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Abstract 

Practitioners assess performance of entities in increasingly large and complicated 

datasets. If non-parametric models, such as Data Envelopment Analysis, were ever 

considered as simple push-button technologies, this is impossible when many 

variables are available or when data have to be compiled from several sources. This 

paper introduces by the ‘COOPER-framework’ a comprehensive model for carrying 

out non-parametric projects. The framework consists of six interrelated phases: 

Concepts and objectives, On structuring data, Operational models, Performance 

comparison model, Evaluation, and Result and deployment. Each of the phases 

describes some necessary steps a researcher should examine for a well defined and 

repeatable analysis. The COOPER-framework provides for the novice analyst 

guidance, structure and advice for a sound non-parametric analysis. The more 

experienced analyst benefits from a check list such that important issues are not 

forgotten. In addition, by the use of a standardized framework non-parametric 

assessments will be more reliable, more repeatable, more manageable, faster and less 

costly.  
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1. Introduction 

Efficiency analysis has never been a simple push-bottom technology. Within a 

performance assessment, various interactions can intricate the analysis. Indeed, 

changing the modelling technique, or the input or output variables might result in 

significantly different efficiency scores. Therefore, a systematic check list with the 

several phases which are required to assess performance would make efficiency 

analysis less costly, more reliable, more repeatable, more manageable and faster. 

In addition, the increasing performance of computers enables researchers to evaluate 

and examine larger datasets. Particularly evaluations of large surveys as in education 

(e.g., the OECD Pisa dataset, the Department for Education and Skills in England 

(DfES) or the Belgian SiBo), business performance (e.g., World Economic Forum, 

CEO confidence surveys) or consumer confidence, and the analysis of large statistical 

databases (e.g., on company performances) became possible by increased computing 

power. Nowadays, the weakest link lies (again) with the researcher who has to 

overview the dataset. Indeed, datasets with more than 800 variables (as the Pisa 

survey) require significant efforts from the researcher. Therefore, researchers start 

collaborating with different stakeholders (e.g., policy makers, practitioners), who may 

be novice users of DEA. This in turn makes the analysis more difficult. A 

standardized process could facilitate the researcher and reduce the possibility of 

making mistakes. Many studies dealing with large data, e.g., data mining, or analysing 

complicated processes such as systems engineering, have developed step-by-step 

frameworks. For example see data mining life cycles of CRISP-DM (CRoss Industry 

Standard Process for Data Mining) and SEMMA (Sample, Explore, Modify, Model, 

Assess) and SDLC (Systems Development Life Cycle) as a standard process of 

developing systems (Olson and Delen, 2008; Cerrito, 2007; Blanchard and Fabrycky, 

2006). This paper presents an alternative step-by-step framework which should 

facilitate the collaboration between stakeholders and researchers.  

In this article, we will focus on non-parametric models to examine the performance of 

entities. Indeed, the user does not observe the production process (i.e., the 

transformation of inputs into outputs). Whereas parametric models do assume a 

particular a priori specification on the production process, non-parametric models let 

the data speak for themselves. In particular, they estimate the relationship between 
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inputs and outputs with minimal assumptions (Charnes et al., 1985). This makes non-

parametric models extremely attractive. We will particularly focus on the widely 

applied non-parametric Data Envelopment Analysis (DEA) model (for an overview of 

more than 4000 papers published on DEA during 1978 and 2007, see Emrouznejad et 

al., 2008). Nevertheless, the different phases of the suggested framework are not 

limited to the traditional DEA model. As also other methods follow similar phases, 

the framework can be used for a Stochastic Frontier Analysis (SFA, Meeusen and van 

den Broeck, 1977) or a parametric application with some modification. Remark that 

particular models (e.g., order-m, bootstrap, SFA; see below) can not be interchanged 

(e.g., there is no double bootstrap in SFA). Nevertheless, a similar framework can be 

adopted for parametric methods. 

The DEA model is based on a linear programming technique which evaluates the 

efficiency of entities relative to best practice observations (Charnes et al., 1978). To 

do so, the researcher has to specify input and output variables. Although this might 

seem a reasonable task, the effort increases significantly when the available data are 

growing. To this end, the present paper introduces a step-by-step framework to 

evaluate large and unexplored datasets. In this sense, the paper links with previous 

work of Avkiran (1999), Belton and Vickers (1993), Brown (2006), Dyson et al. 

(2001), Hollingsworth (2008) and Pedraja-Chaparro et al., (1999). Although previous 

papers already clearly indicated the pitfalls of DEA (Dyson et al., 2001), provided 

guidelines for novice users (Avkiran, 1999), visual tools for an insightful 

implementation (Belton and Vickers, 1993), or difficulties and opportunities of 

efficiency measurement (Hollingsworth, 2008), this paper explicitly targets the 

mixture of experienced and novice researchers. Indeed, frequently, experienced 

researchers (e.g., academics or consultants) collaborate with stakeholders (e.g., civil 

servants or CEOs), who are less aware of the various methodological advances in the 

literature. Without a clear framework, the stakeholders may refuse the implementation 

of more advanced techniques (and prefer, e.g., a simple bivariate analysis). Only by a 

step-by-step analysis, which gradually constructs the ultimate model, inexperienced 

stakeholders may be persuaded of advanced (non-)parametric methods. As such, (and 

in contrast to previous literature) the framework is presented as a process model 

which overcomes problem definition, data collection, model specification and 
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interpretation of the results. The process model provides an ultimate tool to guide 

novice users through the set-up of an efficiency analysis application. 

