
On the structural repertoire of pools of short, random

RNA sequences

Michael Stich, Carlos Briones, and Susanna C. Manrubia∗

Centro de Astrobioloǵıa (CSIC-INTA),
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Ctra. de Ajalvir km. 4
28850 Torrejón de Ardoz, Madrid, Spain

January 9, 2008

∗ Corresponding author. Email: cuevasms@inta.es; Tel.: +34 915 206 425; Fax: +34 915
206 424

Abstract

A detailed knowledge of the mapping between sequence and structure spaces in pop-

ulations of RNA molecules is essential to better understand their present-day functional

properties, to envisage a plausible early evolution of RNA in a prebiotic chemical environ-

ment or to improve the design of in vitro evolution experiments, among others. Analysis

of natural RNAs, as well as in vitro and computational studies, show that certain RNA

structural motifs are much more abundant than others, pointing out a complex relation

between sequence and structure. Within this framework, we have investigated compu-

tationally the structural properties of a large pool (108 molecules) of single-stranded,

35 nt-long, random RNA sequences. The secondary structures obtained are ranked and

classified into structure families. The number of structures in main families is analytically

calculated and compared with the numerical results. This permits a quantification of the

fraction of structure space covered by a large pool of sequences. We further show that

the number of structural motifs and their frequency is highly unbalanced with respect to
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the nucleotide composition: simple structures such as stem-loops and hairpins arise from

sequences depleted in G, while more complex structures require an enrichment of G. In

general, we observe a strong correlation between subfamilies – characterized by a fixed

number of paired nucleotides – and nucleotide composition. Our results are compared to

structural repertoire obtained in a second pool where isolated base pairs are prohibited.

Keywords: RNA motif, genotype-phenotype map, RNA folding, structural family, RNA
world
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1 Introduction

The distribution of RNA structural motifs within pools of random sequences is extremely

heterogeneous, as theoretical studies and observation of natural secondary structures demon-

strate (Fontana et al., 1993; Schuster et al., 1994). Knowledge of the relationship between

sequence and structure space has a theoretical and practical relevance, among other reasons

because structural diversity conditions the spectrum of different functionalities present in –

and thus selectable from – a random pool of sequences (Lorsch and Szostak, 1994). The role

played by parameters such as the sequence length (Sabeti et al., 1997) or the nucleotide com-

position (Knight et al., 2005; Kim et al., 2007) has been addressed as a way of modifying the

functional diversity of random molecular ensembles. Two frequent goals of those studies are

to maximize the structural diversity present in the pool and to enhance the presence of certain

structures able to perform new functions (Wilson and Szostak, 1999; Gan et al., 2003).

Every RNA sequence can be mapped onto a secondary structure that corresponds to its

minimum free energy folded state. The first mathematical studies on this correspondence read-

ily revealed the huge degeneracy existing between the set of all sequences – genotype space, of

magnitude 4n if n denotes the length of the sequences – and the set of their possible secondary

structures – a first approximation to the phenotype space (Stein and Waterman, 1978; Water-

man, 1978). Calculations based on the compatibility between sequences and structures yield

estimates of the average number of sequences that fold into a secondary structure. If isolated

pairs are allowed in the secondary structure, there are, on average, about 1.402 n3/2 1.748n

sequences of length n folding into each possible secondary structure (Stein and Waterman,

1978). However, this huge number is of little practical relevance in the light of empirical

observations and computational results with random pools: the so-called common structures

are typically many orders of magnitude more frequent than rare structures (Schuster et al.,

1994; Grüner et al., 1996a; Joyce, 2004). While common structures are easily obtained, even

in small populations, and do not depend strongly on the nucleotide composition, sequences
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folding into rare structures often need to be designed, for instance by means of inverse folding

algorithms (Schuster et al., 1994; Hofacker et al., 1994).

A main concern of experimentalists seeking new ribozyme or aptamer activities is how

to deviate the structural composition of the initial pools in the in vitro experiments from

average expectations, thus enhancing for instance the presence of rare structures, or forcing

the ensemble to be structurally biased towards specific common structures. One approach

has been to maximize the length of the sequences in the starting pool in an attempt to

increment the number of different motifs available (Bartel and Szostak, 1993). However,

quantitative analyses have shown that long sequences offer little advantage to isolate simple

motifs, and their effect might be even inhibitory (Sabeti et al., 1997). More recently, attention

has focused on how the probability to obtain a fixed structural motif depends on the nucleotide

composition (Knight et al., 2005; Kim et al., 2007). Interestingly, though increases in the size

of the initial pool should imply an increase in the amount of different structures present, the

dependence of structural diversity on population size has been rarely addressed. Furthermore,

computational results indicate that the number of different major topological motifs present

in the pool depends very weakly on its size (Gevertz et al., 2005). Modular evolution has

been suggested as a plausible way to generate complex structures in a constructive way. This

approach can be implemented either through the isolation of simple modules from random

populations of short sequences, their directed modification and eventual combination (Sabeti

et al., 1997), or as the selective evolution of populations towards specific modules, together with

their ligation in suitable environments (Manrubia and Briones, 2007). The latter approach is

of particular relevance at prebiotic stages, when emergence of biochemical function appeared

in an unsupervised way.

