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Abstract

In this study, we investigate the problem of reconstruction of a stationary tem-
perature field from given temperature and heat flux on a part of the boundary
of a semi-infinite region containing an inclusion. This situation can be modelled
as a Cauchy problem for the Laplace operator and it is an ill-posed problem in
the sense of Hadamard. We propose and investigate a Landweber-Fridman type
iterative method, which preserve the (stationary) heat operator, for the stable re-
construction of the temperature field on the boundary of the inclusion. In each
iteration step, mixed boundary value problems for the Laplace operator are solved
in the semi-infinite region. Well-posedness of these problems is investigated and
convergence of the procedures is discussed. For the numerical implementation of
these mixed problems an efficient boundary integral method is proposed which is
based on the indirect variant of the boundary integral approach. Using this ap-
proach the mixed problems are reduced to integral equations over the (bounded)
boundary of the inclusion. Numerical examples are included showing that stable
and accurate reconstructions of the temperature field on the boundary of the in-
clusion can be obtained also in the case of noisy data. These results are compared
with those obtained with the alternating iterative method.

1. Introduction

We consider the following problem:

Given the temperature and heat flux on the boundary of a planar semi-infinite
region, reconstruct the (stationary) temperature on the boundary of an inclusion
contained in the semi-infinite region.

Semi-infinite regions are common in applied engineering situations, for example,
flow and heat conduction in circular cylinders and pipes can give rise to such re-
gions. We start by formulating the above problem mathematically. Assume that
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D1 ⊂ IR2 is a semi-infinite region, for example a half-plane, with (unbounded)
boundary Γ, and let D0 be a simply connected bounded domain in IR2 with bound-
ary Γ0 ∈ C2, such that D̄0 ⊂ D1 (see Fig.1). We define D := D1 \ D̄0 and D is
the unbounded solution domain. The element ν is the outward unit normal on Γ.
The above stated problem can then be recast into the following Cauchy problem

Γ0
D0

Γ
D

��ν

Figure 1: A semi-infinite domain D and its boundaries

of finding a function u ∈ C2(D) ∩ C1(D̄) such that

Δu = 0 in D (1.1)

with the boundary conditions

u = f1 and
∂u

∂ν
= f2 on Γ. (1.2)

We only consider smooth functions f1 and f2 and it is well-known that (1.1)–(1.2)
has at most one solution, see for example [1] and [2]. Due to the importance of the
Cauchy problem, many methods have been proposed to reconstruct the solution.
Kozlov and Maz’ya [3] proposed an alternating iterative method for solving Cauchy
problems for general strongly elliptic and formally self-adjoint systems on bounded
domains, which has since been widely used in applied engineering problems. This
method was generalized and numerically investigated in Chapko and Johansson [4]
for unbounded regions.

In this paper, we propose a Landweber-Fridman procedure that solves mixed
problems of the same type throughout the iterations and compare it with the
results obtained in [4]. For bounded domains, Landweber-Fridman methods have
been applied for Cauchy problems for Helmholtz, heat equation, Laplace equation,
linear elasticity and the Stokes system, see, for example, [5], [6], [7], [8] and [9].

The outline is the following. In the next section, we introduce some further
notation and formulate the procedure. Also, convergence is discussed, see Theo-
rem 2.1. Then, in Section 3, we briefly outline a boundary integral approach for
implementing the mixed problems of the procedure. Numerical investigations are
given in Section 4, showing that stable and accurate reconstructions of the tem-
perature field on the boundary of the inclusion can be obtained also in the case of
noisy data.
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2. Formulation and convergence of an iterative procedure
for (1.1)–(1.2)

We denote, as usual, by Ck(D), where k is a nonnegative integer, the space which
consists of all functions having continuous derivatives up to order k on D. This
is a Banach space under the norm ‖f‖Ck(D) = sup0≤|�|≤k,x∈D |∂�f(x)|. The space
L2(Γ0) is the standard L2-space on the (bounded) boundary Γ0.

We introduce the following mixed boundary value problem:

Δu = 0 in D, (2.1)

u = h on Γ0,
∂u

∂ν
= f2 on Γ, (2.2)

and also the following mixed one

Δv = 0 in D, (2.3)

v = 0 on Γ0,
∂v

∂ν
= g on Γ. (2.4)

By a solution to (2.1)–(2.2) or (2.3)–(2.4), we mean a classical solution which is
uniformly bounded at infinity. Let f1 and f2 be as in (1.2). The iterative procedure
for constructing the solution to (1.1)–(1.2) is:

• Choose an arbitrary function h0. Then u0 is obtained by solving (2.1)–(2.2)
with u0 = h0 on Γ0.

