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Abstract

Purpose: (1) To devise a model-based method for estimating the probabilities of

binocular fusion, interocular suppression and diplopia from psychophysical judg-

ements, (2) To map out the way fusion, suppression and diplopia vary with bin-

ocular disparity and blur of single edges shown to each eye, (3) To compare the

binocular interactions found for edges of the same vs opposite contrast polarity.

Methods: Test images were single, horizontal, Gaussian-blurred edges, with blur

B = 1–32 min arc, and vertical disparity 0–8.B, shown for 200 ms. In the main

experiment, observers reported whether they saw one central edge, one offset

edge, or two edges. We argue that the relation between these three response cate-

gories and the three perceptual states (fusion, suppression, diplopia) is indirect

and likely to be distorted by positional noise and criterion effects, and so we

developed a descriptive, probabilistic model to estimate both the perceptual states

and the noise/criterion parameters from the data.

Results: (1) Using simulated data, we validated the model-based method by

showing that it recovered fairly accurately the disparity ranges for fusion and sup-

pression, (2) The disparity range for fusion (Panum’s limit) increased greatly with

blur, in line with previous studies. The disparity range for suppression was similar

to the fusion limit at large blurs, but two or three times the fusion limit at small

blurs. This meant that diplopia was much more prevalent at larger blurs, (3) Dip-

lopia was much more frequent when the two edges had opposite contrast polarity.

A formal comparison of models indicated that fusion occurs for same, but not

opposite, polarities. Probability of suppression was greater for unequal contrasts,

and it was always the lower-contrast edge that was suppressed.

Conclusions: Our model-based data analysis offers a useful tool for probing bin-

ocular fusion and suppression psychophysically. The disparity range for fusion

increased with edge blur but fell short of complete scale-invariance. The disparity

range for suppression also increased with blur but was not close to scale-invari-

ance. Single vision occurs through fusion, but also beyond the fusion range,

through suppression. Thus suppression can serve as a mechanism for extending

single vision to larger disparities, but mainly for sharper edges where the fusion

range is small (5–10 min arc). For large blurs the fusion range is so much larger

that no such extension may be needed.

Introduction

Binocular fusion

We have two eyes but see one world. Binocular fusion

refers to the process, or set of processes, through which

information from the two eyes is combined to yield single

vision, rather than double vision (diplopia). An obvious

benefit of fusion is that (within limits) it renders as single

the disparate pairs of images from objects that lie nearer or

further than the current binocular fixation distance. Since

such objects are normally also perceived in depth as nearer

and further, through stereo vision, it is tempting to think
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that stereo vision and fusion are one and the same process,

but that is too simple. Stereo vision and fusion are different

and partly dissociable perceptual outcomes of binocular

visual processing. It is well known that stereo depth can be

seen along with diplopia – at disparities too large for per-

ceptual fusion – and fused single vision from disparate

images can occur without stereo depth – in the case of ver-

tical rather than horizontal disparities. Of course, this does

not mean stereo and fusion are unrelated processes, but

they are dissociable. An early example of this dissociation is

Kaufman’s letter stereogram1 in which depth was seen from

disparities in the (coarse) spatial arrangement of letters

seen by the two eyes, despite the fact that the letters were

different in the two eyes and hence rivalled, rather than

fusing, at the level of fine spatial detail.

Parallel processing of binocular information at multiple

spatial scales2,3 is the likely basis for this partial dissociation

between fusion and stereo. For spatially broadband images,

binocular combination at coarse scales can support stereo

vision, while the same disparities processed at finer scales

may exceed the fusion limit and result in diplopia.4,5 This

established account relies on the concept of a size-disparity

correlation – that the disparity range for binocular combi-

nation increases with the spatial scale of the stimulus, or

with the scale of the underlying mechanism (e.g. receptive

field size) that handles the stimulus. Such a correlation was

found for the upper and lower disparity limits of stereo

vision6 and also for the disparity limits of fusion.5 We

examine it further in our experiments on fusion, but in ste-

reo vision not all studies have revealed it. Smallman &

MacLeod7 found that contrast sensitivity for stereopsis was

best at a spatial frequency that increased progressively as

the disparity was made smaller – in agreement with a size-

disparity correlation. But Prince & Eagle8 found that con-

trast sensitivity for stereopsis of briefly presented, spatially

localized, bandpass Gabor targets did not reveal any simple

disparity limit that would imply the existence of a size-dis-

parity correlation in their task, and the upper disparity

limit for stereopsis in Gabor targets was about five times

larger than for bandpass textures of the same spatial fre-

quency. This extended range of stereo vision is likely to

involve contributions from a number of different stereo

mechanisms – including coarse, transient or second-order

mechanisms.9–13

Motivation

Here we re-visit the question of scale dependence for binoc-

ular fusion while avoiding the complexities of stereo vision

hinted at above. To silence stereo vision we used only verti-

cal disparities, and to strive for simplicity our test stimulus

was a single, horizontal, Gaussian-blurred edge shown

briefly to each eye. Spatial scale was manipulated by varying

the blur of the edge. Blurred edges have a broad, lowpass

spatial frequency spectrum, very different from the band-

pass targets used in previous studies.5,14 An advantage in

using edges rather than periodic gratings or Gabor patches

is that the luminance profile L(x) for a single edge does not

contain gradients of opposite polarity that might rival with

each other – and counteract fusion - as disparity increases.

The local luminance gradient dL/dx has the same sign at all

locations x. Use of step edges may also benefit from a

degree of naturalism, in that blurred and sharp edges are

abundant in images of natural (and man-made) scenes, and

the step edge has a 1/f spectrum that is typical of natural

images.

We used single edges because of their importance as key

features in spatial vision, along with the possibility that they

might also be key features in binocular combination. On

this theme, Ogle15 wrote: ‘It is these contours, the demarca-

tions between light and less light areas, that provide the

pattern of the images and the stimuli for fusion when they

exist in both eyes’ (p.61). Further, in his classic studies of

binocular brightness, Levelt16 concluded that the perceived

brightness depended on a linear weighted sum of the lumi-

nances in the two eyes, but the weight associated with each

eye in that sum was determined by the presence and relative

strength of contours in the two eyes. The weights add up to

1. This is the ‘law of complementary shares’ (first stated by

Hering, but quantified by Levelt), such that an increase in

one eye’s contribution to the binocular sum entails a reduc-

tion in that of the other eye. With a contour in one eye but

not the other, the weights can go to 1 and 0 respectively,

implying complete monocular dominance. This ‘law’ also

applies to binocular summation of suprathreshold con-

trasts, where the eye with higher contrast also gets a higher

weight, and so is disproportionately favoured in binocular

combination.17,18 Such findings and theories on binocular

summation sharpen our understanding of the binocular

combination of spatial contrast signals, which presumably

underlies both stereo vision and fusion.

One goal of our work on fusion is to extend a multiscale

model of edge detection19 by incorporating binocular com-

bination into the early stages of spatial filtering. The aim

here, as a first step, is more empirical – to map out how

fusion, interocular suppression and diplopia depend on the

disparity, spatial scale (blur), and relative contrast of the

edges in each eye. To do this, we need to develop an effec-

tive method for assessing whether fusion, suppression of

one edge, or diplopia have occurred. Our experiments were

motivated by the work of Schor et al.5 but with some sig-

nificant differences in method. Schor et al. used high con-

trast, bandpass (difference-of-Gaussian) targets, while we

used single, blurred edges of moderate contrast. Schor et al.

used prolonged presentation, with the method of adjust-

ment and a rather complex perceptual decision: ‘Disparity
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was increased by method of adjustment until the subject

reported a slight doubling, an increase in width or a lateral

displacement of the DOG pattern. A lateral displacement

would indicate suppression of one image’ (p.662). We sim-

plified the observer’s task by using discrete trials with brief

presentations, along with a categorical judgement (a

button-pressing response), thus aiming to evaluate the

probability of fusion, suppression and diplopia, and the way

these varied with disparity.

In experiment 1, the goal was to distinguish between

fusion and not-fusion, and so observers reported whether

they saw a single central edge, or not. It became clear in

pilot sessions, however, that the ‘not central’ category

included both diplopic edges and single edges that were not

central, and it seemed likely that the latter might reflect

suppression of one of the two edges. Hence in experiment 2

all three response categories were used. We reasoned (like

Ono, Angus & Gregor20) that with fusion the perceived tar-

get position should be central, with suppression of one

image it should appear offset (by half the disparity), and

with diplopia (by definition) the observer should see two

edges rather than one. A potentially serious complication,

however, is that in the face of blur and positional noise a

fused edge might appear offset, or an offset edge might

appear central. In addition, the probability of those judge-

ments would depend on the observer’s positional criterion

for reporting ‘central’ vs ‘offset’. Thus the relation between

behavioural judgements and perceptual states is not

straightforward. To resolve this problem we developed, and

validated through simulation, a descriptive model that was

fitted to the data and allowed us to disentangle the percep-

tual states (fusion, suppression, diplopia) from the pertur-

bations imposed by positional criterion and noise factors.

