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Abstract

This paper proposes a semiparametric smooth-coefficient stochastic production frontier model where
regression coefficients are unknown smooth functions of environmental factors, which shift the production
frontier non-neutrally. Technical inefficiency enters into the model in the form of a parametric scaling
function which also depends on the environmental factors. A residual-based bootstrap test of the rele-
vance of the environmental factors is suggested. Results show that the semiparametric model captures
parameter heterogeneity and yields comparable estimates of technical efficiency.
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1 Introduction

Following the seminal work of Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977),

the literature on the estimation of technical inefficiency using stochastic frontier framework (see Kumbhakar

and Lovell (2000) for references) has been growing exponentially. More recently, attention was paid to the

modeling of environmental factors (hereafter, Z variables) affecting inefficiency (u). They are the exogenous

factors, such as education, age, experience, R&D, etc., in addition to traditional input(s) and output(s)

in frontier models. There are many different ways by which the Z variables can explain inefficiency. For

example, Kumbhakar (1990) and Battese and Coelli (1992) proposed a multiplicative decomposition of

technical inefficiency in a panel model, where uit = g(t)ui, g(t) is a deterministic function of time, and ui is

one-sided random variable assumed to be normally distributed and truncated at zero from below. Alvarez,

Amsler, Orea and Schmidt (2006) called this formulation the scaling property of technical inefficiency. The

idea of this property was proposed earlier by Simar, Lovell and van den Eeckaut (1994) and further studied

by Wang and Schmidt (2002), among others. Alvarez et al. (2006) interpreted the standard truncated normal
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random variable as “the firms’ base efficiency level which captures things like the manager’s natural skills”,

but “how well these natural skills are exploited to manage the firm efficiently depends on . . .measures of

the environment in which the firm operates.”1

The novelty of this paper lies in the fact that we not only consider the impact of Z variables on the

technical inefficiency part, but we also introduce the Z variables into the frontier part in a semiparametric

fashion. Specifically, in a production framework, we express the intercept and slope coefficients as unknown

functions of the Z variables. This allows the environmental factors to shift the frontier non-neutrally. The

advantage of the semiparametric approach over its parametric counterpart is that the regression coefficients

are fully flexible and no prior knowledge about the functional forms are required. Meanwhile, Z is still

allowed to affect technical inefficiency as some parametric stochastic frontier models can do. This allows

one to compare the technologies, including technical efficiencies, for different firms which are linked by the

Z variable, say, R&D. In this regard, our proposed model has several advantages over Battese, Prasada Rao

and O’Donnell (2004) and O’Donnell, Prasada Rao and Battese (2008) (hereafter, B&O) who suggested

a metafrontier framework for the comparison of firms under different technologies: (1) B&O’s model is

more liable to sample misclassification due to potentially different grouping criteria whereas grouping is not

required in our model; (2) B&O’s model only yields group-specific estimates while ours is individual-specific;

(3) our model yields comparable estimates linked by the Z variables and there is no need to estimate a

common metafrontier.

To give more credibility of the inclusion of the Z variables into the model, a residual-based wild bootstrap

testing procedure, borrowed from Li and Racine (2010), for the relevance of the environmental factors is

proposed. We show that the model under the null of irrelevance of Z is the same as a standard parametric

stochastic frontier model without environmental factors. We then apply our proposed methodology in the

Norwegian forestry, with a cross-section of 3249 active forest owners. Both standard and semiparametric

frontier models are estimated and results are compared.

The rest of the paper is organized as follows. Section 2 presents the estimation procedure of a semipara-

metric stochastic production frontier model with environmental factors. Section 3 proposes a test for the

relevance of the environmental factors. Section 4 applies the method to the Norwegian forestry. Section 5

concludes.

