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Several host systems are available for the production of recombinant proteins, ranging from
Escherichia coli to mammalian cell-lines. This article highlights the benefits of using yeast,
especially for more challenging targets such as membrane proteins. On account of the wide
range of molecular, genetic, and microbiological tools available, use of the well-studied
model organism, Saccharomyces cerevisiae, provides many opportunities to optimize the
functional yields of a target protein. Despite this wealth of resources, it is surprisingly
under-used. In contrast, Pichia pastoris, a relative new-comer as a host organism, is already
becoming a popular choice, particularly because of the ease with which high biomass
(and hence recombinant protein) yields can be achieved. In the last few years, advances
have been made in understanding how a yeast cell responds to the stress of producing
a recombinant protein and how this information can be used to identify improved host
strains in order to increase functional yields. Given these advantages, and their industrial
importance in the production of biopharmaceuticals, I argue that S. cerevisiae and P. pastoris
should be considered at an early stage in any serious strategy to produce proteins.
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RECOMBINANT PROTEIN PRODUCTION IN MICROBES:
Escherichia coli AS THE MOST POPULAR HOST
Proteins are essential components of living organisms and have
a role in virtually every cellular process: they are enzymes; form
cellular scaffolds and are central to signaling, transport, and regu-
latory functions. To study these diverse roles, it is necessary to be
able to work with sufficient quantities (typically multi-milligram)
of suitably stable and functional protein samples. While some pro-
teins can be isolated from native sources for this purpose, many
cannot because they are either intrinsically unstable or are present
in impractically low quantities (Bill et al., 2011). Moreover, the
study of mutant or truncated forms of a given protein is often
central to understanding its structure and activity; such mutants
must be synthesized recombinantly.

The biotechnological breakthrough required for recombinant
gene expression was first demonstrated 40 years ago in the prokary-
otic microbe, Escherichia coli (Cohen et al., 1973) and was soon
followed by the recombinant production of human somatostatin
(Itakura et al., 1977) and human insulin (Goeddel et al., 1979) in
E. coli cultures. These innovations heralded the era of the recom-
binant biopharmaceutical: Humulin® synthesized in E. coli was
launched by Eli Lilly and Company in 1982 (Altman, 1982); in
1987, Novo Nordisk started the industrial production of recombi-
nant human insulin, Novolin®, using cultures of the eukaryotic
microbe, Saccharomyces cerevisiae (Thim et al., 1986). Today,
the recombinant production of biopharmaceuticals, particularly
recombinant antibodies and vaccines, is a multi-billion dollar
global business (Goodman, 2009), with more than 150 having been
approved by the United States Food and Drug Administration to

date (Ferrer-Miralles et al., 2009; Zhu, 2012). Approximately 20%
of these biopharmaceutical proteins are produced in yeasts (the
vast majority in S. cerevisiae), 30% in E. coli and 50% in mam-
malian cell-lines and hybridomas (Ferrer-Miralles et al., 2009;
Mattanovich et al., 2012).

Research into the science of recombinant protein production is
also thriving, both as an academic discipline in its own right and
as a means to produce a myriad of proteins for further study (Lee
et al., 2012). In 2010, it was reported that the proportion of recom-
binant genes expressed in E. coli, compared with those expressed
in all hosts had remained constant, at roughly 60% per year during
the 15 year period 1995–2009 (Sørensen, 2010). Table 1 includes
the corresponding data for the other commonly used host cells; it
shows that the proportion of recombinant genes expressed in E.
coli has remained high to date and that approximately half of these
genes are eukaryotic. For all other hosts, the absolute numbers are
much smaller, but it is notable that the proportion of recombinant
genes expressed in Pichia pastoris has steadily increased from 1995
to date, in contrast to all other host cells (Table 1). Coupled with
the beginnings of a decline in usage for E. coli over the last 8 years,
this could suggest that researchers are beginning to recognize the
capacity of P. pastoris to produce more challenging recombinant
targets.

Escherichia coli stands out as the pre-eminent host cell for
producing recombinant proteins in both commercial [50% of pro-
teins; (Ferrer-Miralles et al., 2009; Mattanovich et al., 2012)] and
research (>70% of proteins; Table 1) laboratories; it is quick and
inexpensive to culture, making it ideal in many respects. How-
ever, it has been established that producing eukaryotic proteins
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Table 1 | Recombinant gene expression in the most commonly used host cells.