Methods

A single-interval method of constant stimuli was used to

explore fusion, diplopia and suppression of luminance

edges, across a range of vertical disparities, spatial scales

and (for experiment 3) levels of contrast imbalance between

the eyes.

The test image for each eye (Figure 1) was a horizontal

Gaussian-blurred edge of blur B = 1, 2, 4, 8, 16 or 32 min

arc. Image width and height were scaled with edge blur,

and ranged from 20 to 640 min arc (16–512 pixels) at the

viewing distance of 107 cm.

Image arrays were generated in Matlab on a Macintosh

G4 computer and displayed using PsychToolbox software21

on a Clinton Monoray monitor with a fast-decay yellow-

green phosphor, calibrated and gamma-corrected using a

Minolta LS110 computer-controlled digital photometer. A

Cambridge Research Systems Bits++ box was used in Bits

mode (experiments 1 and 2) or Mono++mode (experiment

3) to render pseudo-14-bit (Bits mode) or actual 14-bit

(Mono mode) greyscale resolution. Images were viewed

through frame-interleaving FE1 goggles (CRS Ltd.,

www.crsltd.com) to present separate images alternately to

the two eyes with minimal crosstalk.22 The high frame rate

(150 Hz; 75 Hz per eye) ensured that the alternating display

appeared as a steady image with no visible flicker.

The horizontal test edge was presented dichoptically with

a vertical disparity d (in units of blur, B) from 0 to 8B. Dis-

parity was induced by shifting the edge upwards in one eye,

and downwards in the other eye by d/2. The Michelson

contrast of the test edge was 0.3 (except in experiment 3

where left/right contrast ratio varied but geometric mean

edge contrast was 0.3). There were two polarities for edge

contrast (light above; dark above) and two signs of vertical

disparity (right eye higher; left eye higher).

The test image was surrounded by a binary noise

‘vergence lock’ border (Figure 1), of width B, texel size B

and contrast 0.5. Flanking, dark horizontal lines marked

the vertical position of the centre of the image. These lines

were the same luminance as the dark pixels in the noise

border. They were two pixels wide and their length (4–112

(a)

(b)

Figure 1. Image pairs used in the experiments. The test image in each

eye was a single, horizontal, Gaussian-blurred edge, while the textured

border served as a ‘fusion lock’ to stabilise binocular convergence. Thin

lines marked the (vertical) centre position as a reference for ‘central’ vs

‘offset’ judgements. (a) Same test edge polarity (experiments 1–3). (b)

Opposite edge polarity (experiment 3 only). Test edge blurs B ranged

from 1 to 32 min arc, and for each blur the entire image was scaled in

size accordingly. Test image geometry was therefore scale-invariant.

Vertical disparity between left and right edge positions (arrowed) ran-

ged from 0 to 8.B.
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pixels) was proportional to B for all images except the larg-

est (B = 32 min arc), where it was truncated from 128 pix-

els to 112 pixels by the edge of the screen. The background

was a full-screen at mid-luminance (25 cd m�2 as seen

through the goggles).

Each session consisted of five repetitions (experiments 1

and 2) or 1 repetition (experiment 3) of all of the condi-

tions for a single blur, in randomized order. On each trial,

the pair of test edges was presented for 200 ms with the

noise border and flanking lines, after which the test edges

were replaced by a blank (zero contrast), mid-grey image.

The observer was instructed to fixate the centre of the

image, and had unlimited time to make a response by

pressing one of two buttons (experiment 1), one of three

buttons (experiment 2), or one of five buttons (experiment

3). The nature of the choice is described below for each

experiment. These were perceptual not forced-choice per-

formance tasks, and so no feedback was given. The noise

border and flanking lines were displayed continuously

throughout the experiment, and the noise border was

refreshed at the end of each trial by random selection from

a set of 50 such borders.

Observers completed six (experiments 1 and 2) or 12

(experiment 3) sessions, but the first session for each blur

was discarded as practice. The image blur used in each ses-

sion was randomly selected, with the constraint that each

blur was used equally often. Data were pooled over 20 repe-

titions of the four sub-conditions (two signs of contrast

and two signs of disparity) giving a total of N = 80 trials

per disparity and blur for each observer.

There were four observers, aged 20–46. One (SAW) was

aware of the purpose of the experiment, but the other three

were not. All had experience of psychophysical experiments

(though ASB and SGB had less experience than SAW and

DHB), and all had normal or corrected-to-normal acuity

and normal binocular vision. Stereo acuity was checked

before the experiment and found to be within normal lim-

its. Each gave informed consent.

Experiment 1

In addition to the dichoptic conditions described above,

experiment 1 included monoptic conditions, where both

test edges were presented to the same eye, combined by lin-

ear summation of their contrast profiles, giving a total con-

trast of 0.6, but no change of mean luminance. The other

eye saw a blank image at mid-grey luminance, but with the

usual noise border and flanking lines. These monoptic (left

or right eye) conditions were randomly interleaved with

the dichoptic conditions in each session.

The two-choice task: Observers were instructed “Respond

‘1’ if you see a single central edge or respond ‘2’ if you see

two edges or a single edge displaced from the centre.” To

reduce the impact of finger errors, observers had the option

to alter the response just given, by pressing an ‘error

button’. This switched the response to the opposite

category.

Experiment 2

The three-choice task: Observers had three response catego-

ries: ‘single central edge’, ‘single offset edge’ or ‘two edges’.

The ‘error button’ now vetoed the most recent response,

and a second key press denoted the observer’s corrected

response. There were no monoptic conditions. In all other

respects, the method matched experiment 1.

Experiment 3

In experiment 3, extra conditions were added where the test

edge contrast was of opposite sign in the two eyes, and the

test edge contrasts could be equal or unequal in the two

eyes to allow a broader examination of interocular suppres-

sion. From a base contrast of 0.3, contrast imbalance was

produced by increasing the test edge contrast in one eye by

0, 3 or 6 dB and decreasing it in the other eye by the same

amount. Thus the left:right contrast ratios were �12, �6, 0,

6, 12 dB (i.e. ¼, ½, 1, 2, 4). At 0 dB, contrasts were equal

(0.3) in each eye. These extra conditions greatly increased

the size of the experiment, so only one edge blur

(B = 8 min arc) was used.

There were 680 conditions. Of these, 360 were derived

from five contrast ratios, two pairings of contrast sign

(same or opposite in the two eyes), two signs of contrast,

two signs of disparity and nine disparities (0–8B). The

other 320 were zero disparity conditions, designed to exam-

ine the observers’ positional noise (which limits their ability

to discriminate a central edge from a non-central edge) and

to determine the placement of their criteria. Here, a binoc-

ular, zero-disparity edge was displaced upwards or down-

wards from the centre by one of eight offset magnitudes

(0.25–2B in 0.25B increments). These 320 conditions were

derived from five levels of contrast imbalance, two pairings

of contrast sign, two signs of contrast, two directions of off-

set (up or down) and eight offset magnitudes.

The five-choice task: Response categories were: ‘2 edges’,

‘1 central edge, light at top’, ‘1 central edge, light at bot-

tom’, ‘1 edge above centre’ and ‘1 edge below centre’. The

‘error button’ was not used. One session consisted of a sin-

gle presentation of all 680 conditions, plus a second trial

for all the 0 dB conditions, in random order (816 trials in

total), taking about 35 min. Each observer completed 11

sessions, but the first was discarded as practice. Observer

SGB was no longer available and was replaced with a psy-

chophysically na€ıve observer (RH), who was unaware of the

purpose of the experiment and had normal binocular
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vision. For the present paper, the five-choice data were col-

lapsed to the three categories of experiment 2 to enable the

same kind of analysis and modelling, described next.

Modelling

Modelling the data to derive the characteristics of fusion

and suppression

We begin with a general scheme for thinking about fused

and non-fused vision (Figure 2). For a given external fea-

ture presented to both eyes, we assume that there are two

mutually exclusive internal states – fusion and non-fusion.

Fusion, by definition, must arise from some mechanism

that combines signals from both eyes, while non-fusion

arises from monocularly-driven mechanisms that do not

combine. Non-fused percepts, one from each eye, can

co-exist (double vision) or one of them may be largely or

completely suppressed. On the other hand, it appears that

fused and non-fused percepts (from a given pair of input

features) never co-exist.14 This could imply (1) a second

process of ‘fusional suppression’23 in which the fused repre-

sentation suppresses the non-fused ones, or (2) that mon-

ocular signals are routed to perception only through

binocular pathways, so when monocular signals are fused,

their separate identity is lost. Either way, when fusion

occurs the non-fused signals are not available and so

‘triplopia’ – seeing fused and diplopic images together – is

never experienced.14 Our descriptive model simply assumes

that, whatever the underlying mechanism might be, fusion

and non-fusion are mutually exclusive. Blake & Booth-

royd24 found evidence for a closely related idea – that

fusion takes precedence over rivalry. When vertical gratings

in both eyes were fused, they ceased to rival with a horizon-

tal grating that was shown only to one eye.