1Alternatively, Wang (2002) specified uit ∼ N+(µ(Zit), σ
2
u(Zit)), uit ≥ 0. See also Kumbhakar, Ghosh and McGuckin (1991),

Battese and Coelli (1995) and Huang and Liu (1994).
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2 Technical Inefficiency in Semiparametric Models

Consider a stochastic production frontier model with the following specification:

yi = α(Zi) +X ′
iβ(Zi) + vi − u(Zi), (1)

where yi is the log of output, X ′
i = [x1i, . . . , xki] is a vector of the log of k-inputs, Zi is a p-vector of

environmental factors (e.g., time, R&D, among others), α(·) is the intercept and β(·) is a k × 1 parameter

vector. Both of them are expressed as unknown functions of Zi. vi ∼ iidN(0, σ2
v) is the noise term,

and u(Zi) = σu(Zi)ηi, where ηi ∼ iidN+(0, 1) and σu(Zi) > 0. We parameterize σu(Zi) such that σu(Zi) =

exp(δ0+δ′1Zi), to guarantee its positivity. Furthermore, η and v are assumed to be independent of each other

and independent of X and Z. These assumptions indicate E(u(Zi)|Zi) = σu(Zi)E(ηi|Zi) =
√

2/πσu(Zi) =√
2/π exp(δ0 + δ′1Zi).

For estimation we rewrite (1) as:

yi = α(Zi) +X ′
iβ(Zi) + vi − (u(Zi)− E(u(Zi)|Zi))− E(u(Zi)|Zi)

= θ(Zi) +X ′
iβ(Zi) + εi

(2)

where θ(Zi) = α(Zi) − E(u(Zi)|Zi), and εi = vi − (u(Zi) − E(u(Zi)|Zi)). The model in (2) can then be

consistently estimated as a semiparametric smooth coefficient model (Li, Huang, Li and Fu 2002).

Define ρ(Zi) = [θ(Zi), β′(Zi)], and W ′
i = [1, X ′

i], and (2) becomes yi = W ′
iρ(Zi) + εi. Using the

population moment condition E(Wiεi|Zi) = 02 gives:

ρ(Zi) =
[
E(WiW

′
i |Zi)

]−1
E(Wiyi|Zi). (3)

Then, use the Nadaraya-Watson estimator (Li and Racine 2007) for the conditional expectations, viz.,

E(WiW
′
i |Zi) and E(Wiyi|Zi), and the smooth coefficient estimator can be written as:

ρ̂(Zi) =

 n∑
j=1

WjW
′
jK

(
Zj − Zi

h

)−1
n∑

j=1

WjyjK

(
Zj − Zi

h

)
, (4)

where n is sample size, K(·) is product kernel function, and h is a p-vector of bandwidth, which can be

selected via least-squares cross-validation method (Li and Racine 2010). We use the consistent estimators of

2This is because E(ε|X,Z) = E(v−u+E(u|Z)|X,Z) = E(v|X,Z)−E(u|X,Z)+E(E(u|Z)|X,Z) = 0−E(u|Z)+E(u|Z) = 0.
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θ(Zi) and β′(Zi) to estimate α(Zi) and u(Zi) in the second step in which we make use of the distributional

assumptions on vi and ηi.

In the second step we use the residuals from (2). Recall that εi = vi − u(Zi) + E(u(Zi)|Zi) where

E(u(Zi)|Zi) =
√

2/πσu(Zi), and therefore, the estimating equation for the second step of the estimation is:

εi =
√

2/πσu(Zi) + vi − σu(Zi)ηi

=
√

2/π exp(δ0 + δ′1Zi) + vi − exp(δ0 + δ′1Zi)ηi

(5)

The standard stochastic frontier estimation technique (maximum likelihood) can be applied in this step.

Define ε∗i = vi − exp(δ0 + δ′1Zi)ηi = εi −
√

2/πσu(Zi), the log-likelihood function can be written as:

lnL = Constant− 1

2

∑
i

ln
[
σ2
u(Zi) + σ2

v

]
+

∑
i

lnΦ

(
−ε∗iλi

σi

)
− 1

2

∑
i

ε∗2i
σ2
i

, (6)

where σ2
u(Zi) = exp[2(δ0 + δ′1Zi)], σ2

i = σ2
v + σ2

u(Zi) = σ2
v + exp[2(δ0 + δ′1Zi)], and λi = σu(Zi)/σv =

exp(δ0 + δ′1Zi)/σv. Maximization of the above log-likelihood3 will give estimates of δ0, δ1, and σ2
v , which

can be used to obtain σ2
u(Zi) and therefore E(ui|Zi) =

√
2/πσu(Zi). We use this to estimate the intercept

in (1) as α(Zi) = θ(Zi) + E(u(Zi)|Zi).

