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Abstract: Desalination of brackish groundwater (BW) is an effective approach to augment 

water supply, especially for inland regions that are far from seawater resources. Brackish 

water reverse osmosis (BWRO) desalination is still subject to intensive energy 

consumption compared to the theoretical minimum energy demand. Here, we review some 

of the BWRO plants with various system arrangements. We look at how to minimize 

energy demands, as these contribute considerably to the cost of desalinated water. Different 

configurations of BWRO system have been compared from the view point of normalized 

specific energy consumption (SEC). Analysis is made at theoretical limits. The SEC 

reduction of BWRO can be achieved by (i) increasing number of stages, (ii) using an 

energy recovery device (ERD), or (iii) operating the BWRO in batch mode or closed 

circuit mode. Application of more stages not only reduces SEC but also improves water 

recovery. However, this improvement is less pronounced when the number of stages 

exceeds four. Alternatively and more favourably, the BWRO system can be operated in 

Closed Circuit Desalination (CCD) mode and gives a comparative SEC to that of the  

3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can 

be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps 

are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the 

costs of these innovative approaches. 
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1. Introduction 

Water is vital for all living creatures on Earth. About 97% of the water is seawater in oceans, 

leaving only 2.5% of the water on the Earth as fresh water, and about 99% of that water is in ice and 

underground. Because of population growth, industrialization and climate change, water scarcity has 

become one of the most pervasive problems afflicting people throughout the world. Presently, over 

one-third of the world’s population lacks access to safe drinking water and suffers the consequences of 

unacceptable sanitary conditions [1]. Alongside existing water conservation measures, salt water 

desalination by reverse osmosis (RO) membrane has been proved [2] to be a more proactive and 

dynamic way to water our ‘blue’ but thirsty world. 

For many inland and arid areas that have adequate groundwater resources but are far from the sea, 

desalination of brackish groundwater (BW) is urgently needed to increase water supply, satisfy the 

purposes of drinking, irrigation, and industry use. And there has been a rapid growth in the installation 

of brackish water reverse osmosis (BWRO) desalination facilities in the past decade. Nations, 

spanning from Australia to Spain, from the United States to China, all have BWRO desalination 

projects accomplished, and construction of new plants is expected to increase in the near future. In 

Texas alone, by 2006, thirty BWRO desalination plants with design capacity more than 95 m3/day had 

been constructed [3]. The total desalination capacity of these facilities is around 132,400 m3/day. The 

capital costs of these facilities vary from 0.02 $/m3 to 2 $/m3 according to the scale of the plants. 

Generally, desalination facilities at large scale have a lower capital cost. 

However, the cost could be substantially increased because of brine management requirements. 

These plants produce a waste concentrate stream in the vicinity of 38,000–57,000 m3/day. Almost 70% 

of the concentrate from these facilities was discharged to surface water body or municipal sewer, 20% 

was treated by evaporation pond, and around 10% was managed by land application. Since these plants 

are placed far from the coast, direct discharge of the brine will easily affect the surrounding ecosystem. 

Pérez-González et al. [4] gave a comprehensive review on the potential treatments of reject  

brine according to the source of RO concentrates and the maturity of the technologies. However, for 

the large amount of brine from desalination facilities in Texas, a proper treatment that can overcome 

the environmental problems associated with the direct discharge of RO brine increases costs 

considerable [5]. 

Besides brine management, another major challenge is the energy demand of inland BWRO 

systems, which is again linked to the cost of desalinated water. The energy demand of seawater RO 

desalination plants has decreased dramatically in the last 40 years [6], from about 10–15 kWh/m3 of 

produced water to 2–3 kWh/m3. This is attributed to the advance of membrane technology and the 

development of high efficiency energy recovery devices (ERDs). However, most of the current RO 

plants are still prone to energy intensity when it comes to the desalination of BW on small-scale, due 

to relatively smaller components, e.g., pumps, and absence of ERDs [7]. Therefore, improving the 

energy efficiency of BW desalination, increasing water output per land area, minimizing the 

discharged brine, and eventually reducing cost are of course some of the desirable properties when 

designing the BWRO system. To achieve these, there have been several approaches, including using 

highly permeable membrane materials [8,9], employing high efficiency ERD to recover the energy 

losses in pressurized brine, and using renewable energy resources to subsidize the electrical energy 
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demand [10,11]. Optimum designs of BWRO systems [12,13] provide another effective approach to 

achieve these goals. 