The contributions of the paper arise from three particular features of the proposed 

process model that provides both the structure and the flexibility to suit most non-

parametric projects for comparison of a set of entities, especially with large number of 

units.  

Firstly, the proposed model for processing non-parametric projects can help us 

understand and manage interactions in the complex process of efficiency analysis. 

Therefore, for the novice analyst, the process model provides guidance, helps to 

structure the project, and gives advice for each phase of the process. This should 

result in a more reliable model specification (both in terms of modelling technique as 

in terms of selecting inputs and outputs). The experienced analyst can benefit from a 

check list for each phase to make sure that nothing important has been forgotten. But 

the most important role of a standard process is to allow systematic treatment for 

comprehensive phases in large non-parametric projects which facilitates the process 

(e.g., by making it more repeatable and less expensive).   

Secondly, structure arises from the checklist for setting up non-parametric analyses. 

Indeed, non-parametric models as DEA (including Free Disposal Hull, FDH, Deprins 

et al., 1984) are not push-button technologies but on the contrary a complex process 

requiring various tools to identify the appropriate set of inputs/outputs and select a 

suitable model. The success of non-parametric projects depends on the proper mix of 

managerial information and the skills of the analyst.  

Thirdly , consider the flexibility. The suggested framework consists of six connected 

phases which have various feedback loops. This is particularly an attractive feature 

for the unexperienced stakeholder who will observe that early (methodological) 

choices can have an effect in later phases.  

In sum, the framework helps to link different tools and different people with diverse 

skills and backgrounds, in order to work on an efficient and effective project.  

The paper unfolds as follows. The next section gives an overview of the proposed 

framework. Each of the sections 3 to 7 describes a particular phase of the COOPER-
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framework. Indeed, each of the phases has several sub-phases which in turn cover a 

broad literature. We present the sub-phases systematically. Finally we present some 

concluding remarks.  

 

2. The COOPER-framework 

In large and complicated datasets, a standard process could facilitate performance 

assessment and help to (1) translate the aim of the performance measurement to a 

series of small tasks, (2) select homogeneous DMUs and suggest an appropriate 

input/output selection, (3) detect a suitable model, (4) provide means for evaluating 

the effectiveness of the results, and (5) suggest a proper solution to improve the 

efficiency and productivity of entities (also called Decision Making Units, DMUs). 

We suggest a framework which involves six interrelated phases: (1) Concepts and 

objectives, (2) On structuring data, (3) Operational models, (4) a Performance 

comparison model, (5) Evaluation, and (6) Results and deployment. Taking the first 

letter of each phase, we obtain the COOPER-framework (in honour of and in 

agreement with one of the founders of DEA). Figure 1 systemizes the six phases.  
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Figure 1. COOPER-framework: a unified standard process 

The first two phases of the COOPER-framework, i.e., the ‘concepts and objectives’ 

and ‘On structuring data’, correspond to defining the problem and understanding how 

decision making units operate. The last two phases, i.e., the ‘evaluation’, and ‘results 

and deployment’ correspond to summarisation of the results and documentation of the 

project for non-DEA experts. In between, we show how to synthesize ‘operational 

models’ for use as the most appropriate non-parametric model. Indeed, although we 

present the framework for the non-parametric DEA model, as mentioned before, the 

broad ideas of the framework can easily be adapted to other model specifications such 

as FDH, SFA, Corrected Ordinary Least Squares (COLS) or Multi-level Models 

(MLM), obviously with some modification. Even more, before starting the analysis a 

researcher does not know “what is the best methodology to analyse the research 

question” and thus could decide that, e.g., SFA is more appropriate. As such, the 

model specification is an intrinsic part of the process (see phase 3). The selected 

model is applied in the ‘performance comparison’ phase.  

Obviously, the phases are interrelated and affect each other. Therefore, we provide 

numerous feedback loops connecting the phases. This framework is systematically 

presented in Figure 2, and summarized in terms of articles in Appendix. Basically, if a 

problem occurs in a particular phase, the researcher should go back to previous phases 

in chronological order (e.g., from phase 5 to 4 to 3, etc.). Nevertheless, reconsidering 

a previous phase does not necessarily take a long time. Once the problem/issue is 

analysed and solved, the researcher follows again the order of the framework. The 

relationship between the phases is sometimes very subtle. For example, the ratio of 

the number of observations to the number of inputs and outputs determines the bias on 

DEA frontier (because of the ‘curse of dimensionality’). As such, a decision in a 

previous phase creates issues (in this example problems with consistency) in later 

phases.  

Also note that stakeholders regularly help to design the model (which is very often the 

case with civil servants and companies because they want to keep control on the 

study). As such, stakeholders will be very reluctant to assume full availability of data 

(because of both practical reason, e.g. the data simply do not exist, and/or 

opportunistic reason, e.g. they do not want to provide sensitive data). Therefore, the 
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data collection phase (phase 2) is presented in the framework before the model 

construction (phase 4). 