Year All host cells E. coli S. cerevisiae P. pastoris Insect cells Mammalian cell-lines

1980 0 0 0 0 0 0

1985 0 0 0 0 0 0

1990 12 75% (9; 4E) 8% (1) 0 17% (2) 0

1995 37 70% (26; 17E) 5% (2) 5% (2) 5% (2) 8% (3)

2000 50 70% (35; 17E) 0 4% (2) 12% (6) 12% (6)

2005 121 85% (103; 53E) 0 5% (6) 6% (7) 2% (2)

2010 172 76% (131; 67E) 0 9% (15) 5% (6) 5% (9)

2013 128 73% (94; 54E) 2% (2) 11% (14) 4% (5) 4% (5)

The proportion of recombinant genes expressed in E. coli, S. cerevisiae, P. pastoris, insect cells, and mammalian cell-lines was calculated according to Sørensen’s
(2010) methodology; briefly, the PubMed Central database was searched for entries containing “expression purification” in the title field, which returned 1,847 articles.
These articles were categorized by year of publication and expression host used and were then examined manually to confirm the categorization.The table shows the
percentage of articles reporting recombinant gene expression in a given host cell and year with the actual number in parentheses; for proteins produced in E. coli the
number of recombinant proteins of eukaryotic origin (E; ranging from unicellular protozoan to human proteins) is also noted. For all other hosts, the target proteins
are exclusively eukaryotic. When percentages do not total 100% in a given year, less frequently used hosts (e.g., cell-free systems and other microbes) account for
the remainder.

in a prokaryotic host cell often results in inclusion body forma-
tion and/or low specific yields (Sørensen, 2010), which may be
one reason for the slight decline in its more recent use (Table 1).
An explanation for lower success rates with eukaryotic targets
is that the rates of protein synthesis and folding are almost an
order of magnitude faster in prokaryotes than they are in eukary-
otes (Widmann and Christen, 2000). Furthermore, eukaryotic
codons are often inefficiently expressed and authentic eukary-
otic post-translational modifications cannot yet be achieved in E.
coli (Sørensen, 2010). However, recent progress has been made in
engineering defined glycosylation pathways in E. coli (Valderrama-
Rincon et al., 2012), while the Keio collection of single-gene
knockout mutants offers a route to understanding the molecu-
lar bottlenecks to high yields in this prokaryotic host (Baba et al.,
2006).

In principle, the use of mammalian cell-lines should overcome
the challenges of producing recombinant eukaryotic proteins in
E. coli, especially with recent advances in stable recombinant
gene expression (Bandaranayake and Almo, 2013; Kunert and
Casanova, 2013). Furthermore, the authenticity of glycosylation
performed by mammalian host cells is an important advantage
over all other expression hosts. However, progress in the tech-
nologies that enable reproducible gene delivery and selection of
stable clones continues to be slow (Bandaranayake and Almo,
2013). Moreover, specific yields from mammalian cell-lines are
often low (Zhu, 2012) and Table 1 shows a declining trend in
their use.

Eukaryotic microbes offer substantial advantages as host cells,
despite their propensity to hyperglycosylate recombinant proteins.
For example, an annotated genome sequence has been available
for S. cerevisiae for almost two decades (Goffeau et al., 1996), an
impressive range of deletion and over-expression strains are readily
available for S. cerevisiae and the P. pastoris genome has been avail-
able since 2009 (De Schutter et al., 2009). Combining this wealth
of molecular and genetic resources, with the fact that yeasts grow
an order of magnitude more rapidly than mammalian cell-lines