Though our knowledge of the genotype-phenotype map has expanded largely in the last

three decades, our understanding still has to be improved in order to comprehend the multiple

implications it has on evolution, on setting the conditions for further selection, and on the
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dynamic behavior of highly heterogeneous molecular populations. This is the main motivation

to undertake the study here presented, where we fold 108 random sequences of length n = 35 nt

and classify the obtained structures into main structure families. We find correlations between

the frequency of certain structure families and the nucleotide compositions, and conclude that

rare structures are to be found far from the average composition. Hence, they could be

enhanced by tuning the fraction of each nucleotide in the sequences. One of our main results

concerns the high fraction of sequences folding into topologically simple structure families:

most abundant motifs resulting from random polymerization could constitute simple building

blocks able to combine into more complex structures.

2 Results

2.1 Distribution and classification of secondary structures with iso-

lated base pairs

In this Section, we describe the results of the folding of 108 RNA molecules of length 35 nt

consisting of random linear sequences composed of the four types of nucleotides A, C, G, and

U. In this first part of the study we allow the presence of isolated base pairs in the secondary

structure.

2.1.1 Frequency distribution

The 108 sequences yielded 5163324 different secondary structures. Since many sequences fold

into the same structure, it is of fundamental interest to study how sequences are distributed

among structures. These results are summarized in Fig. 1. There are a few hundred structures

which are very abundant (with more than 104 sequences folding into each of them) and a few

million structures that appear only once or very few times. Although for a much smaller pool

of random sequences, this has already been described before and had led authors to propose

a generalized Zipf’s law to describe the curve (Schuster et al., 1994; Grüner et al., 1996a;

Schuster and Stadler, 1994; Tacker et al., 1996). Between the two extreme regimes, the curve
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in Fig. 1 shows a bump for intermediate ranks (around 3 × 104). Open structures, with rank

0, are not displayed in the figure.

FIGURE 1 NEAR HERE

2.1.2 Classification of structures

In Table 1 we show a classification of the observed 5163324 different secondary structures into

21 families. The classification is obtained according to the number of basic structural motifs

found in the structures (see Methods). All structures that are not open consist at least of one

stack and one hairpin loop.

TABLE 1 NEAR HERE

The first part of the table contains the structures with one hairpin loop (H=1). From a

topological viewpoint, the simplest secondary structure is the stem-loop (SL), composed of

exactly one hairpin loop and one stem. Next in complexity comes the hairpin (HP) structure,

formed by two stacks, one hairpin loop and one bulge or interior loop. It is important to

note the distinction between hairpin structure and the basic structural motif called hairpin

loop. Topologically, a hairpin structure can be interpreted as a stem-loop where the stack has

been interrupted by a bulge or interior loop. We can define higher-order hairpin structures

where two of more interior loops or bulges are present (denoted as HP2 to HP6, i.e., with

up to 6 interior loops and/or bulges and 7 stacks). All the structure families with H=1 have

one hairpin loop and are therefore topologically linear. We also show in the table the most

abundant structure belonging to a given structure family and its frequency. The representative

of the stem-loop family is also the most abundant structure found at all.

The next class of structure families is characterized by having two hairpin loops, H=2. In

particular, the double stem-loop family (DSL) is characterized by two stems and two hairpin

loops. Double stem-loops can be viewed as consisting of two independent stem-loops. Similar

to above, we can now allow the stacks being interrupted by interior loops and bulges and in
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this way obtain higher-order DSLs. Within the studied sample, we find DSLs up to order 5,

although higher-order families turn out to be very sparsely populated. For the classification,

we do not distinguish in which of the two stacks the interior loops or bulges are present.

Also formed by two hairpin loops, but with the presence of a multiloop and an additional

stack, we find the hammerhead (HH) family. A typical structure of this family has two

stem-loops that instead of having ends belonging to different stacks, have the 5’ and 3’ ends

connected to an additional stack. However, sequences folding into HH are relatively rare,

and in particular higher-order hammerheads, i.e., HH with interior loops or bulges, are only

present in very small numbers.

The next class of families has three hairpin loops, H=3. The case without additional loops

corresponds to the triple stem-loop (TSL) family. Also, hammerhead-like structures are found,

i.e., structures with a multiloop, which constitute the THH family. For both, TSL and THH,

higher-order families with interior loops or bulges are possible. Again, we do not distinguish

in which of the stacks the interior loops or bulges are present. In our pool, structures with

H=3 are very rare. We also find a structure comprised of four stem-loops, called quadruple

stem-loop (QSL). Its appearance is purely anecdotic since there is only one sequence of the

sample folding into this H=4 class of structures.

For the SL family, the most frequent structure has 4 base pairs, a hairpin loop of 4 nt, and

a dangling end of length 23 nucleotides at the 3’ end. The next frequent structures in this

family have loops of 3 or 4 nt and stacks of length 4 or 5 bp. In general, the stack of the most

abundant structures is located at or very near the 5’ end. If we compare the most abundant

structure of the SL family with the most abundant structures of the HP and the higher-order

HP families, we see that the hairpin loop has always a size of 4 nt and that there is a trend

towards shorter stacks, although the total number of paired bases increases. This is due to the

fact that smaller loops are unstable and less likely to be minimum free energy structures. Also,

higher-order HPs require more stacks. However, short stacks are again relatively unstable and
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hence the overall number of base pairs increases. The preference for a hairpin loop of 4 nt is

also observed in the most abundant representative of other structure families (see Table 1 and

Fig. 2).

2.1.3 Sequence and structure frequencies

The fact that the number of sequences folding into the most abundant structure of a given

family decreases dramatically as we go to higher-order families within a class should also be put

into the context of the number of possible (and actually realized) structures constituting the

family. Theoretical calculations show that this number increases dramatically as the number

of basic structural motifs characteristic for the family grows (more on this below). For families

with many structures appearing at low frequencies, the sampling may not be sufficiently good

and the displayed structure is not necessarily the most abundant structure of the family for

larger pools.