When the fused state prevails, the model observer reports

a single feature. Mean position of the fused feature is mod-

elled here as a contrast-weighted average of the monocular

positions, so when left and right eye contrasts are equal,

mean position x0 should be central (x0 = 0). But in the face

of positional noise, the encoded position may be offset

from the centre, and if that noise-induced offset exceeds a

criterion amount, the observer will report ‘1 offset’ rather

than ‘1 central’ (see Figure 3, top panel). Fusion holds over

a limited range of disparities (Panum’s limit), so we sup-

pose that the probability of fusion p(Fuse) falls smoothly

with increasing disparity d. If on a given trial there is no

fusion and no suppression then both monocular edges sur-

vive, the outcome state is diplopia and the observer reports

‘2 edges’.

But if the fused state does not prevail, and suppression

of one monocular feature occurs, the outcome is denoted

monoc, and the observer reports a single edge. We

assume, perhaps counter-intuitively, that the probability p

(Supp) of suppression of one monocular feature (but not

both) is greatest at zero disparity, and falls with increas-

ing disparity. We shall see later that this general assump-

tion makes good sense of the data. It does not imply that

monocular features are often seen at small disparities,

however, because a single monocular edge is seen only in

the non-fused state, and at small disparities the non-fused

state has a low probability.

The mean position of a monoc edge corresponds to its

monocular position (�d/2), but depending on the criterion

c for reporting ‘offset’, and the amount of positional noise

n, a single monoc edge may be reported as ‘central’ if its

position x falls within the range –c ≤ x ≤ c, or ‘offset’ if

|x| > c (see Figure 3, middle panel).

In short, the behavioural responses about perceived posi-

tion (‘offset’ or ‘central’) do not uniquely identify the states

(monoc or fusion) that gave rise to them, and the extent of

this uncertainty (noise) is unknown. But the variation of

the positional judgements over disparity may still carry use-

ful information about fusion and suppression, and it may

be possible to estimate the noise through modelling. This

key idea is tested (and confirmed) below in a simulation. In

modelling experimental data our goal is to allow the inter-

nal probabilities p(Fuse) and p(Supp) to be teased apart,

and estimated as functions of disparity, from the behavio-

ural data.

Fusion?

L eye R eye

Fused Monoc Diplopia

Yes No

Interocular
suppression?

Yes No

p(Fuse) 1-p(Fuse)

p(Supp)

'2 edges''1 offset''1 central'

Positional noise

Figure 2. Functional relations between binocular fusion, interocular

suppression and diplopia, represented as a decision tree. With added

noise, this schematic structure leads to our model for interpreting the

experimental data. Fused, monoc and diplopia are mutually exclusive

perceptual states. These states map onto decisions via positional noise

and a decision criterion that need to be accounted for when interpret-

ing the behavioural responses.
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Model equations

We formalize the above proposals as follows. The probabil-

ity of suppression falls as a Gaussian function of disparity,

with a spread constant rs:

p(Supp) ¼ pSupp0: exp �lnð2Þd2
r2
s

� �
: ð1Þ

With this formulation rs is the half-width at half-height

(hwhh) – the disparity at which p(Supp) falls to pSupp0/2 –
and it defines the disparity range for suppression. For

matchedmonocular features (i.e. the same polarity, orienta-

tion, contrast and blur, as in experiments 1 and 2), we

assume pSupp0 = 1, but we consider later the idea that

pSupp0 ≤1 for edges of opposite polarity. Similarly, for

fusion:

p(Fuse) ¼ pFuse0: exp �lnð2Þdq
rq
f

 !
: ð2Þ

As before, rf is the disparity range for fusion, and we

propose that for matched features pFuse0 = 1; at zero dis-

parity fusion always prevails. But for opposite polarities

there might be no fusion at all: pFuse0 = 0. Note also that

this function is a generalised Gaussian (where the steepness

parameter q replaces the usual 2). When q > 2, the func-

tion has a flatter top and steeper sides than the Gaussian,

and when q is very large the function becomes a square box

of width 2rf.

If fusion does not occur then the outcome may be diplo-

pia, but if one monocular edge is suppressed the outcome

is monoc, with a probability:

p(monoc) ¼ p(Supp):ð1� p(Fuse)Þ: ð3Þ

We denote the three kinds of behavioural response as ‘1

central’, ‘1 offset’ and ‘2 edges’. The diplopia decision (‘2

edges’) appears not to involve any positional judgement,

and so for simplicity we assume that the decision between

one and two edges is unaffected by positional noise, hence

pð‘2 edges’Þ ¼ pðdiplopiaÞ
¼ 1� pðFuseÞð Þ: 1� p(SuppÞð Þ: ð4Þ

The two other response categories are positional judge-

ments, whose probabilities have several components. Given

a monoc edge whose mean position is x1 = d/2, or a fused

edge whose mean position is x0, with trial-to-trial standard

deviation n, we compute the (two-tailed) conditional prob-

ability that the edge falls outside the criterion boundaries

set at x = �c:

−3 −2 −1 0 1 2 3
0

0.01

0.02

Jo
in

t p
ro

ba
bi

lit
y

Disparity = 1.B

1−offset

1−central

1−offset

Prob. of seeing edge at position x

 

 

−3 −2 −1 0 1 2 3
0

0.01

0.02
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in

t p
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ba
bi

lit
y

Disparity = 2.B

1−offset

1−central

1−offset

−3 −2 −1 0 1 2 3
0

0.01

0.02

Position, x (units of blur, B)

Jo
in

t p
ro

ba
bi

lit
y

Disparity = 4.B

1−offset

1−central

1−offset

Fusion
monL
monR
Double

Figure 3. From perceptual states to behavioural responses in the

three-choice task. Red curves show for a given disparity the joint

probability that an edge will be fused and seen at position x. Total

area under the red curve is p(Fuse) – the probability of fusion for

a given disparity (top to bottom: disparity = B, 2B, 4B). Shaded

grey area under the fusion curve shows the proportion of fused tri-

als that fall within the criteria (vertical broken lines) hence judged

as ‘1 central’. Top panel: The proportion of 1-central responses

from fusion under-estimates the probability of fusion by an amount

that depends on the criterion setting and the noise level. Remain-

ing trials (white areas under the red curve) are ‘false alarms’: fused,

but judged as offset. Middle: at a larger disparity p(Fuse) is

reduced, and monoc states (split between left eye, blue; right eye,

green) increase. A proportion of those trials (shaded grey under the

blue & green curves) will be judged as ‘1-central’ rather than ‘1-

offset’. Bottom: at an even larger disparity fusion is absent, and

responses are mainly split between ‘1-offset’ and ‘double’ (dashed

curve). [Model parameters for this illustration were: Fusion range

rf = 2.5B, suppression range rs = 5.B, noise S.D. n = 0.6B, criterion

placement c = �1, q = 4.]
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pð‘1 offset’jmonocÞ ¼ U
x1 � c

n

� �
þ U

�x1 � c

n

� �
;

pð‘1 offset’j fusedÞ ¼ U
x0 � c

n

� �
þ U

�x0 � c

n

� �
;

where Φ is the standard normal integral. These are then

combined to give the simple probability:

pð‘1 offset’Þ ¼ pð‘1 offset’jmonocÞ:pðmonoc)
þ pð‘1 offset’j fusedÞ:pðFuse): ð5Þ

Similarly, for ‘1 central’ responses we have conditional

probabilities:

pð‘1 central’jmonoc) ¼ 1� pð‘1 offset’jmonoc):

pð‘1 central’j fused) ¼ 1� pð‘1 offset’j fusedÞ;

leading to:

pð‘1 central’Þ ¼ pð‘1 central’jmonocÞ:pðmonocÞ
þ pð‘1 central’j fusedÞ:pðFuseÞ: ð6Þ

In summary, the model describes the way fusion and

suppression vary with disparity via the equations for p

(Fuse) and p(Supp), and translates those functions into

behavioural response probabilities by allowing for both

positional noise and the decision criterion that divides

‘central’ from ‘offset’ judgements. There are five free

parameters to be estimated (rf, rs, q, c, n). The first two –
fusion and suppression ranges – are of greater interest

because, if estimated accurately, they describe the disparity

dependence of two key processes in binocular vision.