Finally, we use the Battese and Coelli’s (1988) technique to estimate technical efficiency, viz,

TEi = E[exp(−u(Zi))|ε∗i ] =
Φ(µ∗i/σ∗i − σ∗i)

Φ(µ∗i/σ∗i)
· exp(−µ∗i + 0.5σ2

∗i), (7)

where µ∗i = −ε∗iσ
2
u(Zi)/σ

2
i , σ

2
∗i = σ2

u(Zi)σ
2
v/σ

2
i .

3 Testing for the Relevance of Environmental Factors

The environmental factors, Zi, shift the production frontier (both intercept and slopes) as well as technical

inefficiency. One naturally wants to test if Zi matters, that is, to test if (1) can be estimated as a standard

stochastic frontier model:

yi = α+X ′
iβ + νi − µi, (8)

where νi is the normal noise term, and µi is the half-normal technical inefficiency term. ν and µ are

independent of each other and of X. In this model, neither the coefficients nor the technical inefficiency

3Since εi is not observed we follow the standard practice and use the residuals from (2) in (6).
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vary with Zi. This is the same as testing whether the parameters in (9) are constants, viz.,

yi = θ +X ′
iβ + ϵi = W ′

iρ+ ϵi, (9)

where θ = α − E(µi), ρ
′ = [θ, β′], and ϵi = νi − (µi − E(µi)). The null hypothesis can be stated as H0 :

ρ(Zi) = ρ.4 Following Li and Racine (2010), the consistent model specification test statistic is constructed

as:

În =
1

n2

n∑
i=1

n∑
j ̸=i

W ′
iWj ϵ̂iϵ̂jK

(
Zi − Zj

h

)
(10)

where K(·) is the product kernel function, ϵ̂i = yi − θ̂ − X ′
iβ̂ is obtained from the parametric model (9)

via OLS. We follow Li and Racine’s (2010) residual-based wild bootstrap method to determine whether to

reject the null hypothesis or not:

Step 1: Estimate (9), obtain ρ̂ and ϵ̂i, and generate wild bootstrap disturbance ϵ⋆i ;

Step 2: From ϵ⋆i , generate y⋆i = W ′
i ρ̂+ ϵ⋆i ;

Step 3: Use {y⋆i ,Wi}ni=1 to estimate the parametric model (9), and obtain ρ̂⋆, and ϵ̂⋆i = y⋆i −W ′
i ρ̂

⋆;

Step 4: The bootstrap statistic Î⋆n is obtained from (10), replacing ϵ̂iϵ̂j by ϵ̂⋆i ϵ̂
⋆
j .

Step 5: Repeat Steps 1-4 a large number of times, say B = 399 times, and calculate the p-value:

p = 1
B

∑B
b=1 I(I

∗
n > In), where I(·) is the indicator function with a value of 1 if the statement in the

parenthesis is true.

Note that y⋆i is generated under the null hypothesis, and therefore, the p-value is the size of the test.

The null hypothesis can be rejected if the p-value is less than the level of significance, say 0.05.

4 An Empirical Application

In this section, we consider estimation of stochastic production frontier in the Norwegian forestry. The data,

compiled by Statistics Norway, were drawn from a cross-section of 3249 active forest owners. All data are

for the year 2003. The output variable consists of annual timber sales from the forest, measured in cubic

meters. The labor input variable is the sum of hours worked by contractors and hours worked by the owner,

his family or hired labor in 2003. The land input variable measures forest area cut in hectares, which is the

area of various types of final fellings in 2003. The capital input variable is the value of timber stock that

can be cut without affecting future harvesting. Our choices of the environmental factors are: (1) income

4Constant ρ implies constant θ and β, and constant θ implies constant α and E(µi), assuming α ̸= E(µi).

5



from outfield-related productions (i.e., recreational services), (2) income from agriculture, (3) wage income,

(4) a binary variable with a value of 1 indicating there is a management plan, and 0 otherwise, (5) a binary

variable with a value of 1 indicating the forest owner has an education level of Bachelor or higher, and 0

otherwise, (6) a binary variable with a value of 1 indicating its properties are located in central municipalities,

and 0 otherwise. Lien, Størdal and Baardsen (2007) used this data to assess technical inefficiency of these

Norwegian forests. Table 1 presents summary statistics in the sample. Further details on the source of the

data and definitions of the variables were provided in their study.