TABLE 2 NEAR HERE

In Table 2, we display the main results of the extensive folding carried out. The first line of

Table 2 denotes the open structures. All those sequences that do not fold – and that therefore

have zero free energy – are formally counted as a single structure. The next line represents

the stem-loop structures. We see that 20% of all sequences fold into a SL. Since the SL family

has a relatively low number of different structures, many of them are found repeatedly: on

average, there are approximately 8600 sequences per SL structure.

The third line gives the respective numbers for the hairpin structures. Around 37% of all

sequences fold into a hairpin, revealing that the HP structure is the most probable structure to

be formed by a random RNA sequence of length 35 nt. Compared to the 2330 SL structures,

there are many more HP structures (182569 in the sample) and therefore we have 204 sequences

per HP structure on average. The next family, hairpins of order 2 (HP2), represent the second-

largest group with respect to folded sequences: more than 22% of all sequences fold into a
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structure of this family. Interestingly, there are ten-fold more structures belonging to this class

than to HP, roughly 1.6 million. This makes the HP2 family the second most represented family

in terms of found structures. It is only outweighed by the HP3 family, which with 4.6% of the

sequences accumulates 34% of the found structures, yielding an average of only 2.6 sequences

per structure. The remaining HP structure families are less densely populated and are not

discussed in detail here.

The families with two hairpin loops, DSLs and HHs, deserve a short discussion. We see

that the double stem-loops are relatively frequent (7.8% of all sequences), while the family

encompasses a relatively low number of different structures (82554). Therefore, the ratio of

sequences to structures is relatively high, 94. The other DSL families are less densely popu-

lated. The hammerhead families are already rare in sequences although they still contribute

considerably to structure diversity: 0.5% of the sequences fold into 4.6% of the structures.

Sequences folding in structures with three or four hairpin loops (TSL, THH and QSL families)

are very rare.

The last line of Table 2 summarizes the results for the complete pool, with an average of

about 19 sequences per structure. The average free energy is −5.23 kcal/mol (−5.34 kcal/mol

if open structures are disregarded). The four nucleotide types are equally distributed in the

pool of folded sequences.

From the presented results we can draw some preliminary conclusions. First, the most

abundant families in terms of folded sequences are HP, SL, HP2 and DSL: 87.8% of all se-

quences fold into structures belonging to one of these families. However, these families are not

very diverse in terms of number of structures, representing only 36.6%. If we neglect the HP2

family, the difference becomes even more obvious: 65.2% of the sequences fold into 4.2% of

the structures. Second, roughly 99.5% of the sequences fold into linear structures according to

the classification of Ref. (Gan et al., 2003), in qualitative agreement with the results displayed

in Fig. 5 of Ref. (Gevertz et al., 2005). Third, simple structures are the most frequent ones:
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every family of order k + 1 is less abundant in sequences than the preceding one, of order k.

The only exception would be hairpins being more frequent than stem-loops, if the former were

regarded as “higher-order stem-loops”. Fourth, the number of obtained structures within a

family – at least for the SL/HP and DSL families, where the statistics is very good – increases

to a maximum value as the order increases, and then decreases. This can be explained by

the fact that low-order families are composed of relatively few different structural modules

and have therefore few representatives. Families with an intermediate number of loops have

already many different configurations which are actually found in considerable numbers. How-

ever, high-order families are less likely to be realized since they require many short stacks for

the molecule length considered.

2.2 Distribution of secondary structures prohibiting isolated base

pairs

We carried out a new set of simulations, folding the same 108 molecules without permitting

isolated base pairs in the secondary structures. It is known that isolated base pairs are unstable

with respect to thermodynamic perturbations of the folded structure and do not contribute

strongly to the free energy, so this situation might be more suitable to represent an actual

experimental pool.

TABLE 3 NEAR HERE

The fundamental result is that instead of more than 5.2 million different structures, we only

find 2.3 million. Therefore, in the simulations described above, 2.9 million structures actually

contained at least one isolated base pair. The dashed curve in Fig. 1 shows the frequency-rank

relation for this case. Since we still have 108 sequences, but less structures, some structures

are now found more often. Hence, for low ranks, the dashed curve lies above the solid one and

then drops. Nevertheless, the main qualitative features of the solid curve are again found: a

flat plateau for low ranks, indicating frequent structures, a bump for intermediate ranks, and

a steadily falling tail.
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FIGURE 2 NEAR HERE

Table 3 gives the main numerical results of the simulation. The first observation is that we

have not only considerably fewer structures, but also less structure families. In particular, there

are no representatives found for the HP6, DSL5, TSL3, THH2, and QSL families, all high-order

families that were populated only by – in total – 50 sequences in the simulations permitting

isolated base pairs. Prohibiting isolated base pairs restricts the possible folding results, i.e.,

the number of possible structures. We find that the number of different structures found has

decreased for all families. As an example, Fig. 2 displays the most abundant structures in

two representative families of the hairpin class (HP and HP5) in the two situations analysed,

that is, permitting and prohibiting isolated base pairs in the structure. With respect to the

distribution of the sequences within the families, we observe that the higher-order families are

much less populated than before whereas families with simple structures are now more often

found: SL, HP and DSL families contain more sequences than before. The strong decrease

of the sequences folding into HP2 structures and the simultaneous strong increase of both

HP and SL indicate that there is probably a continuous shift from higher-order structures to

lower-order ones, i.e., some HP3 now fold into HP2, some HP2 now fold into HP (or directly

into SL), and also some HP fold now into SL. The number of open structures must increase,

although it does it only slightly, from 2.1% to 2.4%.