Model fitting

Experiment 2

The descriptive model (above) was fitted to datasets from

experiment 2 comprising 27 response probabilities (nine

disparities 9 three response types), separately for each

observer and each blur, using the method of maximum

likelihood. Goodness-of-fit was assessed (1) by computing

the deviance and comparing it with the chi-square distribu-

tion for 18 d.f. [for these multinomial data, d.f. = m.(r�1),

where m is the number of conditions (disparities) and

r = 3 is the number of response alternatives] and (2) by

routinely plotting the deviance residuals (analogous to the

residual sums of squares, RSS) as a function of disparity

and examining these for systematic structure that would

indicate a poor fit.

We first allowed all five parameters to be adjusted (by

fminsearch in Matlab) to fit each dataset (denoted as

“5-free”). After extensive exploration, we chose to prevent

unstable combinations of parameters, by constraining q to

the range 2 ≤ q ≤ 5, rs ≥ 0.5 and rf ≥ 1. Fits were gener-

ally good, but to reduce the danger of over-fitting, and to

remove some instability caused by a very evident trade-off

in the effects of the c and n parameters, we also fitted with

four free parameters and a fixed criterion (c = 1), denoted

“4-free, c = 1”. It was plain that the c/n ratio was more

important than the absolute values. We chose c = 1 because

it was close to the mean obtained with 5-free. In similar

vein we also fitted with 3-free, c = 1, q = 4.

Experiment 1

The two-choice format of experiment 1 did not deliver the

three response categories needed to fit the model, but to

allow some comparison with experiment 2 we again used

the generalised Gaussian function to derive an empirical

description of the disparity range r1 for ‘single-central’

responses. The steepness q and peak probability A were fit-

ted parameters (2 ≤ q ≤ 10, 0 ≤ A ≤ 1):

Expt 1 only : pð‘1 central’Þ ¼ A: exp �lnð2Þdq
rq
1

� �
:

Experiment 3

Fitting was done separately for each observer and each con-

trast ratio, but data for same and opposite polarities were

fitted together, as follows. The experiment yielded direct

experimental estimates of noise and criterion for each

observer, and these were used as fixed parameters n, c. As

before, pSupp0 was set to 1 for the same polarity conditions.

That left four parameters to be fitted: fusional range, sup-

pression range (same polarity), suppression range (opposite

polarity), and peak probability of suppression pSupp0 for

opposite polarity.

Testing the validity of the model

Our experiments did not ask observers to distinguish

directly between fusion and non-fusion, because we sup-

pose that if the observer sees a single edge he or she has

either a weak or no basis for knowing whether this edge

was mediated by monocular or binocular mechanisms.

But it is safe to assume that observers can make judge-

ments about the position of an edge, and at least plausi-

ble that these position judgements would differ

systematically for fused and monoc edges. Hence by mod-

elling these judgements we aim to recover information

about the underlying probabilities of fusion and suppres-

sion across disparity – but we cannot know a priori that
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this is possible. Having laid out a basic, perhaps uncon-

troversial, set of assumptions in the model above, we

have seen that with positional noise the fused and monoc

states contribute to both the 1-central and 1-offset

response categories (Figures 2, 3 and Equations 5 and 6).

Perhaps the behavioural responses are too confounded to

be useful? The issue is one of content validity: how do

we know that the parameters returned by fits to the data

(especially rf, rs) actually reflect processes or states of

fusion and suppression in the observer’s visual system?

We addressed this with a simulation.

For 48 different combinations of parameters we used

the model to generate synthetic data in the same format

as experiment 2, i.e. N = 80 trials for each of nine dis-

parities and four (simulated) observers. The simulated

datasets produced a range of patterns of response varia-

tion quite similar to those observed experimentally. The

model was then fitted to the synthetic data, in the same

way as the real data (“5-free”). Figure 4 (left) plots the

estimated pairings (rf, rs) as coloured symbols to be

compared with ‘ground truth’ (x’s lying on a circular

locus). It is clear that the model tracked the ‘true’ values

fairly closely around all parts of the parameter space. This

contrasts with Figure 4 (right) where values of criterion c

and noise n were not so reliably estimated, but their ratio

c/n was.

We conclude from this simulation that the model can in

principle recover values of the disparity ranges (rf, rs) that

are close to the true values, even though two other parame-

ters (c,n) were confounded in the 5-free fit. This gives us

confidence that our experimental estimates of the disparity

ranges (rf, rs) are meaningful and valid. [The interested

reader is directed to Appendix B, where we describe

another way of estimating the parameters, using AIC and

multi-model inference to avoid the confound between c

and n. The resulting mean estimates were very similar to

those produced by the three more conventional methods

(Appendix A, Table A1).]
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Figure 4. Results of a simulation to test the descriptive model’s ability to recover accurate estimates of fusion range and suppression range. Twelve

pairs of ‘true’ values (marked by x’s) were used to generate synthetic data (N = 80 trials, four simulated observers, as in our experiments), to which

the model was then fitted with five free parameters. Coloured symbols (left panel) show that for various combinations of the three other generative

parameters, the model produced reasonably accurate mean estimates of fusion range and suppression range – i.e. the symbols fall close to the x’s.

This was true despite strong redundancy (correlation) in the effects of two other parameters. Right panel shows that absolute values of the noise and

position criteria (large circles) were not so well recovered. Within limits, it was the ratio of noise to criterion that mattered, and this was accurately esti-

mated (dashed lines).
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Results

Experiment 1

For the two-choice task, equivalent to a ‘yes-no’ task, it is

sufficient to plot the proportion of ‘1 central’ responses as a

function of disparity. Figure 5 illustrates data for one of the

four observers. Fitted curves are the generalised Gaussian

function defined above, and they are usefully summarised

by their disparity ranges r1, at which responses fell to half

their peak rate, marked by diamond symbols. Clearly, for

both monoptic and dichoptic conditions (Figure 5a,b), the

disparity range increased markedly with the scale (blur) of

the edge. The degree of scale invariance in these data can be

visualised by expressing disparity as a multiple of the edge

blur B (Figure 5c,d). For example, at B = 8 min arc, a dis-

parity of 16 min arc converts to a disparity of 2B. For this

observer (and indeed all four observers), the monoptic

range was scale-invariant – i.e. almost constant with a mean

of about 2.5B (means over the six blurs: SAW 2.51, DHB

2.45, ASB 1.76, SGB 3.03). For dichoptic viewing, the range

was also about 2.5B at large blurs (16, 32 min arc) but

increased to more than 5B at the smallest blurs, where indi-

vidual differences were also larger.

The group trends are summarised in Figure 6 by the

median r1 ranges for monoptic and dichoptic viewing. The

monoptic range (grey squares) represents the transition

point between seeing a single edge and resolving two adja-

cent edges in the same (monocular) image. Interestingly,

such scale-invariant resolution of two edges at an edge sep-

aration of 2.5B is exactly as predicted by a multiscale model

of edge coding (N3+) described by Georgeson et al.19 (p.4

and their Figure S1). But we should bear in mind that this

monoptic resolution might not be closely related to diplo-

pia. The dichoptic task (filled circles in Figure 6) presum-

ably involves binocular fusion, but how precisely its

disparity range reflects the fusional range is unknown (see

above). This is addressed more closely in experiment 2.

Experiment 2: using modelling to derive disparity ranges

for fusion and suppression

For the three-choice task, the data are best seen by plotting

all three response rates as a function of disparity. Figure 7

shows results for two observers, chosen to illustrate both

common trends and individual differences; plots for the

other two are in the Supporting Information, Figure S1.

Smooth curves show the model fits, which generally gave a

good or excellent description of the data. As in experiment

1, ‘1 central’ responses fell with increasing disparity, but

we now see that the ‘1 offset’ and ‘2 edges’ responses are

quite distinct categories. Diplopia increased monotonically

with disparity, and was much more likely at large blurs,

while ‘1 offset’ responses behaved in a more complex

fashion – rising with increasing disparity (at small blurs) or

rising then falling (at larger blurs).

The model captures these varied patterns of data well,

and parsimoniously (Figure 7). Responses ‘1 central’ are

closely related to the model’s underlying probability of

fusion [p(Fuse), cyan dashed curve], but the rate of these ‘1

central’ responses (grey curve) often fell well below p(Fuse).

This under-estimation is induced by positional noise, as

already outlined in Figure 3, and is greater with narrower

criteria (smaller c), or higher noise (n). In line with this

analysis, observer ASB showed a large under-estimation

effect (where the peak value of p(‘1 central’) fell between

0.6 and 0.8; Figure 7b) and for him the model returned

consistently smaller c/n ratios than for the other observers

across all conditions. For a 5-free fit, the median c/n ratio

over the six blurs was 1.10 for ASB compared with SAW

2.32, DHB 2.70, SGB 1.49, and the outcome was similar for

the 4-free and 3-free fits where c was fixed at 1.00. Thus the

model gives us an important tool for separating task- and

decision-related factors (noise and criterion) from sensory/

perceptual factors that are specifically binocular (fusion

and suppression).

