Ultra-long mode-locked Er-droped fibre lasers

Ivanenko, Aleksey (2013). Ultra-long mode-locked Er-droped fibre lasers. PHD thesis, Aston University.


The development of ultra-long (UL) cavity (hundreds of meters to several kilometres) mode-locked fibre lasers for the generation of high-energy light pulses with relatively low (sub-megahertz) repetition rates has emerged as a new rapidly advancing area of laser physics. The first demonstration of high pulse energy laser of this type was followed by a number of publications from many research groups on long-cavity Ytterbium and Erbium lasers featuring a variety of configurations with rather different mode-locked operations. The substantial interest to this new approach is stimulated both by non-trivial underlying physics and by the potential of high pulse energy laser sources with unique parameters for a range of applications in industry, bio-medicine, metrology and telecommunications. It is well known, that pulse generation regimes in mode-locked fibre lasers are determined by the intra-cavity balance between the effects of dispersion and non-linearity, and the processes of energy attenuation and amplification. The highest per-pulse energy has been achieved in normal-dispersion UL fibre lasers mode-locked through nonlinear polarization evolution (NPE) for self-modelocking operation. In such lasers are generated the so-called dissipative optical solitons. The uncompensated net normal dispersion in long-cavity resonatorsusually leads to very high chirp and, consequently, to a relatively long duration of generated pulses. This thesis presents the results of research Er-doped ultra-long (more than 1 km cavity length) fibre lasers mode-locked based on NPE. The self-mode-locked erbium-based 3.5-km-long all-fiber laser with the 1.7 µJ pulse energy at a wavelength of 1.55 µm was developed as a part of this research. It has resulted in direct generation of short laser pulses with an ultralow repetition rate of 35.1 kHz. The laser cavity has net normal-dispersion and has been fabricated from commercially-available telecom fibers and optical-fiber elements. Its unconventional linear-ring design with compensation for polarization instability ensures high reliability of the self-mode-locking operation, despite the use of a non polarization-maintaining fibers. The single pulse generation regime in all-fibre erbium mode-locking laser based on NPE with a record cavity length of 25 km was demonstrated. Modelocked lasers with such a long cavity have never been studied before. Our result shows a feasibility of stable mode-locked operation even for an ultra-long cavity length. A new design of fibre laser cavity – “y-configuration”, that offers a range of new functionalities for optimization and stabilization of mode-locked lasing regimes was proposed. This novel cavity configuration has been successfully implemented into a long-cavity normal-dispersion self-mode-locked Er-fibre laser. In particular, it features compensation for polarization instability, suppression of ASE, reduction of pulse duration, prevention of in-cavity wave breaking, and stabilization of the lasing wavelength. This laser along with a specially designed double-pass EDFA have allowed us to demonstrate anenvironmentally stable all-fibre laser system able to deliver sub-nanosecond high-energy pulses with low level of ASE noise.

Divisions: Engineering & Applied Sciences > Electrical, electronic & power engineering
Additional Information: If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: ultra-long fibre laser,dissipative solitions,passive mode-locking,untra-short pulse
Completed Date: 2013-09-02
Authors: Ivanenko, Aleksey


Export / Share Citation


Additional statistics for this record