Trends in the energetic behavior are less clear: avoiding isolated base pairs turns into an

increase of the average free energy for some structure families (SL, HP, HP5, DSL, DSL2,

DSL4 and HH) but into a decrease for the rest. If the minimum free energy structure of a

given sequence has isolated base pairs, the prohibition of the latter must lead to a structure

with a higher (or equal) free energy. However, since sequences generally switch their family

as isolated base pairs are prohibited, the average free energy need not necessarily increase for

a given family (although it does of course for the total pool). The average free energy is now

−5.11 kcal/mol (−5.23 kcal/mol if open structures are disregarded).
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2.3 Rank distribution of structure families and nucleotide compo-

sition

In this section we describe how the structures belonging to each family are distributed in the

frequency-rank diagram. Figure 3(a) shows the corresponding results for structures where

isolated base pairs are permitted. The numbers of all structures within a specific rank interval

have been summed up. The solid curve contains all sequences and corresponds to the solid

curve from Fig. 1.

FIGURE 3 NEAR HERE

We clearly see that the most frequent structures are all stem-loops. Since practically no

structures of other families are present for low ranks, the SL curve coincides with the full curve

there. For ranks larger than 103, stem-loops become rare and the corresponding curve decays

rapidly. If we look at the HP curve, we see significant contributions only for intermediate

ranks. The curve increases for ranks around 103, reaches its maximum, then practically

coincides with the full curve for ranks between 4×103 and 104 and decays smoothly for higher

ranks. It is remarkable to observe that the bump of the total curve for intermediate ranks to

a good approximation coincides with the maximum of the HP curve and the region where SL

and HP families contribute equally to the total number of structures, whereas other families

are practically absent: stem-loops are already relatively infrequent while hairpins do not yet

dominate. As the rank increases, other families successively appear and start to contribute

significantly. In particular, DSL structures are the second-most frequent structures for ranks

in the low 104. Structures of the HP2 family start to contribute for ranks around 104 but

become important for ranks 105 to low 106. Structures of the HP3 family – the most frequent

in terms of structures in our sample – start to contribute not before ranks around 105, although

they dominate the distribution for ranks around 106. Finally, hammerhead structures show

a maximum in their modest contribution for ranks around 106. In summary, the distribution

curve is dominated by structures of a single family only within two regions – by SL for ranks
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up to 103 and by HP for ranks between 4×103 and 104. For higher ranks, the hairpin families

HP2 and HP3 are the main contributors.

It is worth comparing these findings with curves describing the relative content of the

different types of nucleotides, shown in Fig. 3(b). We observe that all frequent structures, for

ranks up to 103 and hence dominated by SL structures, arise from sequences depleted in G,

with a mean density around 21%. The shortage of G is balanced by a significant increase in

U and A, around 26% and 27%, respectively. Although possibly increased slightly compared

to 25%, the fraction of C remains rather constant. However, as HP structures appear in ranks

around 103, the curve for G increases strongly, while the curve for A decreases. Also C and U

decrease, but only slightly.

2.4 Analytical results

Given a structure family as defined above, it is interesting to calculate exactly the total number

of different possible structures within. To this end, one should know the structural constraints

or elements involved, such as hairpin loops, internal loops or stacks, and calculate the different

ways in which the n nucleotides in the linear sequence can combine to yield those elements.

Our analysis of the structures obtained reveals that the number l of pairs in a structure is

strongly correlated with the composition of a sequence. This is the reason why we calculate

the number of different structures corresponding to sequences of length n forming structures

with l base pairs, irrespectively of the size of loops (as long as they are formed by at least

three nucleotides) and length of open ends. This combinatorial calculation does not consider

energetic restrictions and can neither estimate the probability that a random sequence folds

into each of the possible secondary structures. We have carried out this analysis for the four

most abundant families obtained in the computational studies: SL, HP, HP2, and DSL.

All stem-loop structures have a terminal hairpin loop and a compact stack of size l. The

most abundant SL structure, as represented in Table 1, has l = 4. In general, the number
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SSL(n, l) of stem-loop structures that can be formed with sequences of length n and stacks of

length l, with a size of the hairpin loop equal or larger than 3, is

SSL(n, l) =
1

2
(n − 2l − 1)(n − 2l − 2), (1)

with l ≥ 1. To calculate the corresponding number for the HP family, it is necessary to take

into account that at least one unpaired nucleotide interrupts the stack. In general,

SHP(n, l) = AHP(l)(n − 2l + 4)(n − 2l − 1)(n − 2l − 2)(n − 2l − 3), (2)

and l ≥ 2. The coefficient AHP(l) depends on the minimum number of pairs required to form

a stack. In the present case, we accept that stacks can be formed by a single pair, and get

AHP(l) = (l − 1)/24. When restrictions are imposed on the length of stacks, this is the only

coefficient that is modified in the expression for the total number of possible structures with

l pairs (see below). A similar calculation yields the number of structures belonging to the

double stem-loop family DSL, formed by two ligated stacks that enclose hairpin loops,

SDSL(n, l) = ADSL(l)(n − 2l − 2)(n − 2l − 3)(n − 2l − 4)(n − 2l − 5), (3)

with ADSL(l) = (l − 1)/24 and l ≥ 2. Finally, the calculation for the family HP2 is slightly

more involved, since a second internal loop or bulge has to be taken into account. The final

result is

SHP2(n, l) = AHP2(l)(n−2l+10)(n−2l+3)(n−2l−1)(n−2l−2)(n−2l−3)(n−2l−4), (4)

with AHP2(l) = (l − 1)(l − 2)/1440 and l ≥ 3.