In this work, we discuss some of the critical design considerations and criteria for BWRO plants. A 

particular focus is put on the crucial design for pre-treatment processes with the emphasis on the 

effects of different configurations on the BWRO systems. Various pre-treatment approaches and their 

functionalities are comparatively reviewed. Some popular candidate processes with the optimal 

designs, such as single and multi-stage RO with/without ERD, are carefully investigated through 

theoretical analysis of their SEC. Innovative RO systems that operate in either batch mode or closed 

circuit mode are extensively compared with the more conventional designs. We further elucidate the 

advantages of these innovative systems in real-world applications. 

2. Pre-treatment of BWRO System 

Water can be categorized by its salinity level. Seawater has total dissolved solids (TDS) concentration 

of about 35,000 mg/L on average; BW usually has TDS concentration of 3000–10,000 mg/L and the 

TDS concentration of fresh water can be up to 1000 mg/L. According to the guidelines for drinking 

water quality provided by the U.S. Environmental Protection Agency (EPA), water with salinity below 

500 mg/L is acceptable for drinking [2]. Thus, it is essential to desalinate BW to produce drinking 

water. Brackish water composition varies widely among inland areas. Examples of BW compositions 

from different origins of the world are shown in Table 1. Unlike evaporative desalination plants, the 

site-specific BW composition has a direct influence on the RO plant design, e.g., pre-treatment design. 

Thus, a complete and accurate analysis of the water composition must be carried out before design 

begins. Despite the recent improvements in the performance of the fouling-resistant membranes [6], 

the RO membranes are still extremely sensitive to the fouling contaminants, which affect the energy 

usage, reliability, and environmental impact of the BWRO plant. Therefore, pre-treatments of feed BW 

are essential and sometimes critical [14]. 

2.1. Pre-treatment Processes 

Typical site-specific parameters of the raw BW to be controlled before it enters RO modules 

include: water hardness, water turbidity, organic substances, water temperature and PH. These feed 

water related parameters, together with the RO membrane material, RO module system, required 

recovery and permeate quality, decide the method and the degree of the necessary pre-treatment.  

Pre-treatment processes may consist of several conventional treatment steps as summarized in Table 2. 

Brackish surface water typically has a greater propensity for membrane fouling and requires more 

extensive pretreatment systems than groundwater resources. Different methods should be carefully 

selected in order to cause minimum membrane fouling at the lowest possible cost. And the amounts of 

chemicals added have to be precisely calculated depending on the scale forming salts contained in the 

feed water. For example, for water with low bacteria content, pre-treatment may only require addition 

of polyelectrolyte as flocculation agent, and H2SO4 to reduce the pH level and thus prevent CaCO3 

precipitation. On the other hand, in the case of water with high bacteria content, more steps of chlorine 

addition and de-chlorination should be included before the final stage consisting of a cartridge filter. 
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Utilization of microfiltration (MF), ultrafiltration (UF), or nanofiltration (NF) to pre-treat RO feed 

water, as effective substitute of conventional pre-treatment, has became a new trend. Pilot-scale testing 

of these membranes has been carried out by researchers. To date, UF membranes are the most common 

choice in research studies and pilot testing [15]. UF membranes have smaller pore sizes than MF 

membranes and can therefore achieve more effective removal. Further, UF membranes have higher 

flux than NF membranes, making it possible to treat feed water with relatively lower energy 

consumption [2]. All three membranes have advantageous characteristics, such as superior removal of 

organic and particulate matter. However, like the RO membranes, these pre-treatment membranes are 

easily fouled. 

Table 1. Example of brackish water composition from different locations. 

