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Abstract

We consider a Cauchy problem for the heat equation, where the temperature field
is to be reconstructed from the temperature and heat flux given on a part of the
boundary of the solution domain. We employ a Landweber type method proposed
in [2], where a sequence of mixed well-posed problems are solved at each iteration
step to obtain a stable approximation to the original Cauchy problem. We develop
an efficient boundary integral equation method for the numerical solution of these
mixed problems, based on the method of Rothe. Numerical examples are presented
both with exact and noisy data, showing the efficiency and stability of the proposed
procedure and approximations.

Keywords: Cauchy problem; Heat equation; Rothe’s method; Boundary inte-
gral equation method; Trigonometrical quadrature.

1 Introduction

We assume that we have a two-dimensional conducting body modelled by a doubly
connected domain D in IR2 with sufficiently smooth boundary, consisting of the
internal boundary Γ1 and the external boundary Γ2, both being simple closed
curves, see further Figure 1.

In practical engineering applications, the external boundary Γ2 might be acces-
sible for measurements while the internal boundary is inaccessible. Thus, one can
obtain overspecified data on Γ2, while leaving values on Γ1 unknown. Assuming
that the temperature and heat flux have been measured on Γ2, we are interested
in reconstructing the missing temperature values on the internal boundary Γ1.
Supposing that the heat flow is such that it can be modeled by the linear heat
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Γ1

D

Γ2

Figure 1: An example of the solution domain D and its boundary parts

equation, the temperature field u is a solution to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂u

∂t
= Δu in D × (0, T ),

u = f1 on Γ2 × (0, T ),
∂u

∂ν
= f2 on Γ2 × (0, T ),

u(x, 0) = 0 for x ∈ D,

(1.1)

where the functions f1 and f2 are given and sufficiently smooth, ν is the unit
outward normal to the boundary and the constant c is the thermal diffusivity. For
simplicity, we have chosen the initial temperature distribution to be zero. Unique-
ness of a solution to this Cauchy problem is well-known, see, for example, [15].
We shall assume that data are given such that there exists a solution. However,
this solution will not depend continuously on the data, i.e. the problem is ill-posed
and regularizing methods are needed for the stable approximation.

In the stationary case, there are numerous papers which solve the correspond-
ing Cauchy problem via iterative methods based on the ideas presented in [10, 11].
However, to the authors knowledge, for the time-dependent case, considerably
fewer works based on such iterative methods have been presented [1, 2, 7, 14].
Mainly the finite element method (FEM) has been employed for the numerical im-
plementation. Since only boundary data are needed in these iterative procedures,
using FEM based solvers can make the iterations slow since all of the solution
domain has to be discretized.

We focus in this work on the numerical implementation of a method introduced
in [2] and we shall develop a boundary integral technique where only boundary
data are involved, making the iterations faster. That such iterative boundary
integral methods can be effective for Cauchy problems was shown in [3] and we
now extend these ideas to the time-dependent case.

For the outline of this work, in Section 2 we recall the iterative procedure and
some of its properties. In Section 3, we develop an efficient numerical boundary
integral technique based on the method of Rothe for solving mixed boundary value
problems for the heat equation in annular domains. We then give numerical results
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in Section 4 for various data, both exact and with noise, and for several different
solution domains.

2 The iterative procedure

We define two operators needed to explain properties of the iterative procedure.
First, for every η ∈ L2(Γ1 × (0, T )), the operator K is defined as Kη := u|Γ2×(0,T )

where u is the solution of the following mixed boundary value problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂u

∂t
− Δu = 0 in D × (0, T ),

u = η on Γ1 × (0, T ),
∂u

∂ν
= 0 on Γ2 × (0, T ),

u(x, 0) = 0 for x ∈ D.

(2.1)

Then, for every f2 ∈ L2(Γ2×(0, T )) the operator G is defined as Gf2 := u|Γ2×(0,T )

where u is the solution of the following mixed problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂u

∂t
− Δu = 0 in D × (0, T ),

u = 0 on Γ1 × (0, T ),
∂u

∂ν
= f2 on Γ2 × (0, T ),

u(x, 0) = 0 for x ∈ D.

(2.2)

Note that if we can find η such that Kη + Gf2 = f1, we have a solution to the
Cauchy problem (1.1). Thus, we have to solve the equation

Kη = f1 −Gf2. (2.3)

In [2], the operator K was investigated and it was shown that the kernel consists
of the element 0 only and that its inverse is unbounded in L2. Thus, to solve (2.3)
in a stable way regularizing methods are needed. One possibility is a Landweber
type procedure of the following form ([2]):

• First we choose an arbitrary initial approximation η0 of the (unknown) func-
tion u|Γ1×(0,T ), where u satisfies (1.1).