Table 1: Summary Statistics of the Variables

Symbol Variable Name Mean Sd. Min. Max. Bandwidth1

y Log of output (Harvesting level) 5.6680 1.665462 0.6931 10.74 -

x1 Log of labor (Working hours) 2.882 1.637169 -2.072 7.876 -

x2 Log of land (Forest area cut ) 0.6692 1.522922 -4.4240 5.434 -

x3 Log of capital (Value of timber stock) 11.780 1.184578 7.297 16.6 -

Z1 Income from outfield related productions (1000NOK) 70.98 467.0222 0.00 11810 27.94376593

Z2 Income from agricullture (1000NOK) 54.21 125.9468 0.00 2488 9.94951468

Z3 Wage income (1000NOK) 240.3 269.1531 0.00 2183 122.03785955

Z4 Management plan (0/1) 0.6898 0.4626668 0.00 1.00 0.21638380

Z5 Education, Bachelor or higher (0/1) 0.2416 0.4281267 0.00 1.00 0.45613206

Z6 Centrality (0/1) 0.3764 0.4845628 0.00 1.00 0.01324032

1. The bandwidths are selected via least-squares cross-validation.

We consider three specifications for the stochastic production frontier: (1) the semiparametric smooth-

coefficient stochastic frontier model as described in (1) (i.e., with environmental factors which enter the

coefficients and inefficiency), (2) the standard parametric stochastic production frontier model as described

in (8) (i.e., without any environmental factors), and (3) a parametric stochastic production frontier model

with environmental factors affecting technical inefficiency only. Technical efficiencies are calculated from all

these models using TEi = E[exp(−ui)|ε∗i ] (see Kumbhakar and Lovell (2000), p. 78 for the exact formula).

The average estimated technical efficiency is 0.97 for the semiparametric model, 0.86 for the standard

parametric model without Z, and 0.98 for the parametric model with Z. These results are comparable

to Lien et al. (2007) who found the average technical efficiency to be 0.90 using a different model. The

semiparametric (parametric without Z) model shows that about 4% (6%) of the forest owners have an

efficiency estimate of less than 0.75. To get an overall picture, the histograms of the estimated technical
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efficiencies for the three models are reported in Figure 1, and those of the estimated functional parameters

are reported in Figure 2. Figure 1 shows that, most of the forest owners are fully technically efficient under

the semiparametric model and the standard parametric model with Z variables, with the mode of technical

efficiency around one. However, under the standard parametric model without Z variables, the mode occurs

about 0.9, and much fewer forest owners are estimated to be fully efficient. This may have some implication

on the impact of model specification and the inclusion of Z variables on the estimated technical efficiency.

While all the three models yield observation-specific technical efficiency estimates, only the semipara-

metric model can generate observation-specific parameters. The distributions of the regression coefficients

in Figure 2 show that the semiparametric model better captures parameter heterogeneity while its standard

parametric counterparts only yield estimates that are degenerate. More specifically, the labor, land, and

capital productivity (represented by β̂1(Zi), β̂2(Zi), and β̂3(Zi), respectively) estimates under the standard

parametric models only approximate the means of those estimates under the semiparametric model. With

a micro-level data set, it is generally more interesting and informative to investigate each forest owner as

opposed to an average forest owner.

With all these differences in results between the semiparametric and its parametric counterpart, one

would naturally perform specification test of one model against another. We test the standard parametric

model without Z against the semiparametric model by testing the relevance of the environmental factors

using the testing procedure described in section 3, because the semiparametric model without the environ-

mental factors becomes the standard parametric model. The zero bootstrapped p-value suggests that these

factors are relevant; and therefore the semiparametric model is preferred. This testing result is not very

surprising based on the estimation results.