means that protein production and optimization can be done
quickly and efficiently in yeast (Porro et al., 2011). Table 1 shows
that for P. pastoris, at least, there is an increasing trend in its usage
suggesting that these advantages have become more widely known.
This is especially notable because P. pastoris is a relative new-comer,
only having been first developed as a host system in 1985 (Cregg
et al., 1985). Less elaborate hyperglycosylation, the availability of
strains with humanized glycosylation pathways (Hamilton et al.,
2003, 2006) and an increasing repertoire of molecular tools (Priel-
hofer et al., 2013) make this yeast an excellent alternative to S.
cerevisiae. In particular, P. pastoris has been used with great suc-
cess to produce challenging targets such as recombinant human
G protein-coupled receptors and ion channels (Hedfalk, 2013); in
total 19 high resolution structures have been resolved of recom-
binant eukaryotic membrane proteins produced in P. pastoris
(Hedfalk, 2013). Table 1 shows that the number of recombinant
proteins produced in S. cerevisiae is much smaller, despite the
fact that this yeast species is an important industrial host for the
production of biopharmaceuticals such as hormones (e.g., insulin
and human growth hormone), vaccines (against e.g., hepatitis B
and human papilloma viruses), and therapeutic adjuncts (human
serum albumin) (Martinez et al., 2012); this may be a consequence
of the search criteria used in generating Table 1 or possibly a
perception that S. cerevisiae is not as amenable a host cell as P.
pastoris.

USING YEASTS TO INCREASE SUCCESS RATES IN
RECOMBINANT PROTEIN PRODUCTION EXPERIMENTS
There is no universally applicable solution for the production of all
recombinant proteins (Bill, 2001; Sørensen, 2010) and it is not yet
possible to predict which host system is most likely to produce a
given protein in high functional yields. To be effective, any protein
production strategy should therefore encompass more than one
host system.

Two main approaches are typically taken to design a new
protein production experiment, preferably in combination with
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each other: (i) optimizing the corresponding gene sequence so
it is more likely to be stably expressed and (ii) minimizing the
metabolic burden on the chosen host cell(s) during recombinant
protein production (Bonander and Bill, 2012). The first strategy
may require that a mutant protein is produced; in support of
this protein engineering approach there is an extensive literature
on engineering stabilized proteins (Traxlmayr and Obinger, 2012;
Scott et al., 2013). Codon optimization is also possible (Oberg
et al., 2011) with more recent insights suggesting how this might
aid functional expression (Halliday and Mallucci, 2014). In con-
trast, focusing on the host cell provides an opportunity to optimize
the production of the native sequence; the principles of this sec-
ond approach are broadly similar for all host cells, often requiring
straightforward experimentation in the initial stages, such as opti-
mizing culture conditions and induction protocols. Successful
bioprocess engineering strategies such as these have been demon-
strated to increase recombinant protein yields in cultures of both
P. pastoris (Rebnegger et al., 2013; Spadiut et al., 2013) and E. coli
(Jazini and Herwig, 2013). When a “Design of Experiments” (Bora
et al., 2012) approach is used in this context, the effect of multiple
parameters on the functional yield of recombinant protein can be
examined simultaneously (Holmes et al., 2009); this is important
since each input parameter is unlikely to exert an independent
effect on functional protein yield (Bora et al., 2012). Successful
implementation of such an approach in yeast has been shown
to increase the productivity per cell by matching the methanol
feed profile to the cellular metabolism (Holmes et al., 2009). In
another approach, pulsing P. pastoris cells with methanol revealed
the potential benefit of stress in increasing productivity (Dietzsch
et al., 2011).

In the last few years, significant advances have been made in this
second approach by understanding how a yeast cell responds to the
stress of producing a recombinant protein at a molecular level, and
how this information can be used to identify improved host strains
(Bonander et al., 2009; Ashe and Bill, 2011; Bawa et al., 2011; Lee
et al., 2012). Since S. cerevisiae is particularly amenable to study-
ing the mechanistic basis of high-yielding recombinant protein
production experiments using the tools of systems and synthetic
biology, its more routine use is an obvious way to produce less
tractable proteins recombinantly (Drew et al., 2008). Identifying
or engineering yeast strains with improved yield characteristics
may either be targeted toward one particular pathway or may
take a more global approach (Ashe and Bill, 2011). Examples of
the targeted approach are provided by the “humanization” of the
yeast glycosylation (De Pourcq et al., 2010) and sterol (Kitson et al.,
2011) pathways and modifying membrane phospholipid synthesis
to proliferate intracellular membranes (Guerfal et al., 2013). Stud-
ies taking a more global approach in both S. cerevisiae (Bonander
et al., 2005; Bonander and Bill, 2009) and P. pastoris (Baumann
et al., 2011; Rebnegger et al., 2013) have identified the impor-
tance of the unfolded protein response (UPR; the cellular stress
response activated in response to an accumulation of unfolded
or misfolded protein) and reduced translational activity in high
yielding cultures. In contrast to the mammalian UPR, the simpler
UPR of yeast does not lead to down-regulation of translation to
reduce protein synthetic load (Patil and Walter, 2001). We have
previously noted that reducing protein synthetic capacity in yeast

