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An outline of the state space of planar Couette flow at high Reynolds numbers (Re < 10°) is
investigated via a variety of efficient numerical techniques. It is verified from nonlinear analysis that
the lower branch of the hairpin vortex state (HVS) asymptotically approaches the primary (laminar) state
with increasing Re. It is also predicted that the lower branch of the HVS at high Re belongs to the stability
boundary that initiates a transition to turbulence, and that one of the unstable manifolds of the lower

branch of HVS lies on the boundary. These facts suggest HVS may provide a criterion to estimate a
minimum perturbation arising transition to turbulent states at the infinite Re limit.
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Introduction.—Astronomers have found a tremendous
number of stars far away from Earth in attempting to
map our Universe, which is expanding due to the presence
of the dark energy. Similarly, fluid physicists have recently
elucidated that there exist a number of exact and invariant
solutions in the state space of the turbulent shear flows
governed by incompressible Navier-Stokes equations that
will map turbulence [1-4]. The first discovery of an invari-
ant finite-amplitude solution distinct from the laminar
state, which is referred to hereafter as ‘“Nagata-Busse-
Waleffe (NBW)”’ formed from the names of the discov-
erers [5—7], was achieved in a simple shear flow between
parallel plates moving in opposite directions, planar
Couette flow (PCF), with periodic boundary conditions in
streamwise and spanwise directions and the following
governing equation:

1
du+u-Vu=—-Vp+_—Vu,
Re

PCF is a prototype of canonical shear flow with a subcrit-
ical transition to turbulence, where a Newtonian fluid
between two counter-sliding parallel plates at y = *£1
could yield at any Reynolds number (Re) the laminar state
that consists only of the streamwise component, u = ye,,
and that is linearly stable for all finite Re (Ref. [8]). NBW
emerges at a rather lower Re (Re = 127.7) than the one
that is required for sustaining the turbulent regime in PCF,
Re = 325, where coherent structures are localized (see
Refs. [9,10]).

Wang et al. in Ref. [11] recently calculated that the
NBW, amongst a number of solutions, is not just an
exact solution emerging at the low Re, but also a sig-
nificant “key” required to envisage the ideal turbulent
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regime at infinite Re from the physical point of view, by
pointing out the following facts. First, NBW remains on the
basin boundary (BB) even at high Re. BB is the hypersur-
face of codimension 1 in the state space associated with
PCF, which separates the whole space into the basins of the
laminar and the turbulent attractions. Second, NBW con-
tains the only unstable manifold at high Re, which escapes
from the BB towards either the laminar or the turbulent
attractions, so that NBW is an attractor of the dynamical
system restricted on the BB. These facts make us envisage
that NBW could yield an ultimate structure prevalent in the
turbulent regime at the infinite Re, even if it has an insta-
bility along the unstable manifold towards turbulent attrac-
tion. It seems to be relevant to large-scale structures
identified numerically in turbulent shear flows at high Re
[12,13].

By contrast, within a classical picture, hairpin-shaped
vortices, with an ()-shaped head and a pair of counter-
rotating streamwise legs, have, so far, been recognized as
one of prevalent vortex structures in turbulent shear flows
[14—-17]. Here, we have to keep in mind that the NBW does
not satisfy the reflection symmetry with respect to the
spanwise direction, which is common in vortices observed
in a transition triggered initially with a perturbation on the
laminar flow. The recent progress in numerical simulations
is enabling us to educe vortex structures in turbulent bound-
ary layers at high Re over a huge domain [18], in which
neither NBW nor hairpin-shaped vortices are detected fur-
ther downstream of the turbulent boundary layer. However,
in the turbulent layer, which develops with increasing Re
(based on the boundary thickness Reg [18]), it is the hairpin-
shaped vortices that emerge primarily at the beginning of
the transition with a relatively high Re.
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Apparently, among these arguments, there seems to be
some fundamental contradiction on the envisaged ultimate
structure in shear flow in the infinite Re; there arises a
question “why the envisaged ultimate structure, NBW,
does not prevail at the transition with high Re?”” In the
present Letter, we will give an answer to this question, with
the aid of a transition scenario deduced from the asymp-
totic behavior of another fundamental solution among a
number of exact steady solutions of PCF, the hairpin vortex
state (HVS) [1,2].

Asymptotic behavior of HVS.—In the bifurcation dia-
gram, HVS consists of the upper and lower branches aris-
ing from a saddle-node bifurcation at the turning point
Re = 139.2. It should again be emphasised that the reflec-
tion symmetry to the spanwise direction is satisfied by
HVS but not by NBW. NBW emerges from a slightly lower
Re than HVS does, in spite of the fact that NBW bifurcates
due to the breaking of the symmetry from HVS; in other
words, NBW is a derivative (rather than the counterpart) of
the HVS.

In particular, the upper branch of HVS yields hairpin-
shaped vortex structures aligned by stream- and spanwise
staggered formations reminiscent of those seen in experi-
ments [14], after which the solution was named. However,
a radical change of the topology of its velocity field with
increasing Re (Re > 400) gives rise to a complicated
deformation of the vortex structure, which leads to
enhancement of the fluid mixing between the moving
plates, followed by a steep rise of the wall shear rate.
While the upper branch of HVS has, thus, attracted much
attention recently ([19,20]), obviously owing to its charac-
teristics such as spatial shape and staggered formation, the
analysis of the lower branch of HVS has been neglected in
the recent focus of research.