Fusion and suppression ranges averaged over the four

observers are plotted against edge blur in Figure 8. Mean

fusional range was 2.5B at the larger blurs (B = 8, 16,

32 min arc) but increased to about 5.B at the smallest blurs.

Disparity range for suppression was two to three times

larger than the fusional range at small blurs, and this exten-

sive range of suppression can account for the low rates of

diplopia at small blurs. This is summarised more clearly in

Figure 9, where smooth curves show fitted model probabil-

ities, averaged over the four observers. By removing the

perturbing effects of positional noise and criterion, these

model curves should give us a more accurate view of fusion

and suppression. The monoc state (orange curve) – corre-

sponding to one visible edge and one suppressed edge – is

most likely when p(Supp) (pink curve) is high and p(Fuse)

(cyan curve) is low. This combination occurred most at

small blurs. At larger blurs, on the other hand, the fusion

and suppression ranges were about equal (Figures 8, 9).

This led to high rates of diplopia, because suppression was

absent at large disparities. Diplopia can occur only where

suppression does not, and this combination was favoured

at large blurs in our experiment. At small blurs suppression

would presumably fall at even larger disparities (e.g. 10 – 20.B)
and then diplopia would be seen more strongly, but at

disparities beyond the range we tested.

In short, the rather complex, varied patterns of data

across blurs and across individuals, seen in Figure 7 and

Figure S1, can be accounted for by two main factors: the

range of suppression relative to that of fusion (rs/rf), and

the spatial separation of the decision criteria relative to the

positional noise (2c/n).
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The average fusion and suppression ranges (Figure 8)

were approximately power functions of blur with expo-

nents (fitted slopes on the log-log plot) of 0.77 (fusion) and

0.36 (suppression). Both showed departures from scale

invariance (a slope of one in this plot), but the fusion range

was closer to scale invariance.

The influences of disparity and blur, seen separately so

far, can be visualised together as surface contour maps. The

model maps (Figure 10, top row) show the group average

probability of fusion (a), suppression (b) and diplopia (d)

across the different levels of blur and disparity, inferred

from model fits to data of all four observers. Panel c shows

the model probability for seeing a monoc edge: the proba-

bility that interocular suppression occurs and fusion does

not. It can be envisaged as (map b) 9 (1 � map a). With

these maps it is easy to see how perceptual suppression of

one edge occurs (at small blurs and large disparities, map c)

only where the disparity range for suppression (b) extends

well beyond the range for fusion (a). Diplopia (d) occurs

beyond the fusion range, but only when the suppression

range is small; this occurs at large blurs.

Maps e, g, h (middle row) show the model’s ‘decisions’:

that is, the model’s account of the observer’s behavioural

responses (bottom row). There is clearly a good match

between the two sets of maps. We emphasize that these are

not predictions, because the model was fitted to the data

for each subject and blur. Rather, the aim was to fit the

model, incorporating the perturbing effects of criterion and

noise, then remove those influences to derive the underly-

ing characteristics of fusion and suppression, shown in the

top row. Differences between maps in the middle and top

rows (e vs a, g vs c) thus reflect the presence and absence of

those influences respectively. The differences in these maps

may not appear dramatic, so we computed difference maps

(e minus a, g minus c, etc.) to examine this more closely

(Figure S6). There was little difference between model deci-

sions and observer responses (middle vs bottom rows of

Figure 10) – confirming that the model fits the data well.

But there was systematic structure (i.e. differences) between

model states and model decisions (top vs middle rows of

Figure 10), and this means that we are learning something

new by removing the effects of noise. This is especially so

for individuals like ASB, who adopted very narrow criteria

for the ‘central’ judgement. For him, removal of these

‘crossover’ effects of noise (cf. Figure 2) was especially

important, and made good sense of otherwise puzzling

data.

On average, though, the observed response probabilities

(Figure 10; i,k,l) are not a bad approximation to the inter-

nal states (a, c, d). This suggests an interesting simplifica-

tion, in which we can derive an approximate map of

suppression directly from the data, without model fitting.

The reasoning is this: the observed p(‘central’) approxi-

mates the internal state p(Fuse), while p(‘offset’) approxi-

mates p(monoc). Equation 3 tells us that p(monoc) = p

(Supp).(1�p(Fuse)) so, replacing the model states with

their approximations, we get:

pð‘offset’Þ � pðSuppÞ:ð1� pð‘central’ÞÞ;

and therefore

pðSuppÞ � pð‘offset’Þ
1� pð‘central’Þ : ð7Þ

This ‘direct’ map of suppression is shown in Figure 10j

(and for completeness the same treatment was applied to

model decisions in Figure 10f). The similarity to the

model-based suppression map (Figure 10b) is clear. All

three suppression maps tell us that, perhaps counterintu-

tively, interocular suppression between unfused monocular

representations is greatest at small disparities and falls as

(a) (b)

(c) (d)

Figure 5. Experiment 1. Data from the 2-choice procedure for one

observer (SAW). (a) Monoptic condition (both edges in the same eye).

Symbols show the proportion of trials on which the observer reported a

single, central edge, as a function of absolute disparity (in min arc, log

scale). Different colours represent different edge blurs, in min arc, as

shown. Smooth curves are the fits of a generalised Gaussian function

(see text). Diamond symbols on the curves lie at half the peak height of

each fitted curve, estimating the disparity range for single-central

responses. (b) Similar to (a), for dichoptic edges. The absolute disparity

range increased markedly with the scale (blur) of the edge. (c, d) Same

data as (a, b), but with disparity re-plotted as a multiple of the blur B.

Scale invariance was more evident for the monoptic task (c) than the

dichoptic (d).
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disparity increases. This conclusion hinges on one assump-

tion (Equation 3), but it is not the outcome of any other

aspect of the modelling, because the empirical map of sup-

pression (Figure 10j) shows it directly.

Experiment 3

Our final experiment posed two further questions about

the nature of fusion and suppression: (1) Does fusion occur

for edges of opposite polarity? (2) How is the probability of

fusion and suppression affected by relative contrast? We

adopted the same model-based approach, but also included

control trials whose purpose was to allow direct estimation

of criterion and noise from the data.

The experiment inter-mingled two kinds of trials: those

with zero or non-zero disparity (similar to experiment 2),

and the control trials that had zero-disparity but non-zero

spatial offset. Figure 11 shows typical results for these

control trials, for one observer, and the legend describes

how criterion and noise were derived from the fitted cumu-

lative Gaussian curves. Similar plots for all four observers

are shown in Figure S5, and Table A2 summarises the crite-

rion and noise values derived. On average, the criterion

boundaries were set about �0.66B from the centre, and the

noise standard deviation was about 0.5B, where B = 8 min

arc.

For each observer, values of criterion and noise for the

same polarity condition (Table A2) were used as fixed

parameters in fitting the descriptive model to the main

data, as described in Model fitting above, and illustrated in

Figure 12 for two observers (DHB, ASB; see Figure S2 for

the other two). Individual differences in the data are quite

marked, but there are also clear common features. For all

four observers and for both same & opposite polarities,

reports of diplopia (‘2 edges’) decreased with increasing

contrast imbalance (left to right columns in Figure 12).

Responses of ‘1-central’ were restricted to smaller dispari-

ties (below about 3.B) and were less frequent with opposite

polarities.

Interestingly, if we took the position that all ‘1-central’

responses were based on fusion, we should conclude that

fusion also occurred for opposite polarities, though less

often than with same polarities (compare grey symbols in

top and bottom rows of Figure 12a or 12b). The modelling,

however, shows that such a conclusion would be unsound.

The model here (Figure 12) assumed no fusion for opposite

polarities, and yet it describes the response rates and trends

quite well. On this model, two edges of opposite polarity

are superimposed in the binocular visual field, but even at

small or zero disparity they don’t fuse. The observer may

report diplopia (at quite high rates, Figure 12a, b, bottom

left panel), but if one of the two is suppressed, the observer

reports a single edge. At small or zero disparity, the proba-

bility that this edge falls into the ‘central’ region can be

quite high, as observed. Thus ‘1 central’ responses do not

always mean fusion. Their frequency of occurrence in the

opposite-polarity condition depends on disparity, criterion

position and noise. These interactions are complicated and

hard to think about, and the model serves as a useful tool

for teasing them apart.

Using the model we compared four hypotheses, by allow-

ing fusion to occur for (1) same polarity only, (2) both

polarity conditions, (3) neither polarity condition, (4)

opposite polarities only. In case (2) we constrained the

fusion range to be the same for both polarity conditions.