• We find v0 by solving (2.3)–(2.4) with ∂v0/∂ν = g0 on Γ, where g0 = u0−f1.

• Having constructed uk−1 and vk−1, the element uk solves (2.1)–(2.2) with
uk = hk on Γ0, where

hk = hk−1 − γ
∂vk−1

∂ν
|Γ0 , γ > 0.

• Finally, vk is obtained by solving (2.3)–(2.4) with ∂vk/∂ν = gk on Γ, where
gk = uk − f1.

The procedure continues by iterating in the last two steps.

2.1. Convergence of the iterative procedure

It is clear that for sufficiently smooth data (2.1)–(2.2) respectively (2.3)–(2.4),
each has a unique bounded classical solution. Thus, we can define the operator K
by

Kh = u|Γ (2.5)
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for smooth h where u is a solution to (2.1)–(2.2) with f2 = 0. The operator K is
linear. Moreover, using Green’s formula it is possible to prove that the adjoint of
K is given by

K∗g = −∂v

∂ν
|Γ0

for v which solves (2.3)–(2.4). Also, due to the uniqueness of the Cauchy problem,
the kernel of K consists of zero only. Further, without loss of generality, we assume
that f2 is zero. Then the Cauchy problem (1.1)–(1.2) is equivalent to solving the
following operator equation

Kh = f1. (2.6)

Using the operator K and its adjoint it is straightforward to check that from the
iterative procedure

hk = hk−1 − γK∗(Khk−1 − f1).

This is the Landweber-Fridman iteration for solving (2.6); from Engl, Hanke and
Neubauer [10, p. 155]

Theorem 2..1 Assume that problem (1.1)–(1.2) has a bounded solution with trace h
on the boundary Γ0 of the inclusion. Let hk be the k-th approximate solution on
the boundary Γ0 given by the above procedure. Then, if γ > 0 is chosen sufficiently
small, and for any smooth initial data element h0

lim
k→∞

‖h − hk‖L2(Γ0) = 0. (2.7)

Note that there are estimates for the size of γ in terms of the norm of the operator
K, see [10].

We point out that different growth conditions at infinity can be introduced
and these can be captured using appropriate weighted spaces, see [11] and [12].
Thus, it is possible to extend this work to such weighted spaces employing results
from [7]. We then note that the procedure in Section 2 also works with inexact
data since it is well-known that the Landweber-Fridman method with the so-called
discrepancy principle is an order optimal regularization method, see for example
Engl et al. [10, p. 159].

3. Numerical solution of the mixed boundary value problem

In the procedure in the previous section it is needed to numerically solve two
mixed boundary value problems in every iteration step. Both are mixed Dirichlet-
Neumann problems with different boundary functions. We shall employ a potential
boundary layer approach for their. We point out that it is known that the bound-
ary value problems for the Laplace equation in semi-infinite planar domains can
be reduced to the case of classical interior problems by using appropriate confor-
mal mappings. However, since we intend to extend this work to three-dimensions
and to other differential operators, we do not apply the technique with conformal
mappings. Instead, we use a boundary layer approach described in [4]. For the
sake of completeness, we give the details for the case of the half-plane.
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3.1. Boundary integral equation approach

We search for the solution of the following mixed Dirichlet-Neumann boundary
value problem:

Δu = 0 in D, (3.1)

u = h on Γ0,
∂u

∂ν
= f on Γ, (3.2)

which is regular at infinity. The given boundary functions h and f are sufficiently
smooth. The special features of the domain D determine our numerical method for
the solution of the direct problem (3.1)–(3.2). Since D is an unbounded domain,
a very efficient numerical method is the application of the indirect variant of
the boundary integral equation approach. Therefore, the single-layer potential
approach with a Green’s function for the given semi-infinite region D1 is used. For
a half-plane the corresponding Green’s function for the Neumann boundary value
condition has the form

N(x, y) = ln
1

|x − y||x − y∗| , y∗ := (y1,−y2).

Thus, using the single-layer potential approach with the Green’s function N for
the domain D1, we can seek the solution of the mixed problem (3.1)–(3.2) in the
form

u(x) =
1
2π

∫
Γ0

ϕ(y)N(x, y) ds(y) +
1
2π

∫
Γ

f(y)N(x, y) ds(y) + α , x ∈ D, (3.3)

with an unknown density ϕ on Γ0 and a constant α. In order to satisfy the
boundedness condition at infinity, the side condition

1
2π

∫
Γ0

ϕ(y) ds(y) = 0

is imposed. As is evident from the approach (3.3), some additional conditions on
the boundary function f must be imposed:

f(x) = O(|x|−1−ε), ε > 0, |x| → ∞,

∞∫
−∞

f(x1, 0) dx1 = 0.