According to Wang et al. [11], the lower branch of NBW
has an asymptotic behavior at high Re limit, which consists
both of a nonvanishing streak component and of vanishing
streamwise vortices. Here, the “streak component™ is
referred to as the streamwise-independent perturbation
ug(y, z) from the mean component i(y) of PCF, which is
maintained by the streamwise vortices of NBW developing
into a kind of critical layer at high Re. This fact means that
the distance of NBW from the laminar state in the state
space, |luy — u; ||, is kept to be finite (nonvanishing) at the
infinite Reynolds limit, where uy is the lower branch of
NBW and u; is the laminar state. Moreover, because the
NBW is a derivative of HVS, which bifurcates from the
laminar state via the secondary branch in the bifurcation
diagram ([19]), NBW cannot directly connect to the lam-
inar state even at the infinite Re limit in a natural sense.
Therefore, NBW can ‘“‘not bifurcate from infinity’[11],
contrary to the title of Ref. [5].

In contrast with NBW, the lower branch of HVS may
diminish with increasing Re. First, in the present Letter, by
means of the continuation analysis (homotopy) of the

Newton-Raphson method, we traced the lower branch of
HVS up to as high Re as needed. Fourier and modified
Chebyshev expansions are employed, where truncation is
set to a large enough level to confirm that the spectrum of
energies descends by a few orders of magnitude. Several
representative components of the lower branch of HVS are
indicated in Fig. 1. Referring to the first figure of Ref. [11],
the amplitude of the streak component, |uy(y, z) — i(y)|, in
Fig. 1 is plotted explicitly for both states, NBW and HVS.
The lower branch of HVS algebraically looses all the
harmonic amplitudes including even its streak component
with increasing Re, so that it asymptotically approaches the
laminar state, which is distinct from the behavior of NBW.
As it were, HVS could bifurcate from the laminar state
at the infinite Re, while NBW could not. However, it
would contradict the fact that the steady mode of the
Orr-Sommerfeld equation is not neutral in the limit of
infinite Re.

HVS on BB.—It is an open question whether the lower
branch of the more primitive solution than NBW, HVS,
also lies on the BB at high Re. In the present Letter,
employing the edge tracking [21], which was established
originally as a tool in order to find out an unstable steady
solution in a bistable system [22] such as PCF, we specify
the relation between the lower branch of HVS and the BB
of PCF. Thus, we followed the time-development of the
flow starting from the lower branch of HVS, uy, with a
small perturbation, restricting the flow to satisfy the reflec-
tion symmetry. In Fig. 2, the trajectories of the time devel-
opment of flow are depicted by a component of the velocity
field, which is zero for the laminar regime and of order 1
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FIG. 1 (color online).  Amplitudes of representative Fourier
modes for the HVS in PCF are plotted against Re for stream- and
spanwise extents of the periodic box (L,, L,) = (2, 7). All the
amplitudes of the HVS algebraically decrease with increasing
Re. In particular, gradual attenuation in the streak component
luo(y, z) — i(y)| of the HVS (thick solid curve) contrasts well
with that of NBW (thin solid curve), which is indicated to be
kept at order 1 (as verified in Ref. [11]).
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FIG. 2.  E(¢) is half the norm of the wall-normal component of
the perturbation at time ¢. Trajectories starting around uy sepa-
rate towards either the laminar (dotted) or the turbulent (solid)
states due to a small additive perturbation onto the initial state.
Time development is carried out under the periodic boundary
conditions with (L,, L,) = (2, 7r) by imposing the reflection
symmetry on the perturbation.

for the turbulent regime. The closer the initial condition is
to uy (the smaller the perturbation is), the longer transi-
tional interval it takes for u(¢) to reach either turbulent or
laminar regimes. This means that HVS remains on the BB,
and that it is an unstable solution even under the restricted
dynamical system.

Following these facts mentioned above, (1) the lower
branch of HVS gets closer to the laminar with increasing
Re and (2) the lower branch of HVS stays on BB even at
high Re, we can deduce the assumption that the minimum
distance between the laminar state and BB might be rep-
resentatively measured by |luy — u; ||, which asymptoti-
cally vanishes with the increase of Re. Therefore, turbulent
transition triggered by a small perturbation originating at
HVS does not require an additional streamwise vortex
component, even if the perturbation on the laminar state
is infinitely small at the infinite Re. Note that this is in
contrast to a conjecture on transition deduced from the
asymptotic behavior of NBW concluded in Ref. [11]. In
their conjecture, it is supposed that the formation of an
O(Re™!) updraft necessarily creates O(1) streaks which in
turn leads to turbulent transition via a certain nonlinear
interaction between these modes.