 

 

 

Figure 2. Systematic presentation of the COOPER-framework 

In the following sections, we discuss each of the phases in more detail. 

 

3. Concepts and objectives 

A very large DEA project generally involves the expertise from numerous individuals. 

The concepts and objectives phase requires communication skills to work closely 

together with the evaluated entities. These are often (but not necessarily) the 

organisations which are interested in the DEA results. Naturally, the undertaking of a 

collaborative DEA project increases the complexity of the process. There are also 

potential benefits, such as a more in depth analyses, additional insights and a broader 

range of operational characteristics which can be taken into account, by suitably 

combining the expertises.  
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The concepts and objectives phase (systematically presented in Figure 3) aims at 

defining the research question. Besides determining the objectives of the study this 

involves determining the operational environment of the observations and the 

production processes. A clear and a priori agreed definition of the environment can 

avoid heated discussions in the evaluation of the results (phase 5). Indeed, as DEA 

measures relative efficiency [i.e., efficiency relative to best practice observations, see 

Thanassoulis (2001) and Zhu (2003) for a comprehensive introduction on DEA with a 

software tool], it can easily be argued by observations that they are ‘totally’ different 

from the other observations in the sample and, as such, cannot be compared with 

them. A clear and sound definition of the research question and the operational 

environment avoids similar discussions.  

Once the research question is defined, the discussion should focus on the most 

appropriate technique to assess the problem. Different techniques could yield different 

results. For example, composite indicators summarize the performance on multiple 

inputs and multiple outputs in one synthetic indicator. This could yield advantages, 

such as knowing at a single glance the performance, easy to discuss with a general 

audience and easy to set targets. However, composite indicators also face some 

drawbacks as reducing the information and the necessity to weight the different sub-

indicators (OECD, 2008). Every technique for composite indicators (e.g., DEA, SFA, 

performance indicators) has its own peculiarities. The different stakeholders should be 

aware of this in order to avoid again discussion in the evaluation phase (for a 

discussion on the peculiarities of the techniques see Fried et al., 2008). 

Every study balances on the trade-off between an analysis on micro-level or on 

macro-level. Micro-level studies have the advantage that they (normally) contain 

more observations and are better comparable to each other. Macro-level observations 

allow the researcher to overview a broader picture, but contain less observations. 

Directly connected to this trade-off is the issue on the identification of the appropriate 

level of decision making, i.e. can the micro (macro)-level act independently?  

A final step in the first phase consists of designing the project plan. This should be 

seen as broad as possible. It, again, aims at avoiding discussion in the evaluation 

phase. Indeed, empirical applications in general and data-driven approaches as DEA 

in particular are sometimes sensitive to the provided data. Traditional frontier 
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techniques such as DEA are deterministic techniques (i.e., they do not allow for 

noise), they may be sensitive to outlying observations (e.g., Simar, 1996). The latter 

could arise from measurement errors or atypical observations. Banker and Natarajan 

(2004) supplied statistical tests based on DEA efficiency scores. Therefore, this step 

should carefully examine the availability of correctly measured data. In addition, once 

the objectives and the evaluation technique are determined, the stakeholders should 

agree on the criteria to evaluate the results. For example, will they use a “naming and 

shaming” approach (i.e., sunshine regulation; Marques, 2006), a “yardstick 

competition approach” (i.e., using the outcomes to set maximum prices or revenues; 

Bogetoft, 1997), or will the results only be reported internally, etc.? 

 

 
 

Figure 3. Concepts and objectives phase 
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4. On structuring data 

Having settled some preliminary questions in the first phase, in a second phase the 

researcher can start the analysis with the initial data collection. Especially in large 

datasets, it is worthwhile spending sufficient time with this phase (summarized in 

Figure 4). Various variables are potentially available and differences between them 

are sometimes subtle. In order to examine the research question from phase 1, 

additional data sources (such as statistical databases, annual accounts or price 

information) should have been consulted. This requires a sound method of data 

collection (in order to allow for reproduction of the dataset in the future). The latter is 

facilitated if a clear data collection routine is defined.  

Having collected the data, it is necessary to characterize them at the meta level (i.e., 

describe and explore the data). The ‘explore data’ task typically consists of an initial 

report with summarisation and possibly visualisation of data. Although visualisation 

is limited to two or three dimensions, this frequently brings additional insights 

(Grinstein et al., 2002). Besides a brief description the ‘describe data task’ contains 

notification of the type of data (e.g., continuous or discrete) because different models 

can be adapted depending on the data type (Cook and Zhu, 2006).  