FIGURE 1 | Strain selection enables the production of a human

membrane protein in S. cerevisiae. Yeast cells were transformed with a
plasmid expressing a construct encoding a human membrane protein
tagged with green fluorescent protein. Expression was driven from a
constitutive promoter and cells were imaged using confocal microscopy
with an upright Leica TCS SP5 system. The sample was excited with a
visible argon laser at 488 nm and imaged using a 63× oil objective. The
panels show confocal images with bright-field and fluorescence for (A)

wild-type cells and (B) a mutant S. cerevisiae strain selected from a global
screen for high yielding strains (Bonander et al., 2005). Only the mutant
cells produced correctly localized protein.

might be an effective way to improve recombinant protein yields
since this capacity is unregulated in response to unfolded protein
in cells (Ashe and Bill, 2011). Such insights, which are not yet
possible in higher eukaryotic systems, have been used to select
specific yeast strains that can substantially improve recombinant
yields compared to wild-type cells (Bonander et al., 2009; Norden
et al., 2011; Figure 1). The minimal use of S. cerevisiae as a host
shown in Table 1 is therefore at odds with this unique potential
for optimization; it is possible that the increasing popularity of
P. pastoris has detracted from the use of S. cerevisiae. I suggest that
this undervalued host system should therefore be revisited, espe-
cially in view of its success in the production of challenging targets
(Drew et al., 2008).

YEASTS AS FIRST-CHOICE HOST CELLS IN RECOMBINANT
PROTEIN PRODUCTION STRATEGIES
For the majority of researchers, E. coli is still the first host
cell to be considered in any new protein production experi-
ment; Table 1 shows it has been consistent in its usage for over
30 years, with the beginnings of a decline in the last 8 years.
Large protein production initiatives such as NYSGRC1 and OPPF-
UK2 use E. coli, insect, and mammalian cell-lines as routine

1http://www.nysgrc.org/psi3-cgi/index.cgi
2http://www.oppf.rc-harwell.ac.uk/OPPF/
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hosts; yeast is still employed on an ad hoc basis and the rea-
sons for that are unclear. Since individual research teams cannot
typically afford the time and investment in the full range of avail-
able host systems, I propose that a laboratory with the ability
to screen for the expression of recombinant genes in E. coli,
S. cerevisiae, and P. pastoris would be well placed to produce
most target proteins; Table 1 shows that since 2005, 85–90%
of recombinant genes were expressed in these microbes. Data
from the Research Collaboratory for Structural Bioinformatics
Protein Data Bank (PDB3) show that, for soluble proteins in
particular, the probability of successful expression in E. coli is
sufficiently high to justify its premier position in Table 1 (Ferrer-
Miralles et al., 2009). Complementing this, yeasts have the capacity
to produce the most challenging proteins: Figure 1 strikingly
demonstrates that the selection of a specific S. cerevisiae strain
enables this type of bespoke optimization for a eukaryotic mem-
brane protein tagged with green fluorescent protein that could
not be produced in E. coli. The panels show confocal microscopy
images with bright-field and fluorescence for wild-type cells and
a mutant S. cerevisiae strain selected from a global screen for
high yielding strains (Bonander et al., 2005). Only the mutant
cells produced correctly localized protein. More broadly, it is
notable that for eukaryotic membrane proteins, over half of all
the structures deposited in the PDB obtained from recombinant
material were from proteins synthesized in P. pastoris and S. cere-
visiae (Bill et al., 2011). This lends further support to the use of
these eukaryotic microbes alongside their prokaryotic counter-
part for producing the majority of target proteins. Such a strategy
also makes sense from a practical perspective, since working with
bacteria and yeast require similar techniques, equipment, and
approaches. Consequently, both hosts can be used within the
same laboratory without the need for additional specialist invest-
ment. Yeasts should therefore be considered alongside E. coli at
an early stage in any serious strategy to produce recombinant
proteins.
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