Introduction : the role of quality, production and technological innovation in improving competitive performance

Bennett, David (1992). Introduction : the role of quality, production and technological innovation in improving competitive performance. International Journal of Technology Management, 7 (4-5), pp. 217-218.

Abstract

Quality, production and technological innovation management rank among the most important matters of concern to modern manufacturing organisations. They can provide companies with the decisive means of gaining a competitive advantage, especially within industries where there is an increasing similarity in product design and manufacturing processes. The papers in this special issue of International Journal of Technology Management have all been selected as examples of how aspects of quality, production and technological innovation can help to improve competitive performance. Most are based on presentations made at the UK Operations Management Association's Sixth International Conference held at Aston University at which the theme was 'Getting Ahead Through Technology and People'. At the conference itself over 80 papers were presented by authors from 15 countries around the world. Among the many topics addressed within the conference theme, technological innovation, quality and production management emerged as attracting the greatest concern and interest of delegates, particularly those from industry. For any new initiative to be implemented successfully, it should be led from the top of the organization. Achieving the desired level of commitment from top management can, however, be a difficulty. In the first paper of this issue, Mackness investigates this question by explaining how systems thinking can help. In the systems approach, properties such as 'emergence', 'hierarchy', 'commnication' and 'control' are used to assist top managers in preparing for change. Mackness's paper is then complemented by Iijima and Hasegawa's contribution in which they investigate the development of Quality Information Management (QIM) in Japan. They present the idea of a Design Review and demonstrate how it can be used to trace and reduce quality-related losses. The next paper on the subject of quality is by Whittle and colleagues. It relates to total quality and the process of culture change within organisations. Using the findings of investigations carried out in a number of case study companies, they describe four generic models which have been identified as characterising methods of implementing total quality within existing organisation cultures. Boaden and Dale's paper also relates to the management of quality, but looks specifically at the construction industry where it has been found there is still some confusion over the role of Quality Assurance (QA) and Total Quality Management (TQM). They describe the results of a questionnaire survey of forty companies in the industry and compare them to similar work carried out in other industries. Szakonyi's contribution then completes this group of papers which all relate specifically to the question of quality. His concern is with the two ways in which R&D or engineering managers can work on improving quality. The first is by improving it in the laboratory, while the second is by working with other functions to improve quality in the company. The next group of papers in this issue all address aspects of production management. Umeda's paper proposes a new manufacturing-oriented simulation package for production management which provides important information for both design and operation of manufacturing systems. A simulation for production strategy in a Computer Integrated Manufacturing (CIM) environment is also discussed. This paper is then followed by a contribution by Tanaka and colleagues in which they consider loading schedules for manufacturing orders in a Material Requirements Planning (MRP) environment. They compare mathematical programming with a knowledge-based approach, and comment on their relative effectiveness for different practical situations. Engstrom and Medbo's paper then looks at a particular aspect of production system design, namely the question of devising group working arrangements for assembly with new product structures. Using the case of a Swedish vehicle assembly plant where long cycle assembly work has been adopted, they advocate the use of a generally applicable product structure which can be adapted to suit individual local conditions. In the last paper of this particular group, Tay considers how automation has affected the production efficiency in Singapore. Using data from ten major industries he identifies several factors which are positively correlated with efficiency, with capital intensity being of greatest interest to policy makers. The two following papers examine the case of electronic data interchange (EDI) as a means of improving the efficiency and quality of trading relationships. Banerjee and Banerjee consider a particular approach to material provisioning for production systems using orderless inventory replenishment. Using the example of a single supplier and multiple buyers they develop an analytical model which is applicable for the exchange of information between trading partners using EDI. They conclude that EDI-based inventory control can be attractive from economic as well as other standpoints and that the approach is consistent with and can be instrumental in moving towards just-in-time (JIT) inventory management. Slacker's complementary viewpoint on EDI is from the perspective of the quality relation-ship between the customer and supplier. Based on the experience of Lucas, a supplier within the automotive industry, he concludes that both banks and trading companies must take responsibility for the development of payment mechanisms which satisfy the requirements of quality trading. The three final papers of this issue relate to technological innovation and are all country based. Berman and Khalil report on a survey of US technological effectiveness in the global economy. The importance of education is supported in their conclusions, although it remains unclear to what extent the US government can play a wider role in promoting technological innovation and new industries. The role of technology in national development is taken up by Martinsons and Valdemars who examine the case of the former Soviet Union. The failure to successfully infuse technology into Soviet enterprises is seen as a factor in that country's demise, and it is anticipated that the newly liberalised economies will be able to encourage greater technological creativity. This point is then taken up in Perminov's concluding paper which looks in detail at Russia. Here a similar analysis is made of the concluding paper which looks in detail at Russia. Here a similar analysis is made of the Soviet Union's technological decline, but a development strategy is also presented within the context of the change from a centralised to a free market economy. The papers included in this special issue of the International Journal of Technology Management each represent a unique and particular contribution to their own specific area of concern. Together, however, they also argue or demonstrate the general improvements in competitive performance that can be achieved through the application of modern principles and practice to the management of quality, production and technological innovation.

Divisions: Aston Business School > Operations & information management
Additional Information: International journal of technology management 7/1992 http://www.inderscience.com/browse/index.php?journalID=27 © Inderscience Enterprises Ltd.
Uncontrolled Keywords: quality,production,technological innovation,competitive performance
Published Date: 1992

Download

Full text not available from this repository.

Export / Share Citation


Statistics

Additional statistics for this record