Obviously, data can differ significantly in quality. Especially when compiling the data 

from different sources (e.g., two different types of hard data) or different data 

collection techniques (e.g., hard data combined with survey sample data) caution 

should be taken. For example, the definitions of the variables could differ according 

to the original source. But the quality of the combined dataset could be at stake in 

more subtle issues. For example, different data sources could have different random 

samples (so the data should be weighted accordingly: the researcher can account for 

this by, for example, (1) in the robust order-m estimations of Cazals et al. (2002) 

drawing less frequently observations from the minority group, or (2) in bootstrap 

replications, in comparison to the underrepresented observations, replicating fewer the 

overrepresented observations (for an empirical example, Cherchye et al., 2009). The 

researcher should be constantly aware of potential differences in data definitions and 

data collection techniques.  
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Depending on the applied assessment technique (MLM, COLS, FDH, DEA…; see 

phase 3) differences in data quality are increasing troublesome. Particularly in 

deterministic DEA models, outlying and atypical observations due to a low quality of 

data could heavily influence the outcomes. Fortunately, the non-parametric literature 

has developed several techniques to deal with, e.g., missing data (e.g., Kao and Liu, 

2000), negative data (e.g., Emrouznejad et al., 2010a, 2010b and Portela et al., 2004), 

zero values (e.g., Thompson et al., 1993) or ratio data (Emrouznejad and Amin, 

2009). Efficiency estimation with noisy data (e.g., due to measurement errors) could 

result in very imprecise results (for various models dealing with irregular data in DEA 

see Zhu and Cook; 2007). Therefore, it is worthwhile to examine the noise around the 

DEA estimates by bootstrapping techniques or statistical inferences (Simar and 

Wilson, 2007; see also phase 5).  

 

Figure 4: On structuring data phase 
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In addition, observations with a dramatic impact on the efficiency scores of other 

observations could be removed from the sample. The literature developed several 

techniques to detect influential observations: the peer count index (Charnes et al., 

1985), outlier detection by the use of super-efficiency model (Andersen and Petersen, 

1993), order-m based models (Simar, 2003), leverage (Sousa and Stosic, 2005), etc. 

are typical techniques for non-parametric models. Outlier detection models exist for 

parametric models as well (e.g., Langford and Lewis, 1998 for MLM). Each of these 

models has its own peculiarities and, as such, it could be worthwhile to combine the 

different procedures (De Witte and Marques, 2010).  

On the other hand, influential observations could be of increased interest as they could 

reveal extreme best practices or indicate where someone has specialized into a niche 

performance. Therefore, a researcher cannot simply remove the outliers from the 

sample (an alternative non-parametric approach which reduces the impact of outlying 

observations in the sample is the robust order-m model of Cazals et al., 2002; see 

phase 4). Finally, this sub-phase aims at obtaining a quality report on the data such 

that the weakest and strongest links can easily be noticed. 

Once settled, the researcher has to prepare the final dataset on which the models will 

be run. The analyst has to collect the data from the different data sources, and deal 

with the missing, zero or negative data appropriately. Finally, he/she obtains a clean 

and ready to use dataset. 

 

5. Operational models 

Dependant on (a) available data, (b) the quality of the data (e.g., noisy) and (c) the 

type of the data (e.g., negative values, discrete variables, desirable/undesirable values 

etc.), specific classes of models are available. Two main categories can be 

distinguished. As in Figure 5 the first class consists of parametric models (see, e.g., 

Greene, 2008). This family of models assumes an a priori specification on the 

production function (i.e., how the inputs are converted into outputs). The advantages 

of this procedure are its well established statistical inference and its easy inclusion of 

environmental characteristics. Its disadvantage lies in the a priori specification of the 

model. It is often very difficult to argue that the production process follows, e.g., a 
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Cobb-Douglas, Translog or Fourier specification. The second class consists of the 

non-parametric models. They do not require any a priori assumptions on the 

production function. They therefore have more flexibility and, as such, let the data 

speak for themselves (Stolp, 1990). A disadvantage of this class lies in the restrictive 

curse of dimensionality and they often deliver a large variance and wide confidence 

interval. 

Within these two families, both deterministic and stochastic variants exist. The 

deterministic models assume that all observations belong to the production set. This 

assumption makes them sensitive to outlying observations. However, robust models 

(Cazals et al., 2002) avoid this limitation. Stochastic models allow for noise in the 

data and capture the noise by an error term. However, sometimes it is difficult to 

distinguish the noise from inefficiency, the stochastic frontier models are specifically 

directed to this problem (Kumbhakar and Lovell, 2000).  

The literature has developed several models for efficiency estimations (for an 

overview, Daraio and Simar, 2007). In the remainder of the paper, we will focus only 

on the non-parametric deterministic model. However, the researcher should be aware 

of the other model specifications, and even of particular variants of the traditional 

model specifications [e.g., Dula and Thrall (2001) developed a DEA model which is 

less computational demanding and, as such, interesting to analyze large datasets]. 

Although in the previous phase outliers and atypical observations were removed from 

the dataset (or at least inspected more carefully), the deterministic model is still 

vulnerable to these influential entities. To reduce the impact of outlying observations, 

Cazals et al. (2002) introduced robust efficiency measures. Instead of evaluating an 

entity against the full reference set, an entity is evaluated against a subset of size m. 

By taking the average of these evaluations, the estimates are less sensitive to outlying 

units. In addition, these so-called robust order-m efficiency estimates allow for 

statistical inference, such as standard deviations and confidence intervals.  