We considered model 1 to be a priori much more likely

than the others; these model comparisons put that expecta-

tion to a formal test. In brief, model 1 (fusion only for same

polarity) was uniquely favoured. This was confirmed firstly

by detailed examination of the model-fitting errors (devi-

ance residuals) which showed large, systematic errors for

models 2,3,4, but comparatively little for model 1 (see Fig-

ure S4), and secondly by model comparison using AIC

(Table B2). This shows that, of the four models considered,

model 1 was uniquely the best (Akaike weight = 1 for each

observer).
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Figure 6. Experiment 1. Disparity ranges (median over the four observ-

ers) for single-central responses (derived as in Figure 5) plotted as a

function of edge blur B (log-log plot). Squares: disparity range for the

monoptic task was scale-invariant, at about 2.5B for all edge blurs. Col-

oured circles: for the dichoptic task, disparity range was similar to mon-

optic at large blurs, but increased to about 5.B at small blurs. For

comparison, open circles show median estimates for the range of binoc-

ular fusion derived by modelling of experiment 2 (see text).
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(a)

(b)

Figure 7. Experiment 2. Proportion of each response type in the 3-choice task is plotted as a function of disparity, in separate panels for each blur.

Note how reports of 2 edges (diplopia, blue symbols) are much more frequent at larger disparities and larger blurs. (a) observer SAW. (b) observer

ASB. Smooth solid curves show the fit of the model, with four free parameters for each panel (c = 1). Dashed curves show model probabilities for the

internal states of fusion p(Fuse) (cyan) and suppression p(Supp) (magenta). R2 is shown in each panel as a familiar guide to goodness-of-fit; all formal

analyses were based on the deviance measure, more appropriate for these multinomial, frequency-count data.
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We also found that the equal-contrast (0 dB) condition

was the most diagnostic one for distinguishing the models,

in that the systematic difference in fitting errors between

model 1 and the others was greatest there, and was least

when the contrast difference was greatest (12 dB) (Figure

S4). It seems intuitively reasonable that when one input is

weak, models with and without fusion make similar predic-

tions, but when the contrasts are equal they do not. Hence

the equal-contrast condition discriminates best between the

four models.

For both polarities, the probability of suppression always

increased when the two eyes’ contrasts became more

unequal (Figure 12, Figure S2). Examination of the original

five-choice data (see Methods), where observers had to

identify whether a ‘1-offset’ edge was above or below cen-

tre, gave good information about which of the two edges

was suppressed. When contrasts were unequal, it was

always the lower-contrast edge that was suppressed.

Group mean parameters for the best model are listed in

Table A3. How these factors interact to produce perceptual

outcomes is seen in Figure 13 which summarises the find-

ings of experiment 3, in the style of Figure 9, as averaged

model curves for the same polarity (top row) and opposite

polarity (bottom row). By looking at the model curves for

‘internal states’ we remove the perturbing influence of posi-

tional criterion and noise on the data. Despite some quite

large individual differences in the degree of suppression

and its spread across the disparity range, it seems reason-

able to conclude from Figure 13 – and the success of model

1 – that for the conditions of experiment 3 (B = 8 min

blur, 200 ms duration):

1. Binocular fusion occurs for edges of the same polarity,

for disparities up to a limit of about 2.5B to 3.B, as also

found in Experiment 2.

2. Binocular fusion does not occur at all for edges of oppo-

site polarity.

3. Interocular suppression falls monotonically with

increasing disparity, for both same & opposite polari-

ties, but

4. Interocular suppression expresses itself in perception

only when fusion fails, either at larger disparities or with

opposite polarities.

5. For opposite polarities: interocular suppression is rela-

tively low when contrasts are equal, but increases when

they become unequal. This occurs mainly by an increase

in the peak probability, rather than increase in the dis-

parity range.

6. For opposite polarities: fusion is absent, and so double

vision is the complement of suppression, i.e. p(diplo-

pia) = 1 � p(Supp) (Figure 13, bottom row).

Discussion

We studied the characteristics of binocular fusion, using

blurred edges with a range of vertical disparities. We chose

vertical disparities to simplify the research question. For

horizontal disparities there is abundant psychophysical and

physiological evidence for a range of disparity-tuned

mechanisms or ‘channels’,25,26 and so the fusional range,

which is much larger for horizontal than for vertical dispar-

ities,6,27 probably reflects the total range that the set of dis-

parity mechanisms can handle, rather than the disparity

range of any one mechanism. It seems likely, though not

certain, that multiple disparity ‘channels’ are absent for ver-

tical disparities in central vision. Vertical disparities cer-

tainly carry information in peripheral vision, but there

seems to be no sensation (and in particular no stereo

depth) associated with vertical disparity in central vision.

Thus by using vertical disparities, we aimed to tap into a

simpler system where at a given spatial scale there might be

just one ‘channel’, tuned to zero disparity.

Interpreting perceptual decisions via descriptive modelling

We devised a simple probabilistic model to describe the

way the internal states of binocular fusion and suppression

lead to the observable, button-pressing responses. Given

the underlying probabilities p(Fuse) and p(Supp), and the
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log-log plot. Symbols show means of the four observers � 1 S.E. Nei-

ther the fusion range (cyan line, slope 0.77) nor suppression range

(magenta line, slope 0.36) is scale-invariant (dashed line, slope = 1), but

the fusion range is closer to it. Grey curve represents a linear relation

between fusion range and edge blur (fusion range = 2.4B + 3) – see

Discussion.
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task-related parameters c and n, one can predict the proba-

bility of responses in the three-choice task. Our method

put this into reverse, fitting the model to data in order to

infer p(Fuse) and p(Supp). The model offers three benefits:

the first is to remove the perturbing influence of positional

noise, which was important for all observers at the small

blurs, and for some observers (especially ASB) across a

broader range of blurs. The second benefit, even when

noise effects are small, is that one can deduce the underly-

ing suppression function p(Supp), by combining two sets of

response rates in a particular way (Equation. 7). This can

also be done, to a fair approximation, directly from the

data (Figure 10j).

The third benefit is that the model allows objective evalu-

ation of different hypotheses about fusion phenomena. For

example, we showed via the model that there is almost cer-

tainly no mechanism for perceptual fusion of edges with

opposite polarity. This fits nicely with studies on stereo

vision showing that depth from disparate edges is reliable

only when the edges have the same polarity, i.e. the same

sign of gradient, no matter whether the luminance levels

forming the edge are similar or not.28 It is also consistent

with evidence from binocular summation in contrast detec-

tion and contrast perception. The binocular advantage for

detection of in-phase or same-polarity targets is lost – or

reduced to the level of probability summation – when they

are out of phase or of opposite polarity.29,30 Similarly, at

low-contrasts, perceived contrast is enhanced for in-phase

but not for out-of-phase gratings, which look similar in

contrast to their monoptic counterparts.31 Polarity-specific

neural summation,32 leading to fusion, is presumably a

hard-wired strategy to combine matching image features

that are likely to have arisen from the same source in the

visual world.

Individual differences

Individual differences in rates of diplopia, and in the

inferred probabilities of suppression, were quite a feature of

the data. These were subjective judgements, and so individ-
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Figure 9. Experiment 2. Our interpretation of the results is summarized by model curves for probability of fusion p(Fuse) and interocular suppression

p(Supp). Model curves were generated for each observer from fitted parameters (5-free fit), then group mean curves were plotted as shown. Shaded

area represents � 1 S.E. around p(Supp). Blue symbols show experimental group mean rates for the ‘2 edges’ response. Diplopia was higher at large

blurs where suppression was restricted to smaller disparities.
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ual differences might reflect differences in response criteria,

other than the positional criterion that we carefully

accounted for. Devising suitable criterion-free tasks is one

way of reducing such problems,33 though it is not straight-

forward to know what tasks are most suitable. Individual

differences might also be a true reflection of the nature of

interocular suppression at the neural level. In a strongly

coupled, highly nonlinear network,34,35 small differences in

network parameters between individuals could lead to large

differences in the strength and dynamics of the suppressive

effects.

Scale invariance of fusion?

One of our key findings is that the disparity range for

fusion increased markedly with blur (Figure 8). This con-

firms quantitatively the early demonstrations of Kulikowski.4

The blur-dependence of fusion, however, fell short of

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 10. Experiment 2. Model internal states (top row, 5-free fit), model decisions (middle row) and experimental results (bottom row) summarised

as surface contour maps. Horizontal axis represents disparity expressed as a multiple of the edge blur. Vertical axis plots edge blur B in min arc (log

scale). White curve shows mean disparity range rf for fusion, derived from model fitting (map a). Surface colour codes probability of model states (a–

d), model decisions (e–h) and mean proportion of responses over the four observers (i–l). Model states and decisions were derived by fitting to data

separately for each observer, as in Figure 7; group mean maps are shown. Map c represents p(monoc) – the model’s probability that there is no fusion

and there is suppression of one monocular feature but not both. Maps f and j give an approximate estimate of interocular suppression derived directly

from experimental data (j) or the corresponding model decisions (f) (see text for derivation), to be compared with the model map (b) for p(Supp). Note

how double vision (d, h, l) is strongest at large blurs and large disparities, while the monoc state (c) and its experimental counterpart (the ‘1 offset’

response, k) are greatest at small blurs and large disparities.
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complete scale-invariance (the power exponent in Figure 8

was 0.77 instead of 1.00). Despite the differences in stimuli

and methods, these results show almost exactly the same

trends as those reported for vertical disparity by Schor

et al.,5 including the near-miss to scale invariance, and the

increase in relative fusion range for sharp, high spatial fre-

quency targets.