Just for comparison, consider the total amount of possible structures with eight pairs in

each of those families, that is n = 35 and l = 8. While there are only SSL(35, 8) = 153 stem-

loops with these characteristics, one finds SHP(35, 8) = 32844 simple hairpins, SDSL(35, 8) =

16660 structures of type double stem-loop, and a much larger amount SHP2(35, 8) = 1366596

of hairpins with two internal loops (or bulges). In our simulation, all of the 153 stem-loops
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are found, 25426 structures in the HP family, 11101 of type DSL, and 349193 structures in

the HP2 group.

The ratio between the number of different structures found in our computations and the

number of possible structures as obtained from the previous equations is displayed in Fig. 4

for each of those four families as a function of the number of pairs in the structure. We see

that structures with a small number of base pairs (low l) are rare in the random pool, due to

their small folding energy. The space of structures is better sampled for intermediate values of

l, where the degeneracy between genotype and phenotype is higher: there are more sequences

corresponding to each structure in that range than for extreme values of l. In fact, the curves

decrease at high l despite the fact that structures with many base pairs are more stable. For

large l, the sampling becomes insufficient as we consider families with more structural modules

(see Table 1) as reflected in the ordering of the curves.

FIGURE 4 NEAR HERE

2.5 Relationship between structure, minimum free energy, and se-

quence composition

We have observed a strong correlation between the appearance of certain structural elements,

notably the number of base pairs in a secondary structure, and two quantities of experimental

relevance: the composition of nucleotides in the sequence and the minimum free energy of

the folded molecule. Consider as an example the four different subfamilies (with l = 3, 5,

7, and 9 base pairs) within the SL family represented in Fig. 5. Figure 5(a) illustrates the

correlation between the proportion of each type of nucleotide and the number of pairs formed,

while Fig. 5(b) demonstrates the correlation between the energy of each secondary structure

and the average composition of the sequences folding in that structure. Each point in the

plots corresponds to the properties of one structure in the subfamily, and composition and

energy are averaged over all the sequences that have that secondary structure as minimum free

energy structure. The dispersion observed is due to other structural elements (loops at the

15



end of the stack and dangling ends) that differ among structures and contribute in different

ways to determine the energy and the composition of the folded state. The stack of the most

abundant SL structures is placed, independently of its length, very close to the 5’-end of the

sequence. This possibly reflects the asymmetry of the energy contributions of dangling ends

in the folded structure (Hofacker et al., 1994). Long dangling ends have actually a stabilizing

effect that has been experimentally observed in RNA-RNA duplexes, where they increase the

stability of the structure due to the cooperative stacking interactions among the unpaired

nucleotides (Ohmichi et al., 2002). In general, the strong correlations here observed with the

number of base pairs weaken as more structural elements appear in the structure.

FIGURES 5 AND 6 NEAR HERE

This fact can be already observed when we compare two families in our classification, take

SL and HP2 as an example. Consider the average values of the composition and the energy

as a function of the number of pairs as represented in Fig. 6. In Fig. 6(a) the average energy

of structures in each family decreases as the number of pairs in the structure increases, as

expected. However, the decrease is stronger for the SL family, since the number of unpaired

elements that contribute positively to the total energy (one hairpin loop and the open ends)

is smaller than the number contributing to hairpins of the class HP2 (one hairpin loop, two

internal loops or bulges, and the open ends). Correlations between differences in composition

and the number of pairs also weaken: while the ratio [A]/[G] varies between 1.7 and 0.6 for the

SL family, the interval shrinks to 1 - 0.65 for the HP2 family. The differences that we observe

here are thus relevant for small molecules or motifs, and disappear as the length of sequences

increases and more structural elements can contribute to structures with a fixed number of

pairs. In Fig. 6(b) we display how the mean free energy decreases as the number of base pairs

increases.
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2.6 Other structural constraints and variations in the sequence

length

The analysis above has been also carried out under the condition that isolated base pairs are

forbidden, so that a stack is formed at least by two consecutive pairs. As discussed, this is a

more biologically meaningful – though topologically less rich – situation: it enormously reduces

the total number of possible secondary structures and eliminates in particular rare structures

with a large folding energy that are not found in practice. The qualitative results obtained

do not strongly depend on this structural constraint, though the space of possible structures

is better sampled in this case (see Fig. 7). One can repeat the calculation of the number of

possible structures in each of the four most abundant families and obtain the new coefficient

A(l) for each family, the rest of the expression remaining unchanged. The calculation yields

AHP(l) = ADSL(l) = (l − 3)/24 (now with l ≥ 4, since there are two stacks of length two at

least) and AHP2(l) = (l − 4)(l − 5)/1440 (with l ≥ 6).

FIGURE 7 NEAR HERE

There are theoretical results that yield the total exact number of possible compatible

secondary structures for sequences of length n when different structural constraints are con-

sidered (Stein and Waterman, 1978; Hofacker et al., 1998; Liao and Wang, 2004). Those values

can be compared with the number of structures measured in our simulations to better com-

prehend the degree of sampling of the structure space. For length n = 35 nt, the total number

of compatible secondary structures is 1.214×1010 if single pairs are allowed, and this quantity

decreases to 1.572×107 under the condition that a stack is formed at least by two consecutive

pairs. The difference is huge and reveals that almost 99.9% of structures in the first case are

unstable from a thermodynamic viewpoint due to the presence of isolated pairs. In the pool

where we have prohibited isolated base pairs, we have identified about 15% of all possible

structures. Taking into account that we have only sampled the tiny fraction of 10−13 of the

sequence space, this is a remarkably high content. On the other hand, this again talks about
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the difference between common and rare secondary structures: actually, if all the structures

without isolated base pairs would be equally possible given a random sequence, our pool of

108 sequences should cover practically all the structure space, with about ten sequences per

structure. This is however not the case: common structures become dominant as the length

of the sequence grows, and are the only structures found asymptotically (as n → ∞); rare

structures are obtained from a fraction of sequences that tends to zero as the length of the

sequence diverges (Grüner et al., 1996a). As a consequence, the repertoire of structures ob-

tained in a large enough pool of sequences is very likely a good representative of structures

with a functional and evolutionary significance.