Cazals et al. (2002) and Daraio and Simar (2005) developed conditional efficiency 

approach that include condition on exogenous characteristics in DEA models. This 

bridges the gap between parametric models (in which it is easy to include 

heterogeneity) and non-parametric models. Daraio and Simar (2007) develop 

conditional efficiency estimates for multivariate continuous variables. Badin et al. 
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(2008) develop a data-driven bandwidth selection, while De Witte and Kortelainen 

(2008) extend the model to generalized discrete and continuous variables. By using 

robust conditional efficiency measures, many advantages of the parametric models are 

included now in the deterministic non-parametric models. Daraio and Simar (2007) 

present an adoption of the non-convex FDH and convex DEA efficiency scores to 

obtain conditional and robust framework.  

 

Figure 5: Operational models phase 

 

6. Performance comparison 

Once a satisfactory dataset is collected, the analysis is performed in the performance 

comparison phase (for a summary, see Figure 6). These analyses allow researchers to 

obtain additional insights and to define a proper model and, finally, to run the model.  
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The selection of the DMUs is an intrinsic and important step in a non-parametric 

model and involves two issues: (1) the number of DMUs and (2) the level of the 

DMUs. Firstly, consider the number of DMUs. Similar as in parametric regressions, 

the researcher should try to include as many observations as possible to obtain 

meaningful estimations. Indeed, the relative nature of DEA makes it vulnerable to 

problems with the degrees of freedom. The number of degrees of freedom will 

increase with the number of DMUs in the dataset, and decrease with the number of 

input and output variables. Banker et al. (1989) suggest a rough rule of thumb. Let p 

be the number of inputs and q be the number of outputs used in the analysis, then the 

sample size n should satisfy n ≥ max{p × q, 3(p + q)}. In addition, if observations are 

added, the ‘world best practice frontier’ will be better approached (Estache et al., 

2004), although due to the sample size bias average efficiency will decrease (see 

below; Zhang and Bartels, 1998). Secondly, consider the level of the DMUs which 

influences the shape of the production possibility set (i.e., the frontier; and is therefore 

included in this phase). If the analysis is performed on a different level (e.g., macro 

versus micro units), different results can be obtained. For example, when comparing 

universities, we may select universities that are research focused, or teaching focused 

or all universities. Each case results in a different production possibility set, and as 

such, a different efficiency score. 

Selecting different input and output variables could heavily influence the results of the 

DEA model. Indeed, DEA estimates relative efficiencies (i.e., relative to a best 

practice frontier) and allows for specialization in one or another input or output 

variable. The researcher should be aware of this important choice. The inputs and 

outputs can be justified by the existing literature, by managerial analysis (i.e., what 

are the best inputs and outputs according to the entities), by multivariate analysis 

(e.g., is there multicolinearity between the different inputs and outputs) or by simple 

ratio analysis. Cook and Zhu (2008) suggest to use a ratio when it is not clear whether 

a variable should be classified as an input or an output.  The ratio form generalizes 

one-dimensional engineering-science definition of efficiency (which considers the 

simple ratio 1
Input

Output
0  ), to a more general and multidimensional ratio: 

1
Inputs

Outputs
0  . If an increase in the value of the variable results in an increase in the 
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efficiency score then it belongs to the numerator and it is an output variable.  If an 

increase in its value results in a decrease in the value of the efficiency ratio then it 

belongs to the denominator and it is an input variable.  

As a rule of thumb, Dyson et al. (2001) suggest that the selected inputs and outputs 

should cover the full range of resources used and outputs produced, among the 

evaluated entities. We pointed already on the importance of exogenous variables. If 

the researcher wants to provide an accurate picture of reality (i.e., without assigning 

higher efficiency scores to observations operating in a more favourable environment), 

he/she needs to include exogenous characteristics. Similar to the selection of inputs 

and outputs, exogenous variables can be selected by considering managerial 

information or getting information from the previous studies in the literature.  

As DEA assumes free disposability and convexity assumptions (see Fried et al., 

2008), it is further restricted by making an assumption on the shape of the convex hull 

or convex cone (Kleine, 2004). The initial DEA model of Charnes, Cooper and 

Rhodes (1978) (so-called CCR model) assumed a convex cone. As such, in a two 

dimensional picture, the production frontier corresponds to a piecewise linear frontier 

(i.e., the observation with the highest average efficiency as measured by the ratio of 

outputs to inputs). The technical inefficiencies can be due to the ineffective operation 

of the production process in transforming inputs to outputs and due to the divergence 

of the entity from the Most Productive Scale Size (MPSS). As indicated in Banker 

(1984) the most productive scale size is that scale for which the average productivity 

measured is maximized (i.e., operating at optimal returns to scale). The DEA model 

with variable returns to scale is often referred to as the BCC model after Banker et al. 