Thus, by the continuity of the single-layer potentials and the properties of the
Green’s function, the problem (3.1)–(3.2) can be reduced to the pair of integral
equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2π

∫
Γ0

ϕ(y)N(x, y) ds(y) + α = h(x) − 1
2π

∫
Γ

f(y)N(x, y) ds(y), x ∈ Γ0,

∫
Γ0

ϕ(y) ds(y) = 0,

(3.4)
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to be solved for the density ϕ and the constant α.
The well-posedness of the integral equation (3.4) in corresponding Hölder or

Sobolev spaces follows from classical results (see [13]).

3.2. A quadrature method for the integral equation of the
first kind

We assume that the boundary curve Γ0 is given through a parametric representa-
tion

Γ0 := {x(t) = (x1(t), x2(t)) : 0 ≤ t ≤ 2π},
where x : IR → IR2 is C2 and 2π–periodic with |x′(t)| > 0 for all t. For the
unbounded boundary part Γ we use the representation Γ := {x∞(t) = (t, 0),−∞ <
t < ∞}.

Using these parameterizations we can transform the system (3.4) into the para-
metric form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2π

2π∫
0

μ(τ)
[
−1

2
ln

(
4
e

sin2 t − τ

2

)
+ H1(t, τ)

]
dτ + α = w(t), t ∈ [ 0, 2π ],

2π∫
0

μ(τ) dτ = 0

(3.5)
with the 2π-periodic smooth kernel H1,

w(t) := h(x(t)) − 1
2π

∞∫
−∞

f̃(τ)N(x(t), x∞(τ)) dτ , t ∈ [ 0, 2π ], (3.6)

the density μ(t) := ϕ(x(t))|x′(t)| and f̃(t) := f(x∞(t)).
For the full discretization of the integral equation of the first kind (3.5), which

has a logarithmic singularity, we apply a quadrature method together with the
quadrature rule [13, 14] based on trigonometric interpolation. For this purpose,
we choose an equidistant mesh by setting ti := iπ/M , i = 0, . . . , 2M − 1, M ∈ IN
and use the quadrature rules

1
2π

2π∫
0

f(τ) dτ ≈ 1
2M

2M−1∑
j=0

f(tj),

1
2π

2π∫
0

f(τ) ln
(

4
e

sin2 t − τ

2

)
dτ ≈

2M−1∑
j=0

Rj(t) f(tj)

(3.7)

with known weight functions Rj (see [13]).
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For the numerical calculation of the integrals in (3.6) we apply the so-called
sinc-quadrature rule [15]

∞∫
−∞

f(τ)dτ ≈ h∞
M1∑

i=−M1

f(ih∞), M1 ∈ IN, h∞ =
c√
M1

, c > 0. (3.8)

After the application of the quadrature method to the integral equations (3.5)
and the quadrature rule (3.8) for the computation of the integral in the right-hand
side (3.6), we obtain the following system of linear equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2M−1∑
j=0

μ̃j

{
−1

2
Rj(ti) +

1
2M

H1(ti, tj)
}

+ α = w̃(ti) , i = 0, . . . , 2M − 1,

2M−1∑
j=0

μ̃j = 0

(3.9)

to be solved for μ̃j ≈ μ(tj) given the right-hand side

w̃(tj) := h(x(tj)) − h∞
M1∑

i=−M1

f̃(ih∞)N(x(tj), x∞(ih∞)), j = 0, . . . , 2M − 1.

A convergence and error analysis for this numerical scheme is described in
[14] in a Hölder space setting and in [13] in a Sobolev space setting. This analysis
exhibits the dependence of the convergence rate on the smoothness of the boundary
curve Γ0 and the boundary function h.

The normal derivative on Γ0 and the trace of the solution on Γ which are
required in the iterative procedure described in Section 2, have the representations
according to the properties of the single-layer potential:

∂u

∂ν
(x) = −1

2
ϕ(x)+

1
2π

∫
Γ0

ϕ(y)
∂N(x, y)
∂ν(x)

ds(y)+
1
2π

∫
Γ

f(y)
∂N(x, y)
∂ν(x)

ds(y), x ∈ Γ0,

(3.10)
and

u(x) =
1
2π

∫
Γ0

ϕ(y)N(x, y) ds(y) +
1
2π

∫
Γ

f(y)N(x, y) ds(y) + α , x ∈ Γ. (3.11)

The corresponding approximations can be obtained using the quadratures (3.7)–
(3.8).