• The value u0|Γ2×(0,T ) is calculated from the solution of the Dirichlet-Neumann
mixed initial boundary value problem.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
c

∂u0

∂t
− Δu0 = 0 in D × (0, T ),

u0 = η0 on Γ1 × (0, T ),
∂u0

∂ν
= f2 on Γ2 × (0, T ),

u0(x, 0) = 0 for x ∈ D.
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• Now the value ∂v0
∂ν |Γ1×(0,T ) is calculated from the solution of the mixed initial

boundary value problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂v0
∂t

+ Δv0 = 0 in D × (0, T ),

v0 = 0 on Γ1 × (0, T ),
∂v0
∂ν

= u0 − f1 on Γ2 × (0, T ),

v0(x, T ) = 0 for x ∈ D.

Knowing uk−1 and vk−1 we proceed as follows.

• We evaluate uk|Γ2×(0,T ) by solving the Dirichlet-Neumann problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂uk

∂t
− Δuk = 0 in D × (0, T ),

uk = ηk = ηk−1 + γL
∂
∂ν vk−1 on Γ1 × (0, T ),

∂uk

∂ν
= f2 on Γ2 × (0, T ),

uk(x, 0) = 0 for x ∈ D,

for some value of γL > 0.

• Further, by solving the Dirichlet-Neumann problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂vk

∂t
+ Δvk = 0 in D × (0, T ),

vk = 0 on Γ1 × (0, T ),
∂vk

∂ν
= uk − f1 on Γ2 × (0, T ),

vk(x, T ) = 0 for x ∈ D,

we can find ∂vk

∂v |Γ1×(0,T ) and then proceed to the evaluation of the next
approximation uk+1 by repeating the previous two steps.

The well-posedness of these mixed-problems in an L2-setting was given in [2].
Moreover, it was shown there that the procedure can be written as

ηk = ηk−1 − γLK
∗(Kηk−1 +Gf2 − f1),

where γL > 0 is the relaxation parameter, which is the classical Landweber method
for solving (2.3). Thus, the following holds, see [2] for details:

Theorem 2.1 Let f1, f2 ∈ L2(Γ2 × (0, T )), and let u be the solution to (1.1) and
uk be the k-th approximation in the above procedure. Provided that 0 < γL <
1/‖K‖2, where ‖ · ‖ denotes the standard operator norm, then

lim
k→∞

‖u− uk‖L2(D×(0,T )) = 0, (2.4)

for any initial element η0 ∈ L2(Γ1 × (0, T )).

R. Chapko et al. / Electronic Journal of Boundary Elements, Vol. 9, No. 1, pp. 1-15 (2011)

4



Note that the discrepancy principle [13] can be employed in the case of noisy
data. It is known that the Landweber iteration has slow convergence and the
choice of the regularizing parameter does influence the rate of convergence as well.
In a future study we aim to implement more advanced iterative schemes such as
conjugate gradient type methods to improve the rate of convergence.

Note also that if the boundary of the solution domain has corner points, deriv-
atives of the solution might not belong to the L2 space eventhough the given data
are smooth. Instead, the analysis has to be performed in weighted spaces of Kon-
drat’ev [9] and the iterative scheme adjusted to contain weights. This type of a
weighted iterative scheme is presented and analysed in [8] and can be employed in
the case of corner points of the solution domain.

3 Numerical solution of the mixed boundary value problems

For the solution of the direct mixed problems needed in the procedure given in the
previous section, we use a combination the method of Rothe for semi-discretization
in time and a boundary integral equation method for discretization with respect
to the spatial variables.

3.1 Rothe’s method and boundary integral equations

Let us define the following uniform grid on the time-interval [0, T )

tn = (n+ 1)h, h =
T

N + 1
, for n = −1, . . . , N − 1. (3.1)

Using these discretization points, we employ the notation un(·) ≈ u(·, tn) with the
convention that u−1 = 0. Applying standard approximations of the time-derivative
in the heat equation, we obtain the following sequence of elliptic boundary value
problems

Δun − γ2un =
n−1∑
m=0

βn−mum in D, for n = 0, . . . , N − 1, (3.2)

where γ is a parameter that depends on the order of the approximation of the
derivative. For the first order approximation of the time-derivative