Parameter unit 
Palmas, Canary 

Islands, Spain [16] 
Rewari, 

India  
Benandarah New South 
Wales, Australia [17,18] 

Dockum, Texas, 
USA [5] 

Arsenic (As) mg/L — — <0.005 — 
Boron (B) mg/L — — 0.21 — 

Calcium (Ca) mg/L 124 84 142.1 263 
Chloride (Cl) mg/L 1,009.6 1,220 1,483 670 
Fluoride (F) mg/L 0.0 11.1 <0.1 — 

Iron (Fe) mg/L 0.0 0.03 28.87 — 
Magnesium (Mg) mg/L 138.87 79 192 141 
Manganese (Mn) mg/L — — 0.5 — 

Nitrate (NO3−) mg/L 416.3 0.69 <1.0 — 
Nitrite (NO2−) mg/L — — <0.1 — 
Potassium (K) mg/L 33.2 — 19.2 — 
Sodium (Na) mg/L 910.0 1,310 1,125 589 

Sulphate (SO4
2−) mg/L 569.1 1,172 340 1,329 

SiO2 mg/L 33 — — 70 
HCO3

- mg/L 677.9 976 — 227 
Total hardness 

(CaCO3) 
mg/L — 534 1,146 — 

pH — 7.7 7.3 6.7 7.4 
TDS mg/L 3,912 3,668 3,400 3,314 

Table 2. Pre-treatment Processes, summarized from references [19,20]. 

Pre-treatment process Main functions 
Suitable water 

resources 

Chemical 
treatments 

Addition of 
coagulants 

Act to flocculate colloidal dispersions, which is easy  
to separate 

Well water, 
surface water 

Acid addition 
To decrease the pH, thus diminish the precipitation 
propensity of alkaline scaling species such as CaCO3 and 
Mg(OH)2. Sulphuric acid is usually employed. 

Surface water 

Addition of  
anti-scalants 

To enable concentration of the feed water above the scale 
precipitation limits, avoid membrane scaling 

Surface water 

Addition of 
sodium bisulfite 

(NaHSO3) 

To reduce free chlorine, that can easily attack membrane due 
to oxidants. The removal of excess chlorine can also be 
achieved with activated carbon filter 

Surface water 
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Table 2. Cont. 

Pre-treatment process Main functions 
Suitable water 

resources 

Chemical 
treatments 

Addition of 
coagulants 

Act to flocculate colloidal dispersions, which is easy  
to separate 

Well water, 
surface water 

Acid addition 
To decrease the pH, thus diminish the precipitation 
propensity of alkaline scaling species such as CaCO3 
and Mg(OH)2. Sulphuric acid is usually employed. 

Surface water 

Addition of anti-
scalants 

To enable concentration of the feed water above the 
scale precipitation limits, avoid membrane scaling 

Surface water 

Addition of 
sodium bisulfite 

(NaHSO3) 

To reduce free chlorine, that can easily attack membrane 
due to oxidants. The removal of excess chlorine can also 
be achieved with activated carbon filter 

Surface water 

Filtration 

Mesh strainer 
To initially remove large particles, avoid membrane 
blocking 

Well water, 
surface water 

Media filtration 
To remove particulate and suspended matter, avoid 
membrane blocking, used commonly in conventional 
desalination plant 

Surface water 

Micron cartridge 
filtration 

Universally used in front of the modules of any RO 
plant, serve as the final barrier to water born particles. 
The filter elements with a nominal pore size of about 5 
μm  

Well water, 
surface water 

Filtration aids 
To increase the efficiency of filtration processes by 
adding filtration aids, such as organic polymers 

Well water, 
surface water 

Disinfection 
Using disinfecting agents such as chlorine, organic 
biocides, ozone and UV irradiation to control biological 
activity, protect the membrane 

Well water, 
surface water 

3. Conventional BWRO Plant 

Usually, BWRO desalination plants implement a basic configuration of one stage, as shown in 

Figure 1, and the membrane module may contains one or several RO elements in series. Taking the 