(1984) who introduced a convex hull instead of a convex cone around the data. More 

recently, by the work of Kerstens and Vanden Eeckaut (1999) and by Podinovski 

(2004), also in the non-convex FDH returns to scale were introduced. The returns to 

scale can be tested by bootstrap procedures (Simar and Wilson, 2002) or statistical 

tests (Kittelsen, 1993, Banker and Natarajan, 2004). In particular, the procedure tests 

by the use of bootstrapping whether there is a significant difference between CRS and 

VRS. Obviously, in most applications the returns to scale specification (CRS versus 

VRS) can deliver significantly different outcomes and, as such, a well considered 

model should be selected. Also the consistency of the estimates depends on the model 
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specification. If the ‘true’ underlying production function exhibits VRS, then only the 

VRS-assumption delivers consistent results. However, if the true underlying model is 

CRS, both VRS and CRS assumption deliver consistent results. Remark that the non-

convex FDH model delivers consistent results, however, at a lower rate of 

convergence due to less structure in the model (Daraio and Simar, 2007).  

The DEA model basically weights the heterogeneous inputs and outputs such that the 

highest efficiency score can be obtained. The researcher can also decide to attach 

specific weight restrictions to the DEA model. These weight restrictions function as 

value judgements on the different inputs and outputs (Allen et al., 1997; Pedraja-

Chaparro et al., 1997; and for a caveat Podinovski, 1999).  

Once some assumptions on the production possibility set are made and tested, the 

researcher can focus on the orientation of the model. Different options are possible. 

The input-oriented framework minimizes the input set for a given output production. 

The output-oriented model maximizes the potential output production for a given 

input set. Under the CRS assumption, the input-oriented efficiency scores are the 

reciprocal of the output-oriented efficiency scores. Obviously, this is no longer the 

case under VRS. In many interesting real life applications, the managers of an entity 

are not considering input reductions and output expansions separately. Non-oriented 

models consider simultaneous input reductions and output expansions. The literature 

developed several procedures to estimate efficiency non-oriented: see, e.g., the 

additive model of Charnes et al. (1985), the Russell measure of Färe and Lovell 

(1978), the range-adjusted measure of Cooper et al. (1999) or the geometric distance 

function of Portela and Thanassoulis (2002) (for a survey, see Fried et al., 2008).  

The non-oriented measures are non-radial measures of efficiency. This branch of 

measures does not preserve the input-output mix in the efficiency score. This 

contrasts to the input- and output-oriented measures which are typically radial 

measures of efficiency. In a radial approach, the input-output mix is preserved. In 

most situations, a radial efficiency score is easier to work with (De Borger and 

Kerstens, 1996).   

If panel data are available, it could be worthwhile to examine the efficiency in the 

larger panel dataset. In contrast to a cross-section analysis (only variables for one 
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specific year), more observations will be available as typically the observations are 

evaluated against their previous performance. To handle panel data non-

parametrically several procedures have been developed. First, there are the 

productivity measures such as the Tornquist index, the Fisher index or the Malmquist 

index (Cooper et al., 2004). The Malmquist index differs from the others because it 

decomposes efficiency changes into productivity growth (i.e., best practice frontier 

improvements) and efficiency growth (i.e., changes relative to best practice frontier). 

Malmquist indices can be bootstrapped to obtain statistical inferences (Simar and 

Wilson, 1999). Second, in sequential methods the entity is assessed against all entities 

(including itself) in the current period and in all periods before. As such, sequential 

models reflect their history (see Grifell-Tatjé and Lovell, 1999). However, sequential 

models suffer from sample size problem as the number of potential reference units 

changes as time progresses. The average and individual efficiency scores will 

decrease if the number of observations in the sample increases (Zhang and Bartels, 

1998), which happens in sequential models if time progresses. As alternative to 

sequential DEA, dynamic DEA (Emrouznejad, 2003 and Emrouznejad and 

Thanassoulis, 2005 and 2010) and network DEA (Chen, 2009) can be used specially 

for entities with capital input or when the data include inter-temporal input/output 

variables. 

A third procedure to handle panel data is a “window analysis” (Cooper et al., 2004). 

The procedure works in manner analogues to ‘moving averages’ as the evaluated 

observation in period t is evaluated with observations from period t-s to period t+s 

(with s the size of the window for which normally a sensitivity analysis is performed). 

Obviously, the best procedure to handle panel data depends on the research question 

and on the available data (see also Fried et al., 2008 for an extensive discussion).  

Finally, once the various decisions on the model specifications are taken, these are 

combined and the model is run. In the final description, it is important to justify each 

of the previous phases (e.g., why did the researcher opt for a VRS model with input-

orientation in a window analysis sample). The efficiency scores are initially reported 

and for each of the observations the weights, targets and slacks are carefully 

examined.  
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Figure 6. Performance comparison phase 

 

7. Evaluation 

Running a non-parametric model does not suffice for a meaningful analysis. In a fifth 

phase, the model and its results should be carefully reviewed according to the core 

objective of the study (systematically presented in Figure 7). The whole process (i.e., 

the preceding four phases) is reviewed and a list of possible actions is elaborated.  
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The evaluation phase starts with the evaluation of the results. Especially in large 

datasets, it is often difficult to interpret the results and to present them in a meaningful 

way. Summary statistics and visual tools can help to get additional insights. Even 

more important is the presentation for policy makers (or for those interested in the 

research). Interpreting radial efficiency scores is rather straightforward, whereas non-

radial scores are more difficult to interpret and present. By presenting the initial 

results to the decision makers, a first sounding board is possible.  

