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Abstract 

Data envelopment analysis (DEA) as introduced by Charnes et al [3] is a 

linear programming technique that has widely been used to evaluate the relative 

efficiency of a set of homogenous decision making units (DMUs). In many real 

applications, the input-output variables cannot be precisely measured. This is 

particularly important in assessing efficiency of DMUs using DEA, since the 

efficiency score of inefficient DMUs are very sensitive to possible data errors. 

Hence, several approaches have been proposed to deal with imprecise data. 

Perhaps the most popular fuzzy DEA model is based on -cut. One drawback of 

the -cut approach is that it cannot include all information about uncertainty. 

This paper aims to introduce an alternative linear programming model that can 

include some uncertainty information from the intervals within the α-cut 

approach. We introduce the concept of “local α-level” to develop a multi-

objective linear programming to measure the efficiency of DMUs under 

uncertainty. An example is given to illustrate the use of this method. 

Keywords: Fuzzy data envelopment analysis; interval data; local α-level, 

multi objective programming, decision making unit. 

 

 

1. Introduction 

Data envelopment analysis (DEA) initially was proposed by Charnes et al. 

[3] is a non-parametric linear programming technique for measuring the relative 

efficiency of a set of homogeneous decision making units (DMUs), with the 

common set of inputs and outputs. Examples of DEA include the efficiency of 

hospitals in providing their services [17] measurement efficiency of health 
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centers [12] manufacturing efficiency [23, 24] productivity of OECD countries [5, 

6 ,7]. For some computational calculation of DEA methods see Emrouznejad [8] 

and for a recent theoretical survey and full list of applications of DEA see Cook 

and Seiford [4] and Emrouznejad et al. [9].  

 

Traditionally, all input/output values of DMUs are crisp data, hence, most 

of the previous studies dealt with precise data. Theoretically, DEA measures the 

efficiency of each DMU by finding the distance of the DMU to the best practice; 

therefore, the efficiency scores are very sensitive to the data. If there is an outlier, 

then the efficiency scores of many DMUs may change substantially. Therefore, a 

key to the success of the DEA is to measure all inputs outputs accurately. 

However, in real application of production process many complicated factors are 

involved that makes difficult to measure inputs and outputs precisely. This 

makes a case where we need to measure the efficiency of DMUs with inexact 

values or interval data.  

 

Several approaches have been developed to deal with fuzzy data in DEA. 

Sengupta [26] applied principle of fuzzy set theory to introduce fuzziness in the 

objective function and the right-hand side vector of the conventional DEA model 

[3]. Guo and Tanaka [13] used the ranking method and introduced a bi-level 

programming model. Lertworasirikul [20] developed the method in which first, 

inputs and outputs were defazified and then the model was solved using the α-

cut approach. Their method is simple but the uncertainty in inputs and outputs 

is effectively ignored. Some other approaches based on α-cut can be found in [22, 

16, 25] and the methods based on the interval efficiency are seen in [10, 14]. 

 

Lertworasirikula [19] considered each constraint in the DEA as a fuzzy 

event; hence he transferred fuzzy DEA model to possibility linear programming 

problem. Lertworasirikul et al. [21] further developed a fuzzy BCC model where the 

possibility and credibility approaches are provided and compared with an α -cut  level 

based approach for solving the FDEA models. Using the possibility approach, they 

revealed the relationship between the primal and dual models of fuzzy BCC. Using the 

credibility approach they showed how the efficiency value for each DMU can be obtained 

as a representative of its possible range. A different approach based on possibility 

programming was developed in [1, 18]. Inuiguchi and Tanino [15] applied the 

extension principle to define fuzzy efficiency score using DEA. 

 

In this paper we develop an alternative method which is able to provide 

fuzzy efficiency measures for DMUs with fuzzy observations. We introduce the 
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concept of local α-level which can include more information from uncertain data 

into the model.  Use of local α-level in the proposed DEA model enables us to 

capture as much information as possible from the uncertain DMU while in the 

standard α-cut some fuzzy characteristics of DMUs are ignored [27-29].  

The rest of this paper is organized as follows. DEA and Fuzzy DEA are 

defined in Section 2. Using concept of local α-level, an alternative fuzzy DEA is 

proposed in Section 3. Further discussion is given in Section 4. This is followed 

by a numerical example and comparison with other models in Section 5. 

Conclusion is given in Section 6. 
 

 

2. DEA and fuzzy DEA 

Data envelopment analysis (DEA) is a non-parametric technique for 

measuring the relative efficiency of the decision making units (DMUs) that have 

homogenous inputs and outputs. DEA applies linear programming techniques to 

the observed inputs /outputs of DMUs by constructing an efficient production 

frontier based on the best practices. Each DMU's efficiency is then measured 

relative to its distance to this frontier [4].  