3 Discussion

The structural space of RNA is vastly smaller than its sequence space. In order to deepen

into the features of such degeneracy, we have folded in silico two pools of 108 random RNA

sequences of length 35 nt and classified the obtained secondary structures – about 106 – in

roughly 20 structure families (see Methods and Table 1). We found that hairpins are the

most probable structures formed by a random RNA sequence of this length. In fact, more

than half of the sequences in our pools fold in structures belonging to HP and HP2 families.

The third most probable structural conformation is the stem-loop. All together, about 80%

of the sequences fold into one of these preferred structure families, irrespectively of whether

isolated base pairs are allowed or prohibited (Tables 2 and 3). Therefore, our results support

the hypothesis that hairpins and stem-loops are likely preferred building blocks of functional

RNA structures.

The fact that there exist common and rare structures in a pool of random sequences

is well-known and is described by the frequency distribution of structures. The frequency-

rank diagram (Fig. 1) qualitatively recovers the curves obtained by others before (Schuster

et al., 1994; Grüner et al., 1996a; Schuster and Stadler, 1994; Tacker et al., 1996) with the
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characteristic bump for intermediate ranks. However, our simulations represent a much larger

pool and reveal that the shape of the curve is directly related to the presence of different

structure families (Fig. 3(a)). In particular, we document that the intermediate bump is due

to the switch from stem-loops to simple hairpins as most abundant structure family.

From an evolutionary point of view it is plausible that, at early stages of the RNA world,

the repertoire of structures yielded by pools of the kind here analyzed contained an abundance

of common structures that constituted the raw modular material for further biochemical evo-

lution (Manrubia and Briones, 2007). Currently, certain simple structures are found in RNA

molecules with a probability above random expectation, presumably revealing that their pres-

ence was enhanced through evolution and selection. This is the case with the two most

abundant families as here identified. Hairpin motifs are very abundant in nature (Hendrix

et al., 2005) and have been described as essential secondary structures of RNA that guide its

folding process in vivo, modulate gene expression in both RNA and DNA genomes, protect

messenger RNA from degradation, serve as a recognition motif for certain RNA binding pro-

teins or act as a substrate for enzymatic reactions (Svoboda and Di Cara, 2006). In turn, the

stem-loop is a basic motif present in all the higher-order RNA structures (Gan et al., 2003),

and it has been described to be more abundant and stable in non-coding regions of prokaryotic

genomes than expected by chance (Petrillo et al., 2006). Recently, genome-wide surveys for

non-coding RNAs in long vertebrate genomes have proven that a large fraction of the small

ncRNAs fold in structures belonging to the HP and SL structure families (Pedersen et al.,

2006; Backofen et al., 2007).

Roughly 2% of the sequences in our pools remain as open structures (Tables 2 and 3).

Regarding its nucleotide composition, these sequences have an [A]/[G] ratio higher than 2.2,

far above the value obtained for any of the folded structure families. The preference for A-

rich or G-depleted sequences in unfolded regions of RNA has been described in nature, in

poly-A tracks of mRNAs, in ribosomal RNAs, and in locally unfolded RNA regions prone to
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interact with other intra- or intermolecular RNA regions as well as with some RNA-binding

proteins (Khanam et al., 2006; Gutell et al., 2000; Hackermüller et al., 2005; Hiller et al.,

2006). Also of interest, although not surprising due to the basic thermodynamic parameters

used in RNAfold (see Methods), our results show the clear preference for hairpin loops 4 nt

long in all structure families. In fact, the most abundant structure of each family shows one

or more of these ubiquitous tetraloops (see Table 1), whose stability and abundance has been

described in extant RNA molecules (Hendrix et al., 2005; Jaeger et al., 1989; Moore, 1999;

Zorn et al., 2004).

Apart from their relation with RNA topologies currently found in nature, our results can

be also useful for the design and optimization of RNA in vitro evolution experiments. Re-

sults from different experimental approaches show that evolved aptamers (Carothers et al.,

2004; Lee et al., 2004) or small catalytic RNAs (Puerta-Fernández et al., 2003; Lilley, 2005)

tend to have simple topologies, with linear or low branched motifs analogous to those pref-

erentially obtained here. Our results also show that the amount and frequency of structural

motifs is highly unbalanced with respect to the abundance of the four nucleotides in the pool

(Fig. 3(b)). In particular, all frequent structures (practically being simple stem-loops) are

formed by sequences with – on average – a significant low content in G.

The dependence between structural complexity and composition can be exploited in order

to force the appearance of motifs with certain structural – and thus functional – properties. In

particular, we observe a correlation between the number of base pairs in a secondary structure

and the composition of a typical sequence folding into that structure. Rare structures are

characterized in our pool by having a larger number of structural elements. This is only

possible in structures with several stacks (implying a relatively low number of base pairs in

the stacks and an abundance of loops) that thus have to be highly stable: this is achieved

by lowering the content in U, and increasing the content in G, to improve stability. Actually,

other authors have analysed how a bias in composition enhance or impair the presence of
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structural motifs of interest (Fontana et al., 1993; Kim et al., 2007; Gevertz et al., 2005), with

the goal of optimizing the chance of finding specific functions (Knight et al., 2005; Knight and

Yarus, 2003).