Closely related to this initial evaluation of the results is the review of the process. 

Having obtained the results, it is important to consider why particular observations are 

obtaining ‘odd’ results. These ‘odd’ results could arise from outliers remaining in the 

sample, from particular input-output combinations, or due to assumptions in the 

model (e.g., weight restrictions or CRS). Obviously, the results are what they are and 

a particular observation could not perform as efficient as expected (even after 

checking the assumptions). 

Still, particular observations could be influenced by the exogenous environment. 

Thanks to environmental characteristics, the observations could obtain a higher 

efficiency score when the characteristics are favourable and, as such, behave as an 

additional (but unmeasured) input. Contrarily, when the environmental characteristics 

are unfavourable, they behave as an additional (but unmeasured) output. Therefore, 

the environment where the entity is operating in should be included in the analysis. 

Several procedures exist (see below for the selection of the variables), such as the 

frontier separation approach, the all-in-one model, multi-stage models, bootstrapping 

techniques and conditional efficiency estimates (see Fried et al., 2008; Daraio and 

Simar, 2007). Each of these techniques has its peculiarities and drawbacks (see De 

Witte and Marques (2008) for a review). If the researcher opted not to include the 

operational environment in a first stage, it is definitely worth examining the influence 

of the environment in a second stage. Simar and Wilson (2007) developed a double-

bootstrap procedure which estimates the impact of exogenous characteristics on the 

production process (see also Fried et al. (2008) for a complementary intuitive 

explanation of the procedure).   

Different model specifications (both in terms of model assumptions as VRS, input-

orientation or environmental variable inclusion) could yield different outcomes, it 
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could also be interesting to see whether these outcomes significantly differ. Indeed, so 

if there is no significant difference between the several models, it matters less which 

model assumptions are specified. A Monte Carlo comparison of two production 

frontier estimation methods and a set of statistical tests were developed by Banker and 

Natarajan (2004). Post-hoc statistical tests (Schaffnit et al., 1998), regression analysis 

(Camanho et al., 2009) and classification and regression tree (Emrouznejad and 

Anouz, 2010) can be performed to investigate the impact of external factors on 

efficiency scores obtained in DEA. 

 

 

Figure 7. Evaluation Phase 

Besides evaluating heterogeneity, (one-stage) bootstrap procedures are applied to 

obtain statistical inference (Simar and Wilson, 1998). In particular, the bootstrap 
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estimates the noise (and bias) which arises from using the observed sample. By 

estimating the bias between the ‘true’ unobserved variables and the ‘biased’ observed 

variables, biased-corrected efficiency estimates can be obtained. By bootstrapping 

procedures also standard deviations and confidence intervals can be computed. This 

allows the researcher to report statistical inferences on the estimates.  

Finally, the evaluation phase is concluded by setting some list of possible actions for 

further improvement. If necessary, the researcher has to start again in the first phase 

and check again each of the sub-phases. Only when this loop of continuous 

improvements is finished, the next phase can be started.  

 

7.  Result and deployment 

In the final phase, the result and deployment phase, the proposed models are put into 

action (Figure 8). The entire process is summarized in a report (which refers to all 

previous deliverables). The report should clearly interpret the results and compare the 

final results under different model specifications. Indeed, presenting different model 

specifications will allow the evaluated entities to present themselves as well as 

possible. If the entity is ranked low in different model specifications, it is more 

difficult to argue that its ranking arises from the model.  

In their search for continuous improvements, the entities could try to assess their 

efficiency internally. Therefore, the researcher could decide to use an off-the-shelf 

DEA package (e.g., Emrouznejad and Thanassoulis, 2010 and Emrouznejad, 2005) or 

to develop a software package (with instructions for novice users). Combined with or 

independent from the software package, a document including some technical 

information should be delivered in order to be able to repeat the non-parametric 

analysis.  

Finally, a well documented report containing some information on how to improve 

the efficiency should be delivered. Any suggestion for improvement has to arise from 

the non-parametric model. Thanks to the software package, entities will be able to 

experiment with changes in particular variables. The recommended report has to be 

written from the point of view of the decision makers. Any technicalities should be 
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bundled in specific sections. The DEA results and interpretations have to be explained 

as clearly and simple as possible.  

 

 

Figure 8. Result and deployment phase 

 

8. Conclusion 

This paper provides a framework to deal with large data samples which are difficult to 

oversee. When different stakeholders have different objectives, when different data 

sources could differ in quality, when model techniques could result in different 

outcomes, a uniform approach to assess performance is advised. A standardized 

model will make non-parametric assessments more reliable, more repeatable, and less 

costly.  

We proposed a framework which consists of 6 interrelated phases: (1) Concepts and 

objectives, (2) On structuring data, (3) Operational models, (4) Performance 
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comparison model, (5) Evaluation, and (6) Results and deployment. Abbreviated, we 

obtain the ‘COOPER-framework’. The framework provides both support and a step-

by-step plan for the novice researcher, as well as a check-list for the experienced 

researcher. It is a tool which can be further adapted and modified along the specific 

needs of the researcher. 