Consider a set of n DMUs, in which ( 1,2,..., )ijx i m  and ( 1,2,..., )rjy r s  are 

inputs and outputs of jDMU (j=1,2,…,n). The standard form of CCR model for 

assessing pDMU  is written as: 
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The above model can only be used for cases where the data are precisely 

measured. Fuzzy DEA is a powerful tool for evaluating the performance of 

DMUs with imprecise data (or interval data). Fuzzy input-output variables can 

be introduced to DEA in the following fuzzy linear programming model. 
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where “~”indicates the fuzziness. rjy and ijx are fuzzy inputs and fuzzy outputs, 

respectively. 0   is a non-Archimedean small positive number.     

Saati et al. [25] suggested a different CCR model for assessment of fuzzy 

data by transferring the standard CCR model to a possibilistic programming 

problem. Their basic idea is using α-cut approach to transform the fuzzy CCR 

model (3) into a crisp linear programming problem such as the standard DEA 

model. Their proposed approach assumes that the solution lies in the interval 

and the result for each DMU is an interval efficiency score rather than a crisp 

efficiency score. The main drawback in this approach is that their model can not 

retain the uncertainty information completely since it is based on simple α-cut 

approach. In other words, the fuzzy numbers are simply converted to intervals 

using the same membership numbers in the entire of interval. 

 

 3. An alternative fuzzy DEA model under uncertainty 

The proposed approach in this paper is based on alternative definition of 

the membership functions of the coefficients, i.e. input output variables. Assume

( )F  is the set of fuzzy number. We define “local α-level” as follows. 

Definition 1: The crisp set of elements that belong to the fuzzy set M with 

degree of at least h  and less than 1h  , in which 1h h   , is called the “local α-

level” set and it is represented as follows: 

 

         1| ( )
h h hM

M x X x  (3) 

One advantage of using a local α-level is that the corresponding point on 

the membership function retained the whole of uncertainty in process of solving 

the problem. We define the membership function 
.


M N

 based on 
M

and
N

 [29]. 
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Definition 2: If , ( ) M N F are two fuzzy numbers that ( ), ( )
N M

x y  are 

continuous membership functions, then 

 

 .
.

( ) sup min ( ), ( )  



M N M N

z x y

z x y  (4) 

Obviously, if the bounded variable v is considered as a trapezoidal fuzzy 

number, the following corollary is obtained.  

Corollary 1: The product of bounded variable v in fuzzy number M is defined as 

 .
( ) ( ), . ,   

v M M
z x z v x x X  (5) 

In most DEA applications for the sake of computational efficiency and 

ease of data acquisition, trapezoidal or triangular membership functions are 

often used.  

 

Figure 1a: Triangular membership function 

 

Figure 1b: concept of local α-level 

Figure 1a shows a triangular “fuzzy number” and Figure 1b shows the 

local α-level for a fuzzy number which is corresponding with the figure 1a. As 

seen, each α-cut acts in a local determined domain. For instance, the 

corresponding domain of l  is [ , ] [ , ]l l l lx y x y    . The range of each local α-level in 

the figure 1b has shown as the horizontal bold lines.  

Theorem 1. Let ),,(
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Proof. To prove this theorem, we rearrange (6) to  

1 1
22

3 3

ll
1h 

h h

1h 

l lx y 
l lx y  
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Combining (8) and (9) we obtain 
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Since xxi  for ki  , therefore, .0B  
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Using the concept of local α-level in model (2) the following fuzzy linear 

programming is proposed for assessing pDMU .  
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As seen in figure 1b, corresponding to each α, a set of subintervals is 

assigned to each fuzzy number.  

Theorem 2. The above model is an extension to proposed model of  Kao and Liu 

[16], if we remove the two minimization distance functions from the objective of 
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the model, the largest value of optimal solution in each α-level is the same as 

those obtained in Kao and Liu [16]. 

Proof. Consider the following model: 
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For α=0, consider n DMUs with m inputs and r outputs as follows: 
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It is clear that for oDMU each dominated DMU (a DMU with higher level 

of inputs and lower level of outputs) will not be more efficient. So optimal value 

of mathematical programming (12) is equals to efficiency of pDMU . This is also 

valid for any arbitrary .  

In model (11), ijhx  corresponds to the length of input value of xij located in 

the intersection of 
h and sides of the corresponding triangular membership 

function. Similarly rjky  corresponds to the length of output value of yij. Consider 

the following variable substitutions. 