BWRO plant in Saja’a UAE as an example, the feed water of the plant is from a well water field with 

average TDS being 3261 mg/L, and the RO feed pressure is maintained in the range of 18–20 bar. This 

plant is operated at a recovery of about 68% in order to meet the production need of 22,710 m3/day. To 

increase the output, an additional seawater membrane RO unit was added to recover the high pressure 

brine [21]. By utilizing the seawater RO unit at a recovery fraction of 40%, additional water output of 

3027 m3/day was achieved. Figure 2 illustrates the RO module arrangement with an additional 

membrane module. This configuration must be operated at a pressure well above the osmotic pressure 

of the feed water, to overcome the osmotic pressure reached at the exit of the second module. Thus, it 

is desired to use a RO module with low operation pressure, high permeate flux and high salt rejection 

as the second module. Nemeth [22] used a similar idea to improve the performance of a conventional 

BWRO plant. By utilizing a hybrid combination of ultra-low pressure and conventional membranes, 

the average flux was increased up to 10%, and the permeate TDS decreased by around 20%. The same 

author [22] also proposed an optimum design by incorporating inter-stage pressure boosting or 
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utilizing permeates throttling at the first stage, and the flux through the second module was increased 

by 40% and 37%, respectively. 

Figure 1. Conventional one stage brackish water reverse osmosis (BWRO) system. 

 

Figure 2. BWRO system with additional membrane module connected to the reject water. 

 

4. Optimal Designs of Conventional BWRO System 

A BWRO desalination system can be modified in various ways to improve its performance. One 

common approach is to change the number of membrane elements in a module and the arrangement of 

the modules. Typically, the BWRO plant is arranged in a staged array; that is the subsequent stage 

contains half as many membrane modules as the previous one, i.e., 2:1 array. Nemeth has shown [22] 

that using a 3:1 array requires a slightly lower feed pressure, but lowers the concentrate flow in the 

first stage simultaneously. Other re-design approaches are also adopted. The development and 

implementation of optimized configurations have been seen to lead to a reduction in energy 

consumption of the RO desalination plants. Moreover, a BWRO system may be operated in a batch 

mode and without an ERD. To date, most of the small-scale RO systems were built without an ERD. It 

may keep capital costs down but come at the expense of a heavy penalty on energy costs. For BWRO 

systems, they usually have much higher recovery ratios; thus, energy recovery is less critical. 

4.1. Multi-stage Configuration 

For an RO system, a serial arrangement of the RO membrane elements is more energy efficient than 

a parallel one [23]. For serial arrangements, however, a substantial longitudinal gradient in concentration 
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will occur. In desalination process, fresh water is progressively removed along the RO membrane 

module, the salt concentration along the channel increases to a value almost twice (for seawater) or 

three times (for BW) that at the inlet. To maintain a flux of water over the entire feed channel, the 

operation pressure is determined by the concentration at the outlet rather than the inlet, as illustrated in 

Figure 3a. Thus, part of the feed energy is lost due to the longitudinal concentration gradient. 

One example of system design that can eliminate this loss is a multi-stage configuration. This 

design adopts several stages in series along with several booster pumps. The first stage operates at a 

lower pressure, because of the lower salinity of the feed water. The concentrate from the first stage is 

then fed into a second stage, where the salinity becomes higher. The inter-stage booster pump provides 

higher pressure correspondingly, thus removing the necessity to have the first-stage pump providing 

extra pressure. Consequently, the energy loss associated with the increased longitudinal concentration 

can be minimized. Figure 3b gives a direct illustration of the energy savings achieved by the 3-stage 

RO system with the three pumps providing pressure P1, P2 and P3.  

Figure 3. Energy usage of a reverse osmosis (RO) system and the effect of longitudinal 

concentration gradient. The theoretical minimum energy demand for desalination, which is 

represented by the area under the osmotic pressure curve, is equal to the energy needed to 

bring saline water to the maximum osmotic pressure in the corresponding module. (a) For 

single-stage system, the operation pressure P must be at least equal to the osmotic pressure 

π of the solution at the outlet of membrane module. The applied energy is represented by 

the area under the dashed line. The difference between these two areas (gray area) is the 

provided extra energy, i.e., energy loss. (b) For 3-stage system, by providing appropriate 

pressure for each stage, the energy loss (gray area) is reduced, and some of the extra energy 

is saved (pink area)—based on [6]. 