γ =

√
1
ch
, βi =

{
− 1

ch , i = 1,
0, i > 1. (3.3)

For the second order approximation

γ =

√
2
ch
, βi = (−1)i 4

ch
. (3.4)

Clearly there is a possibility to use more advanced time approximations but this
is deferred to a future study, since in this paper we prefer a rather simple and fast
approach to speed up the iterations of the iterative procedure.
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To reduce the elliptic problems (3.2) to boundary integral equations, we rep-
resent the solutions in the form of modified single- and double-layer potentials,

un(x) =
1
π

n∑
m=0

∫
Γ1

ϕ1
m(y)Φn−m(x, y) ds(y)

+
1
π

n∑
m=0

∫
Γ2

ϕ2
m(y)

∂Φn−m(x, y)
∂ν(y)

ds(y), x ∈ D.

(3.5)

Here ϕ�
m, m = 0, . . . , N − 1, 	 = 1, 2, are unknown densities and Φm, m =

0, . . . , N − 1, are fundamental solutions of the sequence of elliptic equations in
(3.2). These functions have the form [4, 6]

Φn(x, y) = K0(γ|x− y|)vn(|x− y|) +K1(γ|x− y|)wn(|x− y|),

where K0 and K1 are modified Bessel functions and we used the following poly-
nomials

vn(r) =
[n
2 ]∑

m=0

an,2mr
2m, wn(r) =

[n−1
2 ]∑

m=0

an,2m+1r
2m+1

for n = 0, 1, . . . , N − 1 (w0 = 0) with an,0 = 1 and the remaining coefficients
recursively defined through

an,n = − 1
2γn

β1an−1,n−1,

an,k =
1

2γk

{
4

[
k + 1

2

]2

an,k+1 −
n−1∑

m=k−1

βn−mam,k−1

}
, k = n− 1, . . . , 1.

To find the densities ϕ1
m and ϕ2

m, we match the boundary conditions using the-
orems about continuous extension of single- and double-layer potentials to the
boundary, and obtain the following system of integral equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
π

∫
Γ1

ϕ1
n(y)Φ0(x, y) ds(y) +

1
π

∫
Γ2

ϕ2
n(y)

∂Φ0(x, y)
∂ν(y)

ds(y) = G1
n(x), x ∈ Γ1,

1
π

∫
Γ1

ϕ1
n(y)

∂Φ0(x, y)
∂ν(x)

ds(y) +
1
π

∂

∂ν(x)

∫
Γ2

ϕ2
n(y)

∂Φ0(x, y)
∂ν(y)

ds(y) = G2
n(x), x ∈ Γ2,

(3.6)
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for n = 0, . . . , N − 1, with right-hand sides

G1
n(x) = f1

n(x) − 1
π

n−1∑
m=0

∫
Γ1

ϕ1
m(y)Φn−m(x, y) ds(y)

− 1
π

n−1∑
m=0

∫
Γ2

ϕ2
m(y)

∂Φn−m(x, y)
∂ν(y)

ds(y)

and

G2
n(x) = f2

n(x) − 1
π

n−1∑
m=0

∫
Γ1

ϕ1
m(y)

∂Φn−m(x, y)
∂ν(x)

ds(y)

− 1
π

n−1∑
m=0

∂

∂ν(x)

∫
Γ2

ϕ2
m(y)

∂Φn−m(x, y)
∂ν(y)

ds(y).

The obtained system of boundary integral equations of the first kind is well-posed
in various spaces; the following result about solvability of (3.6) holds in Hölder
spaces [6].

Theorem 3.1 For any sequences f1
n in C1,α(Γ1) and f2

n in C0,α(Γ2), the system
(3.6) possesses a unique solution ϕ1

n in C0,α(Γ1) and ϕ2
n in C1,α(Γ2).

Note that the first integral equation in (3.6) contains kernels with a logarith-
mic singularity and the corresponding integrals exist as improper integrals. The
second integral equation in (3.6) contains a hypersingularity and this integral is
interpreted as a Hadamard finite part integral (an equivalent interpretation in this
case is to take the limiting value on the boundary of the normal derivative of the
double-layer potential).