 
 

ˆ
ijx = i ijv x , ˆ

rjy = , ,r rju y i r j  
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Hence, model (13) is concluded. 
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ˆ  rjk rj r rjky y u y   , so ( , , )rjk rjk rjky y y r j k     . Applying these substitutions model 

(13) may be solved using the following multi-objective programming. 
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The model (14) is a multi-objective, hence, it can be solved by 

Archimedean goal programming model (15) as follows: 

 

 

 

 

 

 

 

 

 

(15) 





   

 

 





 



    

    

    

 



  

 

 









 

1 1 1 1

1

1

1 1

min

. .

( )( ) ,

( )( ) ,

ˆ

ˆ 1

ˆ ˆ 0

ˆ (

ij

rj

m n s n

ij ij rj rj p p
i j r j

x ijh ijh ijh ij ij
h

y rjk rjk rjk rj rj
k

s

rp p p
r

m

ip
i

s m

rj ij
r i

ij i ijh ijh

w d w d w d

s t

x x x d t i j

y y y d t r j

y d t

x

y x j

x v x x





 

  

   

  

  

 

) 0 , ,

ˆ  -( ) 0 , ,

ˆ ,

ˆ ,

, ,

ijh

rj r rjk rjk rjk

l u

i ij ij i ij

l u

r rj rj r rj

r i

x i j h

y u y y y r j k

v x x v x i j

u y y u y r j

u v r i

 

In model (15), the w’s in the objective function are positive penalty 

weights and d’s measure the over-achievement and under-achievement from the 

target point t, i.e. ijt , rjt , pt . 

  

4. Discussion 
 

In Figure 2a, consider the local α-level 
1 . The membership values 

corresponding to interval 1 2
[ , ]n n are approximated by 1 . For instance, the 

membership value related to x  is 1  instead of ( )x that is real membership 

value. Furthermore, assume that we include another local α-level 2 (See Figure 

2b), it is seen that the membership function corresponding to x  is now 2  
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instead of ( )x . It is clear that  
1 2

( )x and 
2
is a better approximation than 


1
 for ( )x . 

 

 
 

 

 

 

     

   

 

 

 

 

 

According to Theorems 2, if the objective functions minimizing in (13) are 

deleted from the model, the optimal solution for inputs and outputs will be 

arisen at its endpoints of interval of fuzzy numbers. Furthermore, if the objective 

function maximizing in (13) is eliminated, Theorem 1 is adopted and its optimal 

solutions are fuzzy number.  Figure 3 illustrates the above mentioned concept for 

evaluating PDMU .  In this figure, the interior arrows represent the optimal 

solution when the objective function of maximizing is absent in (13) and the 

arrows located under fuzzy numbers construct the optimal solution (13) when 

only objective function of maximizing is present.  

 

 

 

 

 

 

 

Interaction between the objective functions of maximizing and minimizing 

in (13) cause the fuzzy optimal solution. 

In the methods based on α-level approach, all fuzzy numbers are dealt 

with the same level. Consider the example given in Kao and Liu [16] evaluating 

four DMUs with single input and single output. In total, 88 LPs should be solved 

using the α-cuts of the efficiency scores for eleven α values, they assumed that all 

fuzzy inputs and outputs are in the same α-level. In the proposed method 

different level of α’s are considered for inputs and outputs, hence we need to 

solve 11×11×88 LPs.  

Figure 2b: A presentation of local two α-levels Figure 2a: A presentation of local one α-level 
ijx~ ipx~  

rpy~  

 

22 


1
 

x 

  
1

n   
2

n  

  
1

n  
2

n  


2

 

  
( )x

 


1
 

x    
( )x

 



 13 

5. An Application and comparison with other methods 

Consider 5 DMUs with two triangular fuzzy inputs and 2 triangular fuzzy 

outputs. Table (1) shows the data which are also used in Guo and Tanaka [13].  

 
Table 1. Data for numerical example  

DMU 

Variable 

D1 D2 D3 D4 D5 

I1 (4.0, 3.5, 4.5) (2.9, 2.9, 2.9) (4.9, 4.4, 5.4) (4.1, 3.4, 4.8) (6.5, 5.9, 7.1) 

I2 (2.1, 1.9, 2.3) (1.5, 1.4, 1.6) (2.6, 2.2, 3.0) (2.3, 2.2, 2.4) (4.1, 3.6, 4.6) 

O1 (2.6, 2.4, 2.8) (2.2, 2.2, 2.2) (3.2, 2.7, 3.7) (2.9, 2.5, 3..3) (5.1, 4.4, 5.8) 

O2 (4.1, 3.8, 4.4) (3.5, 3.3, 3.7) (5.1, 4.3, 5.9) (5.7, 5.5, 5.9) (7.4, 6.5, 8.3) 

Source: Guo and Tanaka (2001) 

Fuzzy efficiencies of DMUs using standard fuzzy DEA model (2) and with 

different α value solved by the method suggested in [24] is reported in Table (2).  
 

