2000 

and 2010, the price of waste paper and board has increased from approximately 100 to 150 

€/tonne and glass waste has increased from 37 to 50 €/tonne. The value of waste plastic has 

been quite variable. In 2009 the price crashed from 375 €/tonne to 230 €/tonne. By the end of 

2010 the value of plastic had increased back up to 300 €/tonne (European Commission 

Eurostat, 2013). Older plants such as SELCHP and Tyseley only perform post incineration 

recycling of large scrap and ferrous metals which do not currently count towards the UK’s 

recycling targets and significant quantities of non ferrous metals can be still obtained from 

bottom ash. Allington adopts the most integrated modern system for recycling, separating and 

baling alternative materials and carrying out pre and post incineration ferrous and non ferrous 

metal collections. Significant revenues were reported by Allington and Newlincs as a result 

of their integrated approach to waste incineration and recycling. This approach also avoids 

separate waste handling facilities, improving transportation logistics and maximising 

recycling efforts.  

 

5.3 Operational 

There are a number of differences among how EfW incinerators are operated in the UK. 

Figure 2a–d outlines the supply chains for the four case study plants and highlights the 

alternative methods that have been adopted for carrying out waste deliveries, separation, 

storage, incineration, recycling and re-use. In particular, the approaches utilised for recycling 

and the stages at which recycling are performed vary significantly. SELCHP is one of the 

oldest incinerators in the UK. It receives unsorted waste, and un-recyclable waste from a 

sorting facility in Southwark. SELCHP only collects ferrous metals after incineration with 

bottom ash further processed for metal recovery at a separate site. Tyseley also receives 

unsorted waste which is passed straight into the incinerator with ferrous metals then collected 

afterwards. Allington is an integrated incinerator and sorting plant, receiving kerbside 

collected recyclables for sorting and unsorted MSW. Un-recyclable materials and MSW are 

shredded and ferrous and non-ferrous metals are removed before and after incineration. As a 

result of NewLincs’ small scale, investment in equipment for non-ferrous metal collections 

has not been made. Recyclables delivered to NewLincs are stored and handled before being 

transported to recycling centres for sorting and processing. Green waste is also received and 

shredded at NewLincs before onwards transportation to a nearby composting plant. 
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The majority of uncertainties in the supply chain for EfW incinerators arise from the waste 

deliveries. Delivery times need to be carefully managed in order to achieve a uniformed 

delivery of waste throughout the day. This is particularly challenging for plants located in 

central city locations. To improve traffic and load logistics at the Tyseley plant, night time 

deliveries are made (half of the total MSW collected) from two transfer stations. This also 

enables waste to be bulked before being transported and increases vehicle capacity from 8 

tonnes to 25 tonnes, further reducing traffic congestion (Veolia, 2013b). Another uncertainty 

for incinerators is the energy content of delivered MSW, which is gradually increasing as 

recycling efforts improve. The quantity of waste being delivered is also variable and changes 

with season. The quantity of waste supplied to Allington is a particular uncertainty in their 

supply chain. Whilst they are contracted to receive 325,000 tpa from Kent County Council 

they also have the capacity to receive an additional 175,000 tpa of waste through short term 

contracts. In 2012, Allington incinerated 423,000 tonnes of MSW and processed only 27,400 

tonnes of recyclables, which is well below their capacity (Kent Enviropower Ltd., 2012c). 

 

Only a few waste incinerators in the UK utilise CHP to export both electricity and heat. 

SELCHP, Tyseley and Allington only supply electricity to the UK’s national grid. The 

SELCHP plant was initially designed for exporting heat to a network, but as of yet this has 

not been implemented. However, plans have been approved for the development of a heat 

network between SELCHP and residential estates in Southwark (Southwark Council, 2013). 

NewLincs supplies electricity and heat to a neighbouring chemical factory and have a grid 

connection in place as a backup. However, the demand for heat in the NewLincs area has 

reduced significantly from when the plant was first commissioned. In 2012 they exported 

only 1400 MWhthermal out of a possible 17000 MWhthermal. NewLincs is not the only EfW 

plant that has not been able to maximise their heat export capabilities in the UK. Sheffield, 

UK, Energy Recovery Facility utilises a Community District Energy network that can export 

up to 60 MWthermal as well as exporting 19 MW of electrical power to the National Grid. 

However, in 2011, the plant only exported 19% of its heat capacity; 11.2 MWthermal (98,130 

MWh)  (Veolia Sheffield ES Ltd., 2011). 

 

CHP is vastly underutilised in the UK and therefore there is a need for growth in this area and 

projects should take advantage of the current Renewable Obligation Certificate (ROC) 

scheme (EfW with CHP receives 1 ROC/MWh) (DECC, 2013). However, the reviewed 

plants highlight that the successful uptake of CHP is difficult even when it is considered at 



12 
 

the initial project planning and site selection phase. Nevertheless, the economic feasibility of 

incinerators relies on the landfill tax, rather than sales of heat and power. This emphasises the 

need for the landfill tax or similar to be adopted and considered by policymakers and other 

key decision makers in developing countries to enable alternative cleaner waste management 

schemes to become economically feasible. Small-scale EfW schemes, such as NewLincs, can 

be decentralised and located in the proximity of large heat users. This greatly increases the 

efficiency of an EfW plant and may be a more acceptable solution to waste management by 

adhering to the ‘proximity principle’ of treating waste close to where it is produced. At the 

kiln's smallest scale (4000 tpa) the use of a steam turbine is impractical, however generated 

heat can be used for alternative applications (industrial heat, cooling, etc.). 