We also have studied, for the stem-loop structure family, how the total length of the stacks

correlate with the composition of the sequence (Fig. 5). We see that, for fixed A, the more G

is present in the sequence, the more base pairs are formed. Conversely, for a fixed amout of

G, the more A is present, the less base pairs are formed. Also, we observe that – beyond the

fact that the number of base pairs determines to a large extent the folding energy (Fig. 6(b))

– the more G is present, the lower the energy for a given number of base pairs. The variation

of the energy according to the G content may be of the same order as the total folding energy.

Subsequently, we have investigated how the ratio [A]/[G] depends on the number of base pairs

(Fig. 6(a)). We see for the most common structure families (representing almost 90% of the

sequences) that the smaller this ratio, the more base pairs are formed.

Our results are in agreement with the common knowledge about the contributions of dif-

ferent types of nucleotides, and the dependence of the number of base pairs to the folding

energy, as derived from experiments and reflected in the parameter values used in RNAfold.

Nevertheless, the results shown here go beyond a qualitative validitation of the folding pro-

gram since they represent statistically significant data obtained from large-scale simulations

of random sequences. Also, the use of the classification in structure families introduced here,

helps to sharpen the notion of common vs rare structures, or rather common vs rare structure

families. Much work performed in the 1990s on the statistics of RNA secondary structures

and the sequence-structure map focuses on interesting aspects not discussed here, e.g., the de-

pendence on the length of the molecule, structure of neutral networks, shape space covering,

landscapes and dependence on folding algorithms (Schuster et al., 1994; Grüner et al., 1996a;

Schuster and Stadler, 1994; Tacker et al., 1996; Grüner et al., 1996b).

We have complemented our computational results by analytic calculations of the number of
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possible structures within a given family. It turns out that for the common structure families

a lot of structures are actually found in the compuational folding (Figs. 4 and 7). This is

particular true if isolated base pairs are prohibited, where the quality of the sampling of the

sequence space for common structure families is very good.

Our findings offer additional evidence to improve the design of the initial pools for in vitro

RNA evolution experiments, and indicate that structural heterogeneity would increase with

a mixture of random sequences originating from different pools that differ in their average

nucleotide composition. Actually, rare structures departing largely from the average compo-

sition of a unique pool might be impossible to access in large sequences where fluctuations in

composition are limited by their length. Examples in our study are families QSL, HP6, HH3,

THH and THH2, which strongly differ from the average composition (see Tables 2 and 3).

Large departures from average composition are easier to obtain with short sequences. Several

independent in vitro evolution experiments have documented that the catalytic core of certain

ribozymes can be trimmed to only 13 to 30 nt in length (reviewed in (Joyce, 2004; Puerta-

Fernández et al., 2003)). In parallel, recent results also indicate that the length of ligand

binding aptamer motifs can be easily reduced to 25-30 nt and in some cases to even smaller

molecules with as few as 12-13 nt (Majerfeld and Yarus, 2005; Anderson and Mecozzi, 2006).

Hence, pools of random sequences of length up to 35 nt cover a relatively larger part of their

structure space in comparison to longer molecules. The use of short sequences in theoretical

and experimental studies might suffice to yield the structural modules required to obtain fully

functional RNA molecules.

4 Methods

4.1 Programming and computational resources

Simulations have been carried out at the Itanium II cluster of INTA (Instituto Nacional de

Técnica Aeroespacial, Spain). For random number generation, we relied on the Mersenne
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Twister and Ziff’s FSR4 algorithms as provided by GNU Scientific Library (GSL), Version 1.7

(see http://www.gnu.org/software/gsl). For secondary structure folding (minimum free en-

ergy), we use the routine fold() from the Program RNAfold of the Vienna RNA package (Ho-

facker et al., 1994), version 1.5, with the energy parameter set based on Ref. (Mathews et al.,

1999). It must be noticed that RNAfold, as most folding programs, does not allow for pseudo-

knots or other kind of tertiary structures. However, and in particular for the relatively short

molecules considered here, secondary structures are a very good approximation of the tertiary

structures since a major part of the folding energy corresponds to the secondary structure

formation. No search for suboptimal structures was performed in this study.

The routine fold() is called with the default parameters, i.e., it allows Watson-Crick and

G-U base pairing and the temperature is set to 37◦C. No special stabilizing energy contribu-

tions for tetraloops are assumed. Dangling end energies are assigned only to unpaired bases

adjacent to stacks in free ends and multiloops. A base cannot participate simultaneously in

two dangling ends. For the simulations where we prohibit single base pairs, we call the routine

fold() with option noLonelyPairs (Hofacker et al., 1994).

Secondary structures are obtained in the standard bracket notation being the default out-

put of the routine fold(). For the classification using the number of basic RNA structural

elements and counting of length of loops and stacks, we use the Shapiro notation provided by

the function b2Shapiro from the Vienna RNA package.

