
From the Physics of Interacting Polymers to
Optimizing Routes on the London Underground
Chi Ho Yeung ∗, David Saad ∗ , and K. Y. Michael Wong †

∗The Nonlinearity and Complexity Research Group, Aston University, Birmingham B4 7ET, United Kingdom, and †Department of Physics, The Hong Kong University of

Science and Technology, Hong Kong

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Optimizing paths on networks is crucial for many applications, from
subway traffic to Internet communication. As global path optimiza-
tion that takes account of all path-choices simultaneously is com-
putationally hard, most existing routing algorithms optimize paths
individually, thus providing sub-optimal solutions. We employ the
physics of interacting polymers and disordered systems to analyze
macroscopic properties of generic path-optimization problems and
derive a simple, principled, generic and distributed routing algorithm
capable of considering simultaneously all individual path choices. We
demonstrate the efficacy of the new algorithm by applying it to: (i)
random graphs resembling Internet overlay networks; (ii) travel on
the London underground network based on Oyster-card data; and
(iii) the global airport network. Analytically derived macroscopic
properties give rise to insightful new routing phenomena, includ-
ing phase transitions and scaling laws, which facilitate better under-
standing of the appropriate operational regimes and their limitations
that are difficult to obtain otherwise.

Routing | Optimization | Transporation Networks | Communition Networks |
Disordered Systems | Polymers

Introduction
Path optimization affects many of our daily activities. While
much attention has been dedicated to routing algorithms for
Internet applications such as instant messengers and peer-to-
peer systems [1, 2], many other essential routing applications
have attracted less attention; from water distribution net-
works [3], sensor networks [4], military convoy movements [5]
to journey planners [6, 7]. In many applications, enormous
costs are incurred due to traffic congestion or non-essential
and redundant capacity. Due to the computational costs in-
volved, most existing routing algorithms are static and based
on selfish decisions, with non-adaptive routing tables indi-
cating the shortest path to destinations regardless of local
traffic [8, 9]. Dynamic routing protocols do exist, but they
are either heuristic, probabilistic or insensitive to other indi-
vidual path decisions which dynamically constitutes the traf-
fic [10, 11]. A more global approach that takes into account
all individual path decisions is crucial for efficient use of over-
stretched infrastructure. For instance, one may suppress con-
gestion by minimizing overlaps with other routes, or decrease
the number of active nodes by consolidating paths to reduce
infrastructure demands or energy consumption. The latter is
particularly important in the context of the Internet as it can
consume up to 4% of the electricity generated [12]. Future ap-
plications include individualized routing and optimal resource
management of pre-booked air and road traffic.

The difficulty in deriving a globally-optimal algorithm, in
contrast to greedy local ones, lies in the simultaneous assign-
ment of multiple interacting paths to minimize a global cost,
as the optimal path between any particular source-destination
pair depends on all other paths choices. Such interaction is
highly non-local, as paths between different source-destination
pairs may partially overlap. Existing algorithms either ig-
nore these interactions [8, 9], or use heuristics to approxi-
mate them [10, 11]; both approaches result in sub-optimal

solutions. A substantial effort has been devoted to the de-
velopment of highly efficient routing methods, for instance
multi-commodity flow algorithms [13, 14, 15, 16, 17, 18, 19].
However, most methods are based on weighted linear objective
functions and real variables and aim specifically at satisfying
capacity constraints; they have limited flexibility in address-
ing the variety of non-linear cost functions one may want to
optimize in different scenarios, especially concave costs and
integer variables. A more detailed discussion is provided in
Section S4 of the SI Appendix.

Here we employ statistical physics-based methods used in
the study of interacting polymers [20] and spin glasses [21, 22]
to obtain both a macroscopic description of the routing prob-
lem and microscopic solutions for given instances; the latter
leads to a simple, generic and distributed routing optimization
algorithm. The algorithm resembles message passing tech-