We considered whether blurring (in the monitor, the

eye, or the visual system itself) might account for these

departures from scale invariance. A small extra blurring

would indeed affect small test blurs and not large ones, but

this explanation still seems unlikely. We found that an

assumed blur of about 1.5–2 min arc would predict the

increased fusion range for B = 1, but it still under-

predicted the fusion ranges at B = 2 or 4 min arc. More

tellingly, if there were such a front-end blurring, we should

expect to see a departure from scale invariance in the mon-

optic data as well (squares, Figure 6), but we see none. Its

origin must be binocular. One candidate is vergence noise

– the variation of ocular convergence over trials. But this

too is likely to be small, about 1.5–2 min arc,36,37 and with

such noise some trials would have a larger disparity than

intended, but others would have a smaller one. Thus fusion

would be less likely in the former, but more likely in the lat-

ter – so on average vergence noise should have little impact

on the fusion curve. Similarly, the impact of any vergence

constant error (vertical fixation disparity) should cancel

out because we pooled data over both signs of disparity.

The near-miss to scale invariance would, however, be

explained by a small vergence response to the disparity pre-

sented. A vergence response of (say) 3 min arc would

reduce binocular disparity by that amount, and so increase

the measured fusion range by the same amount. The sign

of the vergence response would change with the sign of the

stimulus disparity, and so its effect would not cancel out

over trials. The grey curve in Figure 8 thus represents the

idea that the fusion range deviates from scale-invariance (at

2.4B, dashed line) only by an additive constant of 3 min

arc. In short, the sensory fusion range might be truly scale-

invariant, but slightly shifted by a small motor response.

This response would have to occur quickly, because stimu-

lus duration was only 200 ms. We have no direct evidence

yet for our stimulus conditions, but the idea is at least plau-

sible because short-latency changes in vergence of a few

minutes of arc can be induced by both horizontal and verti-

cal disparity within 80–100 ms.38 Any change in vergence

would not affect monoptic judgements, and so these would

remain scale-invariant, as observed in Experiment 1.

Temporal factors

The influence of temporal factors on sensory fusion is also

important in its own right. For horizontal disparity, the

fusional range was much larger for slow modulations of

disparity than fast modulations, but rate of change had

much less influence on fusion for vertical disparity.27 This

is consistent with the idea that the processing of depth from

horizontal disparity is a slow, sluggish process.39–41 We

used 200 ms presentation times, with vertical disparity.

Would our estimates of fusion range have been much dif-

ferent at shorter or longer presentations? Probably not. In a

supplementary experiment, one observer (author, SAW)
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Figure 11. Experiment 3. Control data for one observer (DHB), averaged over the three contrast ratios. Blur B = 8 min arc. Edge pairs had zero dis-

parity but their positional offset (same in both eyes) varied over trials from �2.B (below centre) to +2.B (above centre), with the same polarity (left) or

opposite polarity (right). Plotting the proportion of position judgements (‘above’, ‘below’ or ‘central’) as a function of actual position allowed us to

derive the position criteria (boundaries between the three position categories) and noise for each observer. A cumulative Gaussian (range 0–1) was fit-

ted to the ‘below’ judgements (green) and the ‘above’ judgements (red). The 50% points on these curves gave the criterion positions, while noise

was given by the S.D. (sigma) of the underlying Gaussian for each fit, as shown; see Table A2 for a full list, and Figure S5 for data of all four observers.

The precision of these curve fits should make the parameter estimates very robust. Blue curve for ‘central’ judgements is not a fitted Gaussian, but is

equal to 1 minus the sum of the other two curves (i.e. the three curves must sum to 1 at every offset position).
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(a)

(b)

Figure 12. Experiment 3, edge blur 8 min arc only. Like Figure 7, proportion of each response type is plotted against disparity. Contrast

imbalance (0, 6, 12 dB) increases across columns from left to right (interocular contrast ratios of 1, 2, 4). Note how reports of two edges

(blue symbols) fell markedly when the two contrasts became unequal (second & third columns). (a) observer DHB. (b) observer ASB. Smooth

solid curves show the fit of the model, assuming fusion for edges of the same polarity (top row in a, b), but not for opposite polarities

(bottom row in a, b). Fitting had four free parameters; criterion and noise were fixed for each observer directly from experimental data (Fig-

ure 11). For disparities within the fusion range (about 0–3.B), diplopia was strong for opposite polarities, especially when contrasts were

equal. This is consistent with an absence of fusion for opposite polarities.
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collected data in the manner of experiment 2, for three

blurs (2, 4, 16 min arc) at five durations (50, 100, 200, 400,

800 ms). Data and model fits are shown in Figure S7, with

a summary of fusion and suppression ranges as a function

of duration in Figure S8. The main result was that duration

had only a minor effect on fusion range, at any blur. Dis-

parity range for fusion increased by only 20–30% at 50 ms

compared with 800 ms (Figure S8). This is fairly similar to

earlier studies where fusion range was little affected by

decreasing duration from 2000 to 160 ms, but modest (20–
50%) increases were observed at a shorter duration

(60 ms).42,43 Binocular combination and fusion may be

rapid, while subsequent processing of stereo depth signals

has more extended temporal integration, of at least

200 ms.40,41

Single vision

Single vision occurs through fusion but also, beyond the

fusion range, through suppression.20 Figures 10a,c map

out these two kinds of single vision in some detail for the

first time. From this perspective, single vision occurs on

all those trials that are not diplopic – the light blue to

dark blue regions of Figure 10d. On the relative scale of

disparity, this full range of single vision is especially

extensive for sharp edges (small blurs). This suggests that

interocular suppression can serve as a mechanism for

extending single vision to larger disparities. This extension

can occur only where the suppression range exceeds the

fusion range, and Figure 10 shows that happens mainly

for sharper edges. For those edges the fusion range is

small in absolute terms (5–10 min arc), and so an exten-

sion of single vision (albeit without fusion) may be

advantageous in natural viewing. But for large blurs the

fusion range is already large, and so perhaps no such

extension is needed and the suppression range can be rel-

atively small, as observed. These blur-dependent charac-

teristics of fusion and suppression should provide

important constraints on the future modelling of fusion

mechanisms in a multiscale visual system.
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Figure 13. Experiment 3. Summary of results and model-based interpretation, in similar format to Figure 9. Top row: same polarity. Bottom row:

opposite polarity. Symbols: group mean diplopia data. Left to right: Diplopia decreased as contrasts became more unequal, because suppression of

one edge (the lower contrast edge) increased. Fusion (cyan curve) excludes diplopia at small disparities (0–2B, top row), but in the absence of fusion –

with opposite polarities – diplopia can be quite strong even at small disparities (bottom left panel).
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Appendix A: Tables of parameters for Experiments 2 and 3

Table A1. Experiment 2: Group mean parameter values from four methods of estimation

Blur B, min arc

1 2 4 8 16 32

Suppression range (B units)

QAICc wtd mean 17.43 8.51 6.29 3.95 2.29 1.82

5-parameter fit 17.25 8.56 6.35 3.99 2.28 1.86

4-free, criterion = 1 17.23 8.36 6.17 3.91 2.29 1.79

3-free, criterion = 1, q = 4 17.25 8.37 6.16 3.91 2.30 1.80

Fusion steepness, q

QAICc wtd mean 3.92 3.70 4.54 3.74 3.87 4.03

5-parameter fit 3.45 3.78 4.64 3.92 3.75 4.14

4-free, criterion = 1 3.40 3.62 4.13 3.85 3.65 3.85

3-free, criterion = 1, q = 4 4 4 4 4 4 4

Fusion range (B units)

QAICc wtd mean 4.45 4.29 3.70 2.74 2.54 2.32

5-parameter fit 5.01 4.17 3.61 2.66 2.56 2.30

4-free, criterion = 1 5.04 4.56 3.87 2.92 2.46 2.34

3-free, criterion = 1, q = 4 5.34 4.74 3.90 3.02 2.55 2.32

Positional noise (B units)

QAICc wtd mean 0.91 0.75 0.69 0.52 0.44 0.59

5-parameter fit 0.78 0.76 0.85 0.59 0.41 0.76

4-free, criterion = 1 0.78 0.68 0.59 0.46 0.46 0.53

3-free, criterion = 1, q = 4 0.81 0.68 0.60 0.50 0.48 0.56

Position criterion (B units)

QAICc wtd mean 1.15 1.14 1.20 1.05 0.91 1.06

5-parameter fit 1.00 1.13 1.44 1.19 0.94 1.34

4-free, criterion = 1 1 1 1 1 1 1

3-free, criterion = 1, q = 4 1 1 1 1 1 1
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Table A2. Experiment 3. Mean criterion and positional noise, in units of blur (B, 8 min arc), derived directly from the control data (Fig-

ure 11) without modelling

Polarity: Same Opposite

Observer criterion noise c/n ratio criterion noise c/n ratio

SAW 0.84 0.26 3.21 0.82 0.34 2.43

DHB 0.77 0.46 1.69 0.84 0.52 1.63

ASB 0.38 0.57 0.66 0.35 0.73 0.48

RH 0.67 0.58 1.16 0.67 0.63 1.06

Group mean 0.66 0.46 1.68 0.67 0.55 1.40

Table A3. Experiment 3. Fitted & fixed parameters of the best-fitting model: group means

Parameter

Contrast ratio (dB)

0 6 12

Mean S.E. Mean S.E. Mean S.E.