5 Conclusion

This paper proposes a semiparametric smooth-coefficient stochastic production frontier model, where all the

coefficients, including intercept and slopes, along with the inefficiency term, are expressed as functions of

a set of environmental factors. Thus, these factors affect the production frontier non-neutrally, as opposed

to traditional inputs which only affect the frontier neutrally. Using micro-level data, this model can yield

a particular set of production frontier estimates for a particular, say, firm. Therefore, the potential hetero-

geneity of technology can be captured by this model. Since the environmental factors enter most parameters

in the model nonparametrically and the elimination of these factors reduces the semiparametric model to
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its parametric counterpart, a testing procedure for the relevance of these factors is proposed. An empirical

example using real data is presented and the advantages of the semiparametric approach over standard para-

metric approach are further revealed. A possible extension of this paper could be to relax the exponential

functional form of the variance of the inefficiency term. This means, however, more work should be done to

impose positivity constraint on the variance estimates.

References

Aigner, D. J., Lovell, C. A. K. and Schmidt, P. (1977), ‘Formulation and estimation of stochastic frontier
production functions’, Journal of Econometrics 6(1), 21–37.

Alvarez, A., Amsler, C., Orea, L. and Schmidt, P. (2006), ‘Interpreting and testing the scaling property in
models where inefficiency depends on firm characteristics’, Journal of Productivity Analysis 25(3), 201–
212.

Battese, G. E. and Coelli, T. J. (1988), ‘Prediction of firm-level technical efficiencies with a generalized
frontier production function and panel data’, Journal of Econometrics 38, 387–399.

Battese, G. E. and Coelli, T. J. (1992), ‘Frontier production functions, technical efficiency and panel data:
With applications to paddy farmers in India’, Journal of Productivity Analysis 3, 153–169.

Battese, G. E. and Coelli, T. J. (1995), ‘A model for technical inefficiency effects in a stochastic frontier
production function for panel data’, Empirical Economics 20, 325–32.

Battese, G. E., Prasada Rao, D. S. and O’Donnell, C. (2004), ‘A metafrontier production function for
estimation of technical efficiencies and technology gaps for firms operating under different technologies’,
Journal of Productivity Analysis 21, 91–103.

Huang, C. J. and Liu, J.-T. (1994), ‘Estimation of a non-neutral stochastic frontier production function’,
Journal of Productivity Analysis 5, 171–180.

Kumbhakar, S. C. (1990), ‘Production frontiers, panel data, and time-varying technical efficiency’, Journal
of Econometrics 46, 201–12.

Kumbhakar, S. C., Ghosh, S. and McGuckin, J. T. (1991), ‘A generalized production frontier approach for
estimating determinants of inefficiency in US dairy farms’, Journal of Business and Economic Statistics
9, 279–86.

Kumbhakar, S. C. and Lovell, C. A. K. (2000), Stochastic Frontier Analysis, Cambridge Univeristy Press.

Li, Q., Huang, C., Li, D. and Fu, T. (2002), ‘Semiparametric smooth coefficient models’, Journal of Business
and Economic Statistics 20(3), 412–422.

Li, Q. and Racine, J. S. (2007), Nonparametric Econometrics: Theory and Practice, Princeton University
Press.

Li, Q. and Racine, J. S. (2010), ‘Smooth varying-coefficient estimation and inference for qualitative and
quantitative data’, Econometric Theory 26, 1607–1637.

Lien, G., Størdal, S. and Baardsen, S. (2007), ‘Technical efficiency in timber production and effects of other
income sources’, Small-scale Forestry 6, 65–78.

8



Meeusen, W. and van den Broeck, J. (1977), ‘Efficiency estimation from Cobb-Douglas production functios
with composed error’, International Economic Review 18(2), 435–44.

O’Donnell, C., Prasada Rao, D. S. and Battese, G. E. (2008), ‘Metafrontier frameworks for the study of
firm-level efficiencies and technology ratios’, Empirical Economics 34, 231–55.

Simar, L., Lovell, C. A. K. and van den Eeckaut, P. (1994), Stochastic frontiers incorporating exogenous
influences on efficiency. Discussion Paper No.9403, Institut de Statistique, Université Catholique de
Louvain, Louvain-la-Neuve, Belgium.

Wang, H.-J. and Schmidt, P. (2002), ‘One-step and two-step estimation of the effects of exogenous variables
on technical efficiency levels’, Journal of Productivity Analysis 18, 129–44.

Figure 1: Technical Efficiency
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Figure 2: Regression Coefficients
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