 
(a)        (b) 

The configurations of single and multi-stage BWRO systems with or without an ERD are depicted 

in Figures 4–7. A Design study by Vince et al. [24] has shown that multi-stage systems, with modules 

connected to reject water with booster pumps, are able in principle to minimize the electricity 

consumption. Lu et al. [25] also recommended that for low feed concentration (around  

3000 mg/L), the optimal design is a 3-stage system with ERD that can increase recovery ratio. In 
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practice, however, simple one-stage systems have often been favoured because of the lower capital 

cost—despite their relatively poor energy efficiency [18]. Thus, the choice of one- or multi-stage 

configuration needs careful attention. 

Figure 4. Single-stage system. 

 

Figure 5. 3-stage system with intermediate pumps. 

 

Figure 6. Single-stage system with work exchanger type energy recovery device (ERD). 
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Figure 7. Multi-stages system with work exchanger type ERD. 

 

5. Innovative Configurations Using Time-varying Conditions 

Multi-staging attempts to overcome the problem of longitudinal concentration gradient by spatial 

separation of the system into modules working at different pressures. A contrasting approach is temporal 

separation, whereby a single module is operated at time-varying pressure as the concentration and 

osmotic pressure gradually increase. (Note that these two approaches—separation in space or time—are 

recognizable from the methodology of TRIZ). An advantage of the time-varying (i.e., non-steady) 

approach is that it is possible in principle to attain the theoretical minimum energy of desalination; 

whereas with multi-staging, this would only be possible if an infinite number of stages were employed. 

Here we describe two distinct but related approaches using the time-varying approach. 

5.1. Batch Mode RO Operation 

Batch operations are common in traditional filter presses (e.g., for making wine). For RO, they are 

used in laboratory filtration cells for experimental purposes, but they have rarely been employed at 

process scale with a view to optimizing energy efficiency. The design philosophy of the batch mode 

operation is illustrated in Figure 8. Saline water is contained in a water cylinder. The cylinder piston 

driven by the input work pressurizes the saline water against the RO membrane and the permeate is 

expelled. To diminish the undesirable concentration polarization effects at the membrane surface, a 

stirring device is applied. A practical realization is shown in Figure 9 [12]. During the pressurization 

stage, the pressurized concentrate is fed back into the pump cylinder with the help of the re-circulation 

pump. Batch mode operation provides energy recovery, without the need for a separate ERD. 

Davies [12] has presented a batch system—DesaLink—in which batch-RO can be powered by the 

work generated from steam expansions, which is interesting for incorporation into thermal and solar 

thermal plant allowing for a range of end purposes (i.e., co-generation). DesaLink comprises two 

subsystems, namely a power system and a batch-RO system. The pistons of these two subsystems are 

coupled by a crank mechanism to provide mechanical advantage during the desalination process. 

DesaLink works on the principle that the mechanical energy provided by the steam expansion is 

directly applied to the feed water without any further conversion steps; thus losses will be minimized. 

The aim is to produce high fresh water output but also reduce brine discharge with low energy 
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consumption [26]. Detailed information about this system can be found elsewhere [12]. At the time of 

writing, DesaLink is still at the prototype stage of development. 

Figure 8. The essence of the batch mode RO process. 

 

Figure 9. Three stages of the batch mode RO operation, from [27]. The solid array lines 

indicate the water flows and the dashed lines show the blocked water paths. The water flow 

is controlled by closing and opening the valves, which are represented as solid and hollow 

valve symbols, respectively. 