1. Fusion range (B units) 2.70 0.20 2.77 0.20 3.39 0.38

2. Fusion steepness, q 4 4 4

3. Supp range SAME (B units) 4.14 1.77 4.89 1.49 9.06 3.37

4. Supp range OPP (B units) 8.29 5.72 5.38 2.20 8.09 3.12

5. Peak p(Supp) SAME 1 1 1

6. Peak p(Supp) OPP 0.47 0.15 0.74 0.15 0.95 0.04

7. Posn. criterion (B units) 0.67 0.10 0.67 0.10 0.67 0.10

8. Posn. noise (B units) 0.46 0.07 0.46 0.07 0.46 0.07

Parameters 2 & 5 were fixed on the basis of experiment 2 and were the same for all observers. Parameters 7 & 8 were fixed

in advance for each observer from experimental results, as shown in Table A2. The remaining four free parameters (1, 3, 4,

6) were estimated by optimising the model fit (maximum likelihood) separately for each observer and each contrast ratio.

Appendix B: The Akaike Information Criterion (AIC) and multi-model inference

Our descriptive model was fitted to data of experiment 2 separately for each observer and each blur. With the five-parameter

fit, there was some instability in the estimation of the noise and criterion parameters, because their ratio turns out to be

more important than their absolute values (Figure 4), but errors in this estimation of noise and criterion might have

induced biases in the parameters of greater interest – fusion range and suppression range. To stabilise the fitting, one can

choose to fix one of the two correlated parameters (e.g. criterion) and then run a 4-parameter fit – but the choice of fixed

parameter value is also uncertain. To overcome such problems of ‘model uncertainty’, contemporary modellers have used

an approach called ‘multi-model inference’44 based on the Akaike Information Criterion (AIC).45 A very readable introduc-

tion to these methods is given by Symonds & Moussalli.46

In brief, several models are fitted and the AIC values for each model are computed from the error of the fit, taking into

account the number of fitted parameters and the sample size. The relative plausibility of these m models is assessed by com-

puting the set of Akaike weights w from the AIC values47. The weight wi can be treated as the probability that the ith model

is the best of the set. If wi is close to 1 for one model (and therefore close to 0 for the others) then, of the models considered,

that model is unambiguously best. But if the weights are more evenly distributed across the models, then no one model is

best and each model carries some information about the true parameters. A better estimate of parameter p may be gained

from ‘model averaging’: calculating the probability-weighted average of parameter values pi across models:
P

m
i¼1wipi. To

allow for the influence of sample size (number of data points contributing to the fit), one can begin by using a corrected

expression AICc. To allow for additional noise in the data (‘over-dispersion’) – beyond that expected from binomial sam-

pling or (in our three-choice method) trinomial sampling – one can use a modified AICc called QAICc.46 We used the

method of maximum likelihood to fit the 4-parameter model to the data of experiment 2, with the criterion fixed at 0.5, 1,

1.5 or 2 times the blur B, then used the goodness-of-fit measure (deviance) to compute QAICc weights, and from these cal-
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culated the weighted average estimates of the parameters for each subject and blur. Individual values and group means for

these parameters are shown in Table B1, and the group means are compared with the outcome of more conventional fitting

in Table A1. The agreement between these group means is good, but the model-averaged QAICc estimates might well be

more robust.48 These methods deserve closer attention in visual science.

Table B1. QAICc weighted average parameter values for each observer

Blur B, min arc

1 2 4 8 16 32

Suppression range (B units)

SAW 11.01 6.63 3.48 1.99 1.70 1.50

DHB 33.79 7.69 4.22 2.58 1.94 3.42

ASB 19.23 12.27 10.12 5.54 2.19 0.50

SGB 5.68 7.43 7.34 5.69 3.33 1.86

Group Mean 17.43 8.51 6.29 3.95 2.29 1.82

S.E. 6.12 1.27 1.53 0.97 0.36 0.61

Fusion steepness, q

SAW 3.38 3.65 4.89 5.00 4.94 3.81

DHB 3.28 5.00 5.00 5.00 5.00 5.00

ASB 4.81 4.13 3.94 2.80 2.85 2.66

SGB 4.21 2.02 4.34 2.18 2.68 4.67

Group Mean 3.92 3.70 4.54 3.74 3.87 4.03

S.E. 0.36 0.63 0.25 0.74 0.64 0.52

Fusion range (B units)

SAW 4.71 3.77 2.90 2.32 2.34 1.98

DHB 4.98 5.21 4.53 3.84 3.79 3.30

ASB 5.87 4.96 3.87 2.01 1.13 1.00

SGB 2.25 3.20 3.49 2.80 2.90 3.00

Group Mean 4.45 4.29 3.70 2.74 2.54 2.32

S.E. 0.77 0.48 0.34 0.40 0.56 0.52

Positional noise (B units)

SAW 0.70 0.74 0.42 0.32 0.06 0.07

DHB 0.62 0.41 0.48 0.11 0.36 0.37

ASB 0.97 0.69 0.74 0.75 0.72 0.95

SGB 1.34 1.16 1.14 0.89 0.63 0.95

Group Mean 0.91 0.75 0.69 0.52 0.44 0.59

S.E. 0.16 0.15 0.16 0.18 0.15 0.22

Position criterion (B units)

SAW 0.97 1.10 0.83 0.87 0.66 0.79

DHB 1.09 0.97 1.24 0.86 1.19 1.12

ASB 0.84 0.69 0.84 1.03 1.00 1.02

SGB 1.68 1.79 1.87 1.44 0.80 1.28

Group Mean 1.15 1.14 1.20 1.05 0.91 1.06

S.E. 0.19 0.23 0.24 0.13 0.12 0.10
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Table B2. Experiment 3. Comparison of four models via the

Akaike Information Criterion

Observer Model AICc DiffAIC Akaike wt

SAW 1 240.02 0.00 1

2 623.34 383.32 0

3 784.86 544.84 0

4 859.54 619.52 0

DHB 1 432.81 0.00 1

2 918.40 485.59 0

3 1315.05 882.24 0

4 1250.47 817.66 0

ASB 1 238.96 0.00 1

2 1400.17 1161.21 0

3 346.60 107.64 0

4 1414.79 1175.83 0

RH 1 266.45 0.00 1

2 1168.47 902.02 0

3 510.97 244.53 0

4 1218.33 951.88 0

To combine evidence for a given model over the three con-

trast ratios, we summed the deviance values for each of the

three fits, then computed AICc accordingly, with a com-

bined total of 12 free parameters over 81 data points. This

was done separately for each observer. Model 1 (fusion only

for same polarity) was uniquely favoured, for all four

observers.

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Experiment 2. As Fig. 7 of the main text, but

showing results and model fits for the other two observers

(DHB, above; SGB below).

Figure S2. Experiment 3. As Fig. 12 of the main text, but

showing results and model fits for the other two observers

(SAW, above; RH below).

Figure S3. Experiment 3. As Fig. 12 of the main text, but

now the model included fusion of opposite polarities (with

the same fusional disparity range as same polarities).

Figure S4. Experiment 3. Goodness-of-fit assessed by

residual error (deviance residuals).

Figure S5. Experiment 3. A-D: Control data for the 4

observers. Blur B=8 min arc.

Figure S6. Experiment 2. Difference maps discussed in

the main text, in relation to the maps of Fig. 10.

Figure S7. Supplementary experiment. The effects of

stimulus duration on fusion, suppression and diplopia.

Figure S8. Supplementary experiment, observer SAW.

Summary of the effects of stimulus duration on fusion and

suppression ranges, from data and model fits of Fig. S7.
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