 

Issues often arise in energy project development relating to the appropriate selection of 

technology, capacity, location, suppliers and customers, and this is evident for the four case 

studies. SELCHP has yet to implement CHP. Allington utilises a fluidised bed that is likely to 

cause difficulties regarding reliability. Tyseley is located near many industries and residential 

areas and thus could be well suited for CHP. NewLincs is currently unable to maximise their 

use of CHP due to a lack of demand in the vicinity. However, it is worth noting that 

NewLincs benefited from an extremely quick commissioning time as a result of its small 

scale, as did Tyseley with the site location being a previous incineration site. 

 

To rationalise technology, application and other waste management strategy choices, decision 

analysis tools or similar should be adopted. A range of structured Multi-Criteria Decision–

Making (MCDM) methods have been adopted by a number of authors working in the field of 

waste management (Pires et al., 2011). Kontos et al. (2005) used the Analytical Hierarchy 

Process (AHP) and Sharifi et al. (2009) used a Geographical Information System (GIS) for 

landfill site selection. Contreras et al. (2008) also used AHP to select an integrated waste 

management scheme for Boston, USA. Minciardi et al. (2008) proposed a multi-objective 

decision making method for MSW flow optimisation for the municipality of Genova, Italy. 

And we have used the Analytical Network Process (ANP) to select a technology for 

recoverying energy from waste in India (Nixon et al., 2013). Regarding supply chain 

optimisation for bioenergy facilities, several authors have used mixed integer programming 

and goal programming techniques (Scott et al., 2012). MCDM methods for waste incinerator 

project planning will be particularly valuable as they enable a holistic approach to be taken to 

decision making, thus all the conflicting technical, financial, environmental and social criteria 
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can be incorporated into the decision rationale. While a number of decision support tools 

have been developed for use by local authorities, non-governmental organisations and 

academia (Winkler and Bilitewski, 2007), we believe that their uptake needs to be increased 

and the application of MCDM tools for technology selection and supply chain optimisation is 

an area worthy of further research. Future studies can build upon the variables and objective 

data presented in this study, which will further facilitate the implementation of best practices 

for waste facilities to maximise operational and environmental performance. 

 

6. Conclusion 

The research aim to determine best practices for EfW incinerators has been primarily 

achieved through reviewing 25 operational plants and a detailed analysis of four case study 

plants in the UK. The case studies demonstrate a growing maturity in the industry and a 

development of best practices arising, however, further efforts need to be made to improve 

and standardise the integration of waste supply chains into existing EfW facilities and those 

in planning. Furthermore, combined heat and power is vastly underutilised in the UK with 

only 3 out of the 25 plants currently exporting heat and even these plant are not maximising 

their heat export capacity. We find that the moving grate technology is the most widely 

adopted and reliable technology for energy recovery from waste, however, the fluidised bed 

reduces quantities of bottom ash and the rotary kiln is particularly suitable for small scale 

solutions for treating waste near to where it is produced. Having analysed the four plants and 

reviewed the literature, the following current best practices are identified: 

1. Integrate waste incinerators with recycling facilities and composting plants to reduce 

GHG emissions, improve transportation logistics and increase profits. 

2. Perform pre and post incineration metal collections to gather valuable ferrous and 

non-ferrous metals, including: aluminium, copper and gold. 

3. Use storage facilities in large cities to improve transportation logistics and reduce 

traffic volume. 

4. Utilise combined heat and power effectively to increase conversion efficiencies and 

revenue. 

5. Use decision support systems during plant development to assist decision makers and 

facilitate communication between authorities and plant operators. 

 

EfW plants will continue to be commissioned to handle waste and support the UK in 

achieving the forthcoming 2020 target. The authors therefore consider that this study will 
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provide valuable data for future research and will inform academics, plant operators, 

authorities and other stakeholders on the best practices for waste incineration. Further 

research is required to develop a generalised model for specifying standard practices for 

waste integration and management. 
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Figures and tables 

Figure 1: Disposal treatment of municipal solid waste in Europe (Defra, 2011a). 

Figure 2a–d: The supply chains for the SELCHP, Allington, Tyseley and NewLincs energy 

from waste incineration plants.  

Table 1: Operational MSW incinerators with energy recovery in the UK. Plants that are 

under construction, incinerators without energy recovery and gasification incinerators are 

excluded. 

Table 2: A technical, financial and environmental comparison of four waste incinerators in 

the UK; SELCHP, Allington, Tyseley and NewLincs. 

Table 3: Emissions as a percentage of emission limits (Defra, 2010) from SELCHP, 

Allington, Tyseley and Newlincs, taken from: (Brown, 2000; Kent Enviropower Ltd, 2012a; 

NewLincs, 2012; SELCHP, 2012; Veolia, 2007, 2013a) and contains environment agency 

information © Environment Agency and database right. 

Table 4: Summary of key facts. 
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