 

5.2. Closed Circuit Mode RO Operation 

Another BWRO desalination system that uses time-varying conditions called Closed Circuit 

Desalination (CCD) has been proposed and developed by Efraty [28,29]. The concept of CCD is 

illustrated schematically in Figure 10. Pressurized feed is supplied by a high pressure pump. A stirring 

device is placed inside the water vessel to prevent the concentration polarization effect. This system 

operates under variable pressure conditions according to the level of concentrate salinity. When it 

reaches the desired recovery fraction, the process stops, the container is decompressed and brine is 

replaced by fresh feed. Then a new batch of desalination sequence is initiated. A CCD apparatus is 

illustrated in Figure 11. The design includes a feed pump to provide high pressure, a circulation pump 

to recycle concentrate back into the RO module and valves to enable brine replacement with fresh feed 

when the desalination reaches a desired recovery level. In order to operate the CCD-RO continuously, 

a new method has been developed using multiple modules and switching among them [30]. The 

principle of the new apparatus is the same as the one shown in Figure 11, to which a side water vessel 

is added that can be either engaged with or disengaged from the CCD process by means of several 

actuated valves. Detailed information about continuous CCD can be found elsewhere [30]. 
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Figure 10. The concept of closed circuit RO operation. 

 

Figure 11. A schematic design of an apparatus for Closed Circuit Desalination (CCD) desalination. 

 

6. Comparison of Different Configurations 

Both single and multi-stage BWRO systems have a continuous hydrodynamic process performed 

with fixed pressure and pressurized feed flow at every stage. For the batch mode RO and the Closed 

Circuit mode RO, the desalination process is performed under variable pressure conditions, because of 

the recycling of rejected concentrates. For DesaLink, the feed flow rate is not constant based on the 

steam expansion rate, which gives a varying permeate rate. At the very initial stage of pressurization, 

the concentration of permeate is higher than 500 ppm (with 4000 ppm feed) due to the low feed 

pressure and low flow rate. However, the pressure increases as the salinity of the recycled concentrate 

increases, enhancing the membrane salt rejection characteristic. Thus the permeate produced by one 

batch cycle has a concentration around 300 ppm. Conversely, the feed flow rate in a the CCD system is 

fixed, whereas the operation pressure of the feed flow is varied by means of variable frequency drive 

control of the high pressure pump. The high pressure pump has an average efficiency of 55%–60% [31]. 

In general, CCD has a flexible design allowing performance variations as a result of its independent 

control of the high pressure pump. Apart from the fixed recovery ratio that results from the fixed 

volume of pump volume, DesaLink can also operate on feed water with a wide range of feed BW 

concentrations because of the adjustable feed steam pressure and linkage mechanism. For commercial 

applications, DesaLink may be less attractive than the conventional BWRO systems or CCD, because 

desalination is preferably operated continuously. However, the purging and refill stages take only 14% 

of the total operation time. And simple modifications may easily solve the problem of non-continuous 

operation; for example, connecting two batch-RO subsystems, one at each end of the power piston. 
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Moreover, since the requirements for applied pressure reach up to 7–40 bar for BW desalting, the 

energy consumption, due to the pumps driving the feed water into membrane module, accounts for a 

major portion of the total cost of water desalination. The design of DesaLink effectively eliminates the 

need for a high pressure pump by the linkage mechanism, which makes it more favourable for  

small-scale BWRO desalination than other systems with low efficiency pumps. 

Table 3 summarizes expressions for determining specific energy consumption for the different RO 

system configurations, with the variables defined as follows: Posm the osmotic pressure of feed 

solution, r is the recovery ratio, and n is the number of stages. All the expressions in Table 3 are based 

on the following assumptions: (1) negligible salinity and pressure in the permeate, (2) negligible 

pressure loss in rejected concentrate, (3) linear relationship between osmotic pressure and salt 

concentration, and (4) 100% efficiency of booster pump and ERD. Furthermore, the effects of 

concentration polarization and fouling are not considered. 

Table 3. Specific energy consumption (SEC) of different BWRO system configurations. 