This paper also provides some interesting and promising lines for further research. 

Firstly, the Cooper-framework could benefit from the interaction with empirical 

applications. Indeed, a similar framework should never be finished and always be 

open for new developments. Potential applications of the framework consist of 

educational questions (e.g., the OECD Pisa dataset), business performance (e.g., 

World Economic Forum), consumer confidence, and the analysis of large statistical 

databases (e.g., on company performances). The practitioner applying the framework 

to a particular application may tailor the framework to his/her specific needs. 

Secondly, although extending the idea of the framework from the outlined DEA 

model to alternative methodologies (FDH, SFA and parametric models) is rather 

straightforward, not every phase and checklist item is applicable. We consider it as 

further research to create a similar framework for other methodologies. Finally, the 

framework will definitely benefit from new developments in the academic literature. 

As computing power grows and methodological advances are made, the phases will 

further evolve.  
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Appendix: Systematic presentation of references 

Phase Sub-phase  Task/Problem Solution/Method Reference 

Concepts and 

objectives 

DEA goals - To understanding the objectives, the 

production process and the requirements 

from stakeholders.  

DEA vs performance 

indicators 

Charnes et al., 1978; Thanassoulis, 2001; Ray, 2004 and Zhu, 

2003  

On structuring 

data 

Describe and 

explore data 

- To get familiar with the data. Data description / data type Cook and Zhu, 2006 and Zhu and Cook, 2007 

    Summarisation and 

visualisation 

Grinstein et al., 2002 

  Quality of data - To identify data quality, 

- To discover and detect any data 

irregularities. 

 

Missing data Kao and Liu, 2000 and Kuosmanen, 2009  

    Negative data Emrouznejad et al., 2009 and Portela et al., 2004 

    Zero data Thompson et al., 1993 

    Ratio data Emrouznejad and Amin, 2009 

    Noisy data Zhu and Cook; 2007, Simar and Wilson, 2007 

    Atypical observations Charnes et al., 1985; Andersen and Petersen, 1993; Simar, 

2003; Sousa and Stosic, 2005; Langford and Lewis, 1998 

Operational 

models 

Parametric 

models 

- To investigate possibility of using 

parametric vs non-parametric models, 

within these whether to use deterministic 

or stochastic models. 

Deterministic models Greene, 2008; Kumbhakar and Lovell, 2000 

    Stochastic models Meeusen and van den Broeck, 1977; Kumbhakar and Lovell, 

2000 

  Non-parametric 

models 

- To specify an appropriate non-

parametric model. 

Data Envelopment Analysis Charnes et al., 1978; Fried et al., 2008 ; Thanassoulis, 2001 

and Ray, 2004 

    Free Disposal Hull Deprins et al. 1986; Daraio and Simar, 2005 

    Robust FDH/DEA Cazals et al., 2002; Daraio and Simar, 2007 

    Stochastic DEA Sengupta, 1998 and Ruggiero, 2004 
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    StoNED Kousmanen and Kortelainen, 2007 

Performance 

Comparison 

Define PPS - To define the base for the DEA model 

including selection of variable returns to 

scale and inclusion of any value 

judgments. 

Input/output Banker et al., 1989; Cook and Zhu, 2008; Dyson et al., 2001 

    Returns to scale Banker et al., 1984; Podinovski, 2004; Simar and Wilson, 

2002; Kittelsen, 1993; Banker and Natarajan, 2004 

    Value Judgement Allen et al., 1997; Pedraja-Chaparro et al., 1997; Podinovski, 

1999 

  Select measure - To select the input/output variables. 

- To investigate radial and non-radial 

measure of efficiency including additive 

and slack-based measure. 

Input/output orientation Thanassoulis, 2001 and Ray, 2004 

    Additive / multiplicative 

models 

Charnes et al., 1985; Färe and Lovell, 1978; Cooper et al., 

1999; Portela and Thanassoulis, 2002 

    Non-radial De Borger and Kerstens, 1996 

  Panel data - To examine the use of panel data 

techniques, 

- T o study the use of productivity 

measurement. 

Productivity measure Fare et al., 2004; Cooper et al., 2004 and Chen, 2009;  

    Window analysis Cooper et al., 2004 

    Dynamic DEA, network 

DEA 

Chen, 2009; Emrouznejad and Thanassoulis, 2005, 2010; Fare 

et al., 1996 and Sengupta, 1995 

Evaluation Statistical test - To evaluate the model more thoroughly, 

- To review the selected inputs-outputs, as 

well as the model specifications using 

statistical inferences,  

- To verify the process, 

- To make sure nothing important has 

been ignored. 

Monte Carlo Banker and Natarajan, 2004 

    Post-hoc statistical tests Schaffnit et al., 1998 

    regression analysis  Camanho et al., 2009 

    classification and regression 

tree  

Emrouznejad and Anouze, 2010 

    Bootstrapping Simar and Wilson, 1998 

Results and 

deployment 

Deployment - To develop a software package or a 

repeatable procedure, 

-To list possible actions from DEA results. 

Software Emrouznejad and Thanassoulis, 2010; Emrouznejad, 2005 

 