Note here, that we can reformulate the algorithm of the numerical solution of
the Cauchy problem from Section 2 in terms of integral equations. Thus we have
the following iteration procedure:
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• Choose an arbitrary function h0 and solve by the above quadrature method
the integral equation (3.4) with h = h0 and f = f2.

• Find u0 on Γ by formula (3.11) and form the boundary function f = u0− f1

on Γ and choose h = 0 on Γ0. Again solve the integral equation (3.4) with
these boundary functions and find ∂v0/∂ν on Γ0 by formula (3.10).

• Having constructed uk−1 on Γ and ∂vk−1/∂ν on Γ0, the next approximation
is calculated as

hk = hk−1 − γ
∂vk−1

∂ν
|Γ0 , γ > 0.

• To find the function uk on Γ solve the equation (3.4) with h = hk and f = f2.
Finally, ∂vk/∂ν on Γ0 is obtained by solving the integral equation (3.4) with
f = uk − f1 on Γ and h = 0 on Γ0.

4. Numerical experiments

We shall investigate the proposed method using both exact and noisy data. Firstly
we would like to remark, that we have used the synthetic Cauchy data in all our
numerical experiments. These Cauchy data are constructed in the following way.
We solve the mixed Dirichlet-Neumann problem with boundary value conditions
u = h on Γ0 and ∂u/∂ν = f2 on Γ for given boundary function h and f2 using
the above described boundary integral equation method. Then we find the ap-
proximation of the trace of the solution on Γ according to (3.11) and use it as
the boundary function f1. To avoid an inverse crime we solve the corresponding
integral equations on a finer mesh. Secondly, in the case of noisy data, random
pointwise errors have been added to the values of u on Γ, with the percentage
given in terms of the L2-norm.

Ex. 1. We consider the ellipse shaped inclusion (see Fig.2a)

Γ0 = {x(t) = (1.5 cos t, sin t + 1.5), t ∈ [0, 2π]}.
The synthetic Cauchy data are found as described in the beginning of this section
(taking due care to avoid an inverse crime) with

h(t) = sin 2t on Γ0 and f2(x1, x2) = 0 on Γ.

Results for the reconstruction of the boundary function on Γ0 by the Landweber-
Fridman method are presented in Fig. 3 (the dashed line corresponds to the exact
solution h). The corresponding L2-error is reflected in Fig. 4. For the computa-
tions of the L2-norms we used the trapezoidal rule. The following discretization
parameters were chosen: M = 64 and M1 = 1000 and the initial guess h0 = 0 on
Γ0 and γ = 1.5. Moreover, the noise level is 5%. Note that in the case of noisy
data we illustrate the result corresponding to the minimum L2-error.

Ex. 2. Now we consider the case when the boundary curve Γ0 is the peanut
shaped curve

Γ0 = {x(t) = (r(t) cos t, r(t) sin t + 1.5), t ∈ [0, 2π]}
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Figure 2: Solutions domains in the numerical examples
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Figure 3: Reconstruction of the boundary function on the ellipse

with the radial function r(t) =
√

cos2 t + 0.25 sin2 t (see Fig.2b). The synthetic
Cauchy data are found as described in the beginning of this section with

h(x1, x2) = x1−0.1(x2−1.5) on Γ0 and f2(x1, x2) = x1 exp(−x2
1) on Γ.

Results for the reconstruction of the solution on Γ0 by the Landweber-Fridman
method with γ = 1 and the other parameters as in the previous example are
presented in Fig. 5 and L2 - errors in Fig. 6.

5. Conclusion

Based on our numerical experiments we come to the following conclusion:

• The Landweber-Fridman procedure gives an acceptable reconstruction of the
temperature on the boundary of the inclusion both for exact and noisy data.
We note that the use of the discrepancy principle as a stopping rule, tended
to terminate the iterations too early.
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Figure 4: L2 - errors for the ellipse inclusion
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Figure 5: Reconstruction of the boundary function on the peanut

• The alternating method proposed in [4], which involves the solution of two
different mixed problems in every iteration step (each of them solved by the
above boundary integral equation method), is more preferable as compared
with the Landweber-Fridman iterations. For example, after only 300 itera-
tion steps with the alternating method the reconstruction is more accurate
than the reconstruction obtained with the Landweber-Fridman procedure
after 1000 steps.

Similar comparisons but for bounded domains are reported in [16].
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