We assume that Γ1 and Γ2 can be represented by a parameterization of the
form

Γ� = {x�(t) = (x�
1(t), x

�
2(t)), 0 ≤ t ≤ 2π}, 	 = 1, 2. (3.7)

Taking into account the parameterization of the two boundary parts we rewrite
the system (3.6) in the parametric form as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2π

2π∫
0

μ1
n(σ)H11

0 (s, σ) dσ +
1
2π

2π∫
0

μ2
n(σ)H12

0 (s, σ) dσ = G1
n(s),

1
2π

2π∫
0

μ1
n(σ)H21

0 (s, σ) dσ +
1
2π

2π∫
0

{
μ̇2

n(σ) cot
σ − s

2
+

μ2
n(σ)H22

0 (s, σ)

}
dσ = G2

n(s),

(3.8)
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where s ∈ [0, 2π], μ1
n(s) = ϕ1

n(x1(s)), μ2
n(s) =

∑n
m=0 ϕ

2
n(x2(s)), n = 0, . . . , N − 1,

and

G1
n(s) = f1

n(s) − 1
2π

n−1∑
m=0

2π∫
0

[
μ1

m(σ)H11
n−m(s, σ) + ψ2

m(σ)H12
n−m(s, σ)

]
dσ

and

G2
n(s) = f2

n(s) − 1
2π

n−1∑
m=0

2π∫
0

[
μ1

m(σ)H21
n−m(s, σ) + ψ2

m(σ)H22
n−m(s, σ)

]
dσ

with f1
n(s) = f1

n(x1(s)), f2
n(s) = f2

n(x2(s))|x′2(s)|, ψ2
n(s) = ϕ2

n(x2(s)).
Here, we have used the Maue type expansion [12, p.117] for our analogue of

the double layer potentials

n∑
m=0

∂

∂ν(x)

∫
Γ2

ϕ2
m(y)

∂Φn−m(x, y)
∂ν(y)

ds(y)=
n∑

m=0

∂

∂θ(x)

∫
Γ2

∂ϕ2
m

∂θ
(y)Φn−m(x, y)ds(y)

−
n∑

m=0

∫
Γ2

ϕ2
m(y)

n−m∑
k=0

βn−m−kΦk(x, y) 〈ν(x), ν(y)〉 ds(y), x ∈ Γ2,

where θ is the unit tangent vector to Γ2 and by 〈·, ·〉 we denote the scalar product
in IR2. Then we extract the hypersingularity in the form of a cot- weight function
(for details we refer to [6]) and extracting the logarithmic singularities give the
following representation

H��
n (s, σ) = H��

n0(s, σ) ln
4
e

sin2 s− σ

2
+H��

n1(s, σ), 	 = 1, 2, n = 0, . . . , N − 1,

where the functions H��
n0 and H��

n1 are continuous and their smoothness depends
on the smoothness of the boundaries Γ�, 	 = 1, 2.

3.2 Full discretization

For the numerical solution of the integral equations (3.8) we use a quadrature
method based on trigonometric interpolation with equidistant grid points [5]. For
this method, we choose M ∈ IN and an equidistant mesh by setting

sk =
kπ

M
, k = 0, . . . , 2M − 1,

and use the following quadrature rules

1
2π

2π∫
0

g(σ) ln
(

4
e

sin2 sj − σ

2

)
dσ ≈

2M−1∑
k=0

R|j−k| g(sk), (3.9)
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1
2π

2π∫
0

g′(σ) cot
σ − sj

2
dσ ≈

2n−1∑
k=0

T|j−k| g(sk), (3.10)

1
2π

2π∫
0

g(σ) dσ ≈ 1
2M

2M−1∑
k=0

g(sk). (3.11)

with the known weights Rj and Tj [5, 6, 12]. Note here that the first two quadra-
tures are for the integrals with logarithmic- and hypersingularities. They are
obtained by the trigonometrical interpolation of the smooth part of integrand g
and together with exact (analytical) integration.

We then use the quadrature rules (3.9)–(3.11) to approximate the three types
of integrals in (3.8) and collocate the approximated equations at the nodal points
to obtain the following recurrence sequence of linear systems⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2M−1∑
k=0

[
μ1

n,k

{
R|j−k|H11

00 (sj , sk)

+
1

2M
H11

01 (sj , sk)

}
+ μ2

n,k

1
2M

H12
0 (sj , sk)

]
= G1

n,j ,

2M−1∑
k=0

[
μ1

n,k

1
2M

H21
0 (sj , sk) + μ2

n,k

{
T|j−k| +R|j−k|H22

00 (sj , sk)

+
1

2M
H22

01 (sj , sk)

}]
= G2

n,j ,

(3.12)
for j = 0, . . . , 2M − 1, n = 0, . . . , N − 1, which we have to solve for the nodal
values μ�

n,j of the approximating trigonometric polynomial μ�
n,M in the space of

trigonometrical polynomials TM of degree M . Of course, the approximate values
G�

n,j for the right-hand side are also obtained using (3.9) and (3.11). The following
result about the convergence and error estimate for this method was recently
proved in [6]