The manifold of HVS expanding towards NBW.—
Additionally, we investigated one of manifolds of HVS
for Re = 1000, again employing the edge tracking. Let us
take a plane in state space on which the three distinct exact
steady solutions of PCF, the laminar state, the lower branch
of HVS, and the lower branch of NBW, lie. Using a couple
of parameters (a, b), we specify an arbitrary state u, ;) on
the plane, which is expressed as the superposition of these
solutions as follows:

u () = buy + (1 = b)((1 — auy + auy).

It should be noted that u, ;) satisfies the incompressible
condition, but is not necessarily equivalent to a steady state

of the governing equation. By adopting the state u, ;) for a
different set of (g, b) as an initial state, u(z = 0), a number
of trial calculations of the time development of the state
u(r) are carried out, which will provide part of the outline
of the BB.

Here, let us plot u(r) as a trajectory expressed by
(&(2), n(2), £(¢)) in a three-dimensional space. The distance
between two different flow states #; and u, in the state
space could be measured by the norm of the difference of
the associated velocity fields, |lu; — u,||. If one plots
the laminar state at the origin, and the HVS on the ¢ axis
(¢ > 0) with the distance, |luy — u, ||, from the origin of
the space, then NBW may be plotted in the first quadrant
on the £ — n plane so as to match the corresponding
distances, |luy —u; |l and |luy — uyl|, from the origin
and HVS. Thus, an arbitrary state u can be plotted at a
point in the space with the distances from the three exact
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FIG. 3 (color online).  Trajectories starting from initial states,
u(,p for a different set of parameters (a, b), separate towards
either the laminar u; (grey dashed curves) or the turbulent states
(black solid curves), which are obtained at Re = 1000. In the
case of n > 0, the initial state does not satisfy the reflection
symmetry. Some of trajectories starting around uy at Re = 1000
(red upward triangle) with a particular set of (a, b) trace a part of
the BB as “watershed,” which divides the whole space into the
basins of the turbulent and laminar attractors. This BB is out-
lined by a heteroclinic orbit [23] connecting uy and u, at
Re = 1000 (red downward triangle). For reference, uy and uy
obtained at Re = 300, 10000 are plotted as well (grey triangles),
both of which approach towards ¢ = 0 with increasing Re.
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states. Figure 3 is the projection of the trajectories, u(z),
onto the ¢ — 7 plane in space. Generally speaking, since
the real state space consists of much higher dimensions,
any state cannot maintain its identity in the projection.

Trajectories for a variety of set values, (a, b), obtained at
Re = 1000, are plotted in Fig. 3. Note that calculations
with a variety of b under fixed @ = 0 were demonstrated
above (see Fig. 2), which, if plotted, would be on the ¢ axis
in Fig. 3. In the case of a = 0, the state u(r) at a sufficient
large t decreases to u; for b < 0, whereas it develops to
some turbulent state for b > 0. In the figure, all trajectories
starting from uy head eventually towards either u; or a
turbulent state (€2 + 5* > 1), but some of them pass by
uy. A watershed, on which both uy and uy lie, emerges out
of a tangle of trajectories, as if a ridge would be outlined by
a lot of small streams in a mountainous area on a map. The
obtained watershed corresponds to the outline of the BB,
which divides the whole space into the basins of the
turbulent and laminar attractors, with the heteroclinic orbit
[23] of these solutions constituting the BB.

Concluding remarks.—We will list briefly the facts
obtained from the study on BB of PCF. First, the lower
branch of HVS asymptotically approaches the laminar
state with increasing Re. Second, the lower branch of
HVS stays on the BB at high Re. Third, while one of the
unstable manifolds of HVS connects to the laminar state,
another unstable manifold of HVS connects to the lower
branch NBW, that is, a heteroclinic orbit of these solutions
constitutes the BB. Additionally, NBW is a robust attractor
in BB even at high Re, which is a conclusion given in
Ref. [11].

From all four above facts, we may deduce an ideal
process of turbulent transition from the dynamical point
of view. In experiments of the turbulent transition, the
magnitude of perturbation on the laminar is reduced as
much as possible at the initial stage in the upstream. In case
the flow experiences turbulent transition, though, the
adopted smallest perturbation necessarily satisfies the re-
flection symmetry, which is inferred from the first and the
second points. From the third point, we may expect that the
trajectory tends to approach towards NBW along the het-
eroclinic orbit on BB. In the downstream, NBW-type
structures would be prevalent, while HVS is observed
rarely, which is suggested from the fourth point. This
scenario gives us a clue to answer the question, why the
vortex structure with the spanwise reflection symmetry is
often observed at a transition stage in the turbulent bound-
ary layer with a sufficiently large Re, where what is
observed no longer depends on Re. At the same time,
this does not contradict that a meandering streaky structure
like NBW rather than HVS would be ubiquitous down-
stream in fully developed turbulent shear flows (cf. [18]).
Moreover, the lower branch of HVS, rather than that of
NBW, may give us a more practical criteria of the laminar-
turbulent transition of PCF at high Re. An interpretation of

these results, that a state satisfying the reflection symmetry
(varicose mode) is more optimal than its counterpart
(sinuous mode) to trigger transition, is reasonably sup-
ported by the exhaustive measurements of the minimal
distance from the laminar state to BB of Ref. [24].
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