Title Title for this column Title for this column 

RO system  
configuration 

Without energy recovery With energy recovery 
Specific energy consumption Specific energy consumption 

Single-stage ܲ௦ 1)ݎ1 − ܲ௦ (ݎ 1(1 −  (ݎ
Two-stage 

ܲ௦ݎ  2√1 − మݎ − (2 − 1)൨ ܲ௦ݎ ൬ 2√1 − మݎ − 2൰ 

n-stage 
ܲ௦ݎ  ݊√1 − ݎ − (݊ − 1)൨ ܲ௦ݎ ൬ ݊√1 − ݎ − ݊൰ 

Batch-RO 
ܲ௦ݎ ln 1(1 − (ݎ  

CCD-RO ܲ௦ 1 + 1)2ݎ −  ൨(ݎ
It is clear that the multi-stage RO system achieves lower SEC than its counterparts with fewer 

stages. To achieve the minimum energy usage, the number of serial stages should be infinite in theory, 

which is infeasible in practice. However, the reduction of SEC flattens out when the number of stages 

exceeds 4. Figures 12 and 13 are offered to compare the performance of RO systems with different 

system configurations, where the normalized SEC is defined as SEC/Posm. 

From Figure 12, for multi staged RO systems without an ERD, the theoretical limit of normalized 

SEC is 4, 3.6 and 3.4 for the number of stages being 1, 2, and 3, respectively. The optimum recovery 

ratio is around 50%–60%. Using more stages, up to 3, not only reduces the normalized SEC, but also 

improves the fractional recovery of water. However, the normalized SEC plateaus out when the 

number of stages is more than 3. Clearly, multi-stage RO without an ERD is not very efficient in terms 

of energy consumption. Conversely, as shown in Figure 13, the multi-stage RO systems with an ERD 

have significantly reduced the normalized SEC, with a theoretical limit of 1, when the corresponding 

recovery ratio approaches zero. It becomes larger when the desired fractional recovery increases. On 

the basis of the above analysis, it can be concluded that the normalized SEC can be reduced either by 

increasing the number of stages or using an ERD. It should also be noted that both methods inevitably 

increase the cost. 
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Figure 12. Theoretical limit of normalized SEC in staged ROs without ERD. 

 

Figure 13. Theoretical limit of normalized SEC in batch-mode RO and multi-stage ROs with ERD. 

 

The energy consumptions of batch-RO and CCD-RO are very competitive with multi-stage systems 

(Figure 13). The CCD-RO system has a very similar normalized SEC to the 3-stage one, although this 

advantage becomes less obvious when the required recovery ratio is 80% or above. For practical 

facilities, it is not recommended to maintain very high recoveries based on the considerations of 

concentration polarization prevention and membrane fouling prevention. In particular, the batch-RO 

has the lowest normalized SEC due to the fixed feed water volume. The SEC of the batch-RO can be 

reduced by 30% compared to CCD-RO at a recovery ratio of 80%. Batch mode RO operation holds 

promise for providing high recovery along with low energy demand and cost when compared to 
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conventional systems. However, for cyclic operation, i.e., batch and CCD-RO, a question remains 

about the membrane stability during the repeated pressurization and de-pressurization of fluid. The 

operation parameters of the batch-RO system do not exceed the membrane specification provided by 

the manufacturer. Moreover, the loading with recycled brine and the unloading with fresh feed water 

can reduce the development of membrane fouling and scaling so it may even be advantageous [29]. 

7. Conclusions 

In this contribution, we have discussed the critical and urgent need for BWRO systems with high 

productivity and low energy demand to increase water supply for various applications in remote inland 

areas. We have showed that brackish water composition varies widely among different locations; 

therefore proper analysis of water composition should be conducted prior to the BWRO plant design. 

We have also discussed some pre-treatment systems for RO processes and emphasized that care must 

be taken as the type of feed water is site-specific. Pre-treatment often involves chemical approaches to 

control the fouling and scaling elements in the feed water. Recently, pre-treatment processes that take 

advantage of membrane technology have attracted great interest due to their simplicity and 

effectiveness. There are a large number of BWRO plants that have been built or are under construction 

all over the world. With the increasing concerns of the environmental issues related to brine 

management in inland areas, a BWRO plant with high recovery ratio is mostly preferred. However, 

high production always comes hand in hand with high energy consumption. To reduce the energy 

demand, various designs for BWRO system have been proposed including: (1) use of additional 

membrane elements to recycle brine; (2) increasing the number of stages with ERD; and (3) operating 

the RO system in batch or CCD mode. While the multi-stage RO system with ERD can largely reduce 

the energy demand, the overall performance becomes less advantageous given the additional capital 

costs associated with the membrane elements and booster pumps. A similar improvement can be 

achieved by using an additional membrane on the second stage without a booster pump, thus 

increasing the output. 