Table 2.the results of the model suggested in [24]  
DMU  

α 

D1 D2 D3 D4 D5 

0 1.0 1.0 1.0 1.0 1.0 

.5 0.995 1.0 1.0 1.0 1.0 

.75 0.906 1.0 0.936 1.0 1.0 

1 0.85 1.0 .86 1.0 1.0 

Using the Kao and Liu’s approach, the cut   of the efficiency scores for 

four  values is presented in Table (3).   

 
Table 3. Table of efficiency using Kao & Liu fuzzy DEA model  

DMU  

α 

D1 D2 D3 D4 D5 

0 (0.626,1.0) (0.835,1.0) (0.575,1.0) (0.855,1.0) (0.737,1.0) 

.5 (0.757,0.995) (0.988,1.0) (10,1.0) (10,1.0) (0.845,1.0) 

.75 (0.808,0.906) (1.0,1.0) (0.792,0.936) (1.0,1.0) (0.971,1.0) 

1 0.85 1.0 .86 1.0 1.0 

 

 

The results of the possibility approach introduced in [19] have given in Table (4).  
 

Table 4. Table of efficiency using Lertworasirikul’s possibilistic model [19]  
DMU  

α 

D1 D2 D3 D4 D5 

0  1.107  1.238  1.276  1.52  1.296  

0.25  1.032  1.173  1.149  1.386  1.226  

0.5  0.963  1.112  1.035  1.258  1.159  

0.75  0.904  1.055  0.932  1.131  1.095  

1  0.855  1.000  0.861  1.000  1.000  
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Although the Lertworasirikul’s possibilistic model is not directly comparable 

with the new suggested method, the result of Table (4) is aggregated measure in 

a linear approach and an optimal  cut   is obtained for each fuzzy numbesults 

to make it comparable.  

Fuzzy efficiencies of DMUs using the proposed model and with different 

α values are reported in Table (5). 

  
Table 5. Table of efficiency using proposed fuzzy DEA model  

α 
D1 D2 D3 D4 D5 

      

0,0.25,0.5,0.6,0,7,0.75,1 0.915 1.0 0.948 1.0 0.991 

0,0.25,0.5,0.7,0.75,1 0.909 1.0 0.945 1.0 0.991 

0,0.5,0.75,1 0.903 1.0 0.941 1.0 0.84 

0 1.0 1.0 1.0 1.0 1.0 

 

The results shown in the first row of Table 4 are more accurate than the 

results suggested in [24], as seen in Theorem 2, Kao and Liu [16] model obtained 

the results at endpoints of the intervals only. 

 

Figure 4 shows the structure of the discrete triangular number concerned 

to input 1 of 1DMU . As it can be seen we included 7 local α-levels for calculation 

of efficiency in this example. 

 

h 0, 0.25, 0.5, 0.6, 0.7, 0.75 and 1.   
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It should be noted that increasing the numbers of local α-levels will result 

more precise measure of efficiency. For example when measuring efficiency of 

DMU1 if α-levels are [0, 0.5, 0.75, 1] we obtain efficiency score of “0.909”, while if 

α-levels are [0, 0.25, 0.5, 0.7, 0.75, 1] we obtain efficiency score of 0.903 which is a 

more accurate estimation of efficiency. Comparing these results with Table (2) it 

is clear that our proposed approach is given a better estimation of the efficiency 

scores when data are in the form of interval values. One drawback of the 

proposed model is longer computational calculation; however this is not a major 

issue with development of high-speed computers. 

 

 

6. Conclusion 

 
In evaluating DMUs in Fuzzy DEA there are four traditional approaches; 

the fuzzy ranking approach, the defuzzification approach, the tolerance 

approach and the α-cut based approach. Each of these methods has its 

advantages and drawbacks in the way they treat uncertain data in DEA models. 

Perhaps due to its simplicity, the α-cut based approach is frequently used by 

DEA scholars. As result of simplicity in this approach we will lose a lot of 

uncertainty information. This paper proposed an alternative fuzzy DEA 

technique for measuring efficiency of decision making units under fuzzy 

environment using local α-level concept and linear programming problem. The 

numerical example showed a better estimation of efficiency when using the 

proposed model. The final model presented is a multi-objective programming, its 

transformation to a linear programming and developing an efficient algorithm 

for large scale problems are subjects for future development. 
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