Theorem 3.2 For Γ1, Γ2 ∈ C�+2, 	 ≥ 1, f1
n ∈ C�,β [0, 2π], f2

n ∈ C�−1,β [0, 2π]
and for a sufficiently large M , the system (3.12) has a unique solution for every
n = 0, . . . , N − 1. For the exact solution μ̃n = (μ1

n, μ
2
n) to (3.8) and approximate

solution μ̃n,M = (μ1
n,M , μ2

n,M ) ∈ TM × TM , we have the error estimates

‖μ̃n − μ̃n,M‖m,α ≤ Cn
lnM

M �−m+β−α
‖μ̃n‖�,β (3.13)

for 0 ≤ m ≤ 	, 0 < α ≤ β < 1 and some constants Ck depending only on α, β,m, 	.

3.3 Cauchy data calculation

The iterative procedure given in Section 2 for the Cauchy problem (1.1) involves
the calculation of the temperature or heat flux on the various boundary parts at
each iteration step. In order to obtain formulas for the traces of the solution and
its normal derivative on the boundaries, we apply theorems on jump relations for
single- and double-layer potentials.
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On the internal boundary Γ1 we have

∂un

∂ν
(x) = −

n∑
m=0

ϕ1
m(x) +

1
π

n∑
m=0

∫
Γ1

ϕ1
m(y)

∂

∂ν(x)
Φn−m(x, y) ds(y)

+
1
π

n∑
m=0

∫
Γ2

ϕ2
m(y)

∂2

∂ν(x)ν(y)
Φn−m(x, y) ds(y), x ∈ Γ1

and on the external boundary Γ2

un(x) =
1
π

n∑
m=0

∫
Γ1

ϕ1
m(y)Φn−m(x, y) ds(y) −

n∑
m=0

ϕ2
m(x)

+
1
π

n∑
m=0

∫
Γ2

ϕ2
m(y)

∂Φn−m(x, y)
∂ν(y)

ds(y), x ∈ Γ2.

Using the parameterization (3.7) of the boundary parts and extracting the
logarithmic singularities give the following representation

∂un

∂ν
(x1(s)) =

1
2π

n∑
m=0

2π∫
0

μ1
m(σ)

[
H̃11

n−m,0(s, σ) ln
4
e

sin2 s− σ

2
+ H̃11

n−m,1(s, σ)
]
dσ

−
n∑

m=0

μ1
m(s) +

1
2π

n∑
m=0

2π∫
0

ψ2
m(σ)H̃12

n−m(s, σ) dσ

and

un(x2(s)) =
1
2π

n∑
m=0

2π∫
0

μ1
m(σ)H̃21

n−m(s, σ) dσ −
n∑

m=0

ψ2
m(s)

+
1
2π

n∑
m=0

2π∫
0

ψ2
m(σ)

[
H̃22

n−m,0(s, σ) ln
4
e

sin2 s− σ

2
+ H̃22

n−m,1(s, σ)
]
dσ

for s ∈ [0, 2π]. Here, the kernels H̃��
n,0, H̃

��
n,1, 	 = 1, 2, H̃12

n and H̃21
n are smooth.

Thus, we can apply the quadrature rules (3.9) and (3.11).

4 Numerical examples

We present some numerical examples for the above described iterative procedure
for finding the temperature u to (1.1). To generate data, the Cauchy problem (1.1)
are synthesized with the help of the following direct mixed initial boundary value
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problem ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂g

∂t
= Δg in D × (0, T ),

g = g1 on Γ1 × (0, T ),
∂g

∂ν
= g2 on Γ2 × (0, T ),

g(x, 0) = 0 for x ∈ D,

(4.1)

for some given input data g1 and g2 that will be explicitly specified in each of
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b). The exact value of the temperature
u|Γ1×(0,T ).

Figure 2: Domain and exact solution for Ex. 1.

the two examples below. Once g1 and g2 have been specified we can calculate the
value of the trace of the solution g of this mixed problem on the external boundary
Γ2, i.e. we can select the Cauchy data in (4.1) as f1 = g|Γ2 and f2 = g2. We then
apply the procedure to reconstruct the temperature on the inner boundary Γ1 and
compare it with the given element g1. In order to not perform an “inverse crime”,
the direct problem (4.1) used to generate data is solved on a finer mesh and noise
will be added to the data as well.