The innovative designs of both batch and CCD-RO systems are considered the most effective. The 

reason is twofold. First, the theoretical normalized SEC of CCD-RO is much better than for a single 

stage conventional system, and comparable to that of a 3-stage RO system with an ERD. The batch-RO 

operation can further reduce the SEC. For example, with a TDS concentration of 4000 ppm and a 

target recovery of 80%, a typical single-stage BWRO system without an ERD requires a theoretical 

energy input of 0.54 kWh/m3 for operation. However, to desalinate the same amount of water the 

CCD-RO system consumes only half of the energy, i.e., 0.26 kWh/m3 while only 0.17 kWh/m3 is 

needed for a batch-RO system. Both systems, therefore, are more technologically attractive thanks to 

their remarkable improvement over the more conventional counterparts as regards energy 

consumption. Second, together with their simple components and absence of costly ERD, both systems 

have also shown great economical advantages over the conventional systems. 

The CCD-RO system powered by electrical energy has demonstrated a huge potential to be 

implanted on large scale to produce domestic or industrial water. On the other hand, batch-RO systems 

powered directly by mechanical energy, DesaLink being an example, can be more technologically 

feasible and commercially attractive where thermal energy is available to provide steam. We foresee 
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that in the development of next generation of high recovery BWRO desalination technology, batch-RO 

and CCD-RO systems certainly deserve more intense research effort and may very well make 

remarkable contributions in the future. 

Appendix 

This appendix gives the derivation of theoretical SEC of Closed Circuit RO system represented in 

Figure 10. Assuming the initial saline water volume in the water vessel is V0 with a concentration of 

C0, and the corresponding ideal operation pressure is Posm. At the end of the pressurize phase, a volume 

of Vp permeate is obtained. Based on the operation concept of CCD, the volume of the supplied saline 

water during the pressurize phase is equal to that of the obtained permeate, i.e., Vs = Vp, and no water is 

rejected during the pressurize phase. For the subsequent purge phase, a volume of V0 fresh saline water 

with a concentration of C0 is applied. Thus, the overall recovery ratio of CCD-RO is: ݎ = ܸ௦ܸ + ܸ = ܸܸ + ܸ (A1)

During the pressurize phase, the maximum concentration of the saline water Cmax is: ܥ௫ = ݏݏܽ݉	ݐ݈ܽݏ	݈ܽ݅ݐ݊ܫ + ݈݀݁݅ݑܵ ݐ݈ܽݏ ݈݁ݏݏ݁ݒ	ݎ݁ݐܽݓ	݂	݁݉ݑ݈ܸݏݏܽ݉ = ܥ ∙ ܸ + ܥ ∙ ௦ܸܸ = ܥ ∙ ൬1 + ܸܸ൰ (A2)

Thus, the corresponding maximum operation pressure Pmax is: 

ܲ௫ = ܲ௦ ∙ ൬1 + ܸܸ൰ (A3)

The required energy is: ܹ = නܲ ∙ ݒ݀ = ( ܲ௦ + ܲ௫)2 ∙ ܸ (A4)

Substituting Equation A.3 into Equation A.4 and re-arranging the resulting expression with 

recovery ratio r whose value is obtained from Equation A.1, the theoretical SEC of CCD-RO is: 

ܥܧܵ = 	 ܹܸ = ( ܲ௦ + ܲ௫)2 = ܲ௦ ∙ ൬2 + ܸܸ൰2 = ܲ௦ ∙ 1 + 2ݎ ∙ (1 − ൨ (A5)(ݎ
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