4.2 Classification of secondary structures

Structures are classified according to the number of their basic elements: (i) stacks, i.e., regions

formed by base pairs, (ii) loops, i.e., unpaired regions embraced by stacks, and (iii) external

elements, i.e., unpaired nucleotides which are not part of a loop. Loops can be classified into

hairpin loops (loops at the end of a stack), interior loops (loops connecting two stacks), bulges

(unpaired bases within the chain whose neighbors are paired with nucleotides that are direct
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neighbors in the complementary strand), and multiloops (loops with more than two adjacent

stacks). The first criterion for classification is the number of hairpin loops, denoted by H

and varying from 1 to 4 for the sample. For a given structure, the number of stacks, S, is

either equal to H or larger (if there are other loops present) and represents the second level of

classification. The third level of classification is then given by the sum of interior loops and

bulges, I+B, together with M, the number of multiloops. The number of external elements is

not used for classification (see Table 1).
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TABLE CAPTIONS

Table 1.

Classification of secondary structures. We show a classification of the observed secondary

structures into 21 structure families. The classification is obtained according to the number of

basic elements (see Methods). Besides these numbers we show the most abundant structure

of the family and its frequency. The first part of the table contains the structures with one

hairpin loop, H=1, which comprise the families stem-loop (SL), hairpin (HP), and the higher-

order hairpin structures (HP2 to HP6). The next class of families is characterized by having

two hairpin loops, H=2, and therefore at least two stacks. This class of families encompasses

the double stem-loop (DSL) families. The hammerhead (HH) families are present up to HH3.

The next class of families has three hairpin loops, H=3, and at least three stacks. The case

without any further loops corresponds to the triple stem-loop (TSL) family. TSL families are

found up to TSL3. Also, hammerhead-type of structures are found, i.e., structures with a

multiloop, denoted as THH and present up to THH2.

Table 2.

Sequence and structure frequencies: results for regular folding permitting isolated base pairs.

We show, for each structure family, the number of sequences folding into a structure belonging

to it, its relative contribution (number of sequences divided by 108, in percent), the number

of structures belonging to the given family and its relative contribution (number of computa-

tionally obtained structures divided by total number of structures, 5163324, in percent). The

next column gives the average number of sequences per structure. Then, we give the average

free energy of a sequence folding into a structure of the family (in kcal/mol); in paranthesis for

the total value we give the value without considering open structures. In the next columns the

relative content (in percent) of the different nucleotides for the sequences is given. The last
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column gives the dispersion 1/
√

nNf in points of percent of the relative nucleotide content,

where Nf is the number of sequences in the corresponding family and n = 35. This value

indicates whether deviations from the overall mean, i.e., 25%, are significant.

Table 3.

Sequence and structure frequencies: results for folding prohibiting isolated base pairs. The

meaning of the columns is the same as in Table 2. Main differences are that the number of

total different structures is now 2300308, and several higher-order families are absent (HP6,

DSL5, HH3, TSL3, THH2, QSL).
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FIGURE CAPTIONS

Figure 1.

Frequency distribution. We fold 108 RNA random sequences of length 35 nt. For regular

folding, the 108 sequences fold into 5163324 different secondary structures. We order the

structures according to their abundance and display the frequency of a secondary structure

as a function of its rank (solid curve). For folding prohibiting isolated base pairs, we find

2300308 structures (dashed curve). Rank 0, representing the open structure, is not displayed.

Figure 2.

Most abundant structures in two representative families of the hairpin class. We show the six

most abundant structures in the HP (above) and HP5 (below) families in our pool when single

base pairs are permitted (left) and prohibited (right). Small numbers on the dangling ends of

HP structures stand for the number of unpaired nucleotides at that end. The numbers below

each structure indicate how many sequences folded into it. As can be seen, prohibiting single

pairs in stacks increases the abundance of structures in the HP family, while the HP5 family

becomes depleted.

Figure 3.

Frequency distribution according to (a) family and (b) nucleotide composition. (a) We have

binned in boxes of powers of 2 the numbers of all structures belonging to the interval and

have determined the absolute frequency of the corresponding sequences for each family in the

bin. Note the double-logarithmic scale of the diagram. The solid curve corresponds to all

sequences (cf. solid curve from Fig. 1). The other curves correspond to the sequences folding

into different family structures, as shown in the legend. For low ranks, the SL curve coincides

with the total curve. Around the bump of the total curve, SL become less frequent and HP
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structures appear. See main text for further explanations. (b) We have summed up the num-

bers of all structures belonging to a specific rank interval and have determined the average

nucleotide density for the corresponding sequences for a given bin. Again, the main frequency

distribution (solid curve) is given for comparison.

Figure 4.

Sampling quality. Ratio between the number of structures found in the pool of 108 sequences

and the number of possible structures. Each curve corresponds to one structure family (SL,

HP, DSL, HP2) and each point gives the ratio for structures with a fixed number of pairs.

Figure 5.

Correlation between nucleotide content, energy, and number of pairs in the secondary struc-

tures of the SL family. (a) Total number of A nucleotides as a function of the total number

of G nucleotides for stem-loop structures with stacks of length l = 3, 5, 7, and 9. (b) Energy

of stem-loop structures as a function of their G content, stack length as in (a). There are

well-defined average values of the ratio [A]/[G] and of the energy for each fixed value of l.

Figure 6.

Average value of the [A]/[G] content and of the energy for the four major structure families

as a function of the number of pairs in the structure. (a) The represented value of [A]/[G]

has been obtained through the interpolation of a straight line through least squares to data

analogous to that of Fig. 5(a). Error bars correspond to the error of the obtained slope. (b)

Mean free energy of same set of structures.

Figure 7.

Sampling quality. Ratio between the number of structures found in the pool of 108 sequences
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and the number of possible structures. Same as Fig. 4 under the condition that no isolated

base pairs appear in the structure. The space of structures is better sampled under this struc-

tural restriction.
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