Ex. 1. For the solution domain, we select a doubly connected domain with
the outer boundary being of rectangular shape with slightly rounded corners and
having parameterization

Γ2 =
{[

(cos s)100 + (sin s)100
]−0.01

(cos s, sin s), s ∈ [0, 2π]
}

and the inner boundary is a circle with parameterization (see Figure 2a)

Γ1 = {0.5(cos s, sin s), s ∈ [0, 2π]} .

We choose these boundary parts to be smooth to avoid any additional difficulties
with possible singularities near corner points. As explained at the end of Section 2,
in case of singularities the method [8] can be employed. To generate Cauchy data,
we assume that the heat flux is zero on the outer boundary Γ2, which means
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Figure 3: Numerical solution for Ex. 1.

that f2(x, t) = 0 on Γ2. The temperature on Γ2, f1(x, t), is generated from the
above direct problem (4.1) with g1(x, t) = sin(πt) and g2(x, t) = f2(x, t) = 0.
The final time T is chosen to T = 1, the thermal diffusivity is c = 1, and γL =
1.0. For the discretization in time (3.1) we take N = 9 and for discretization in
space M = 64 in the quadrature method of Section 3.2. Employing the iterative
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a). Exact data
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b). 5% noise

Figure 4: The errors ||u− ηk||L2(Γ1×(0,T )) for Ex. 1.

procedure with exact (numerical) data and initial element η0 = 0, we obtain an
accurate approximation after about 2000 iterations. The reconstruction on the
inner boundary of the temperature after 2000 iterations, that is uk|Γ1×(0,T ) = ηk,
k = 2000, is shown in Figure 3a.

We then added 5% gaussian noise to the function g1. Due to the ill-posedness
of the Cauchy problem (1.1), this error will start to magnify after a certain num-
ber of iterations. To stop the iterations, the discrepancy principle [13] is employed
generating the stopping index to be k = 190. The corresponding temperature
reconstruction is shown in Figure 3b. Adding more noise gives a less accurate ap-
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proximation as expected, however, it is still a stable and reasonable approximation.
The corresponding error plots are also given, see Figure 4.

Ex. 2. In this example we change the solution domain and the boundary
functions. Let the outer boundary Γ2 be the unit circle and as the inner boundary
Γ1, we take a peanut shaped inclusion given as (see Figure 5a)

Γ1 =
{√

cos s+ 0.25 sin s(cos s, sin s), s ∈ [0, 2π]
}
.

To generate the temperature function f1(x, t) in the Cauchy data, we take g1(x, t) =

�2
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b). The exact value of the temperature
u|Γ1×(0,T ).

Figure 5: Domain and exact solution for Ex. 2.

−t2 exp(−t) cos(x) and g2(x, t) = f2(x, t) = 0, and solve the above direct problem.
The parameters remain the same as in the previous example.

Employing the iterative procedure with exact (numerical) data and initial ele-
ment η0 = 0, we obtain also in this example an accurate approximation after about
2000 iterations. The reconstruction on the inner boundary of the temperature after
2000 iterations, that is uk|Γ1×(0,T ) = ηk, k = 2000, is shown in Figure 5.

We then added 5% gaussian noise to the function g1. Due to the ill-posedness
of the Cauchy problem (1.1), this error will start to magnify after a certain num-
ber of iterations. To stop the iterations, the discrepancy principle [13] is employed
generating the stopping index to be k = 651, which is larger than in the previ-
ous example. This is probably due to the more complicated shape of the inner
boundary Γ1 making the procedure more time-consuming. The corresponding
temperature reconstruction is shown in Figure 6. Adding more noise gives a less
accurate approximation as expected, however, it is still a stable and reasonable
approximation. The corresponding error plots are also given, see Figure 7.

5 Conclusion

After implementing the above iterative method for the Cauchy problem (1.1) for
the two examples presented we came to the following conclusions:
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Figure 6: Numerical solution for Ex. 2.
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Figure 7: The errors ||u− ηk||L2(Γ1×(0,T )) for Ex. 2.

• The combination of the Landweber procedure, the method of Rothe and
boundary integral equations give an accurate and acceptable solution to the
time-dependent Cauchy problem (1.1) for the heat equation.

• In order to obtain a stable solution of direct initial boundary value problems
for the heat equation used in the iterative procedure, the value of discretiza-
tion parameter in the spatial variable should be consistent with the value
of discretization parameter in time. This in particular implies that when
increasing the amount of points in the time discretization (3.1) we should
similarly choose more collocation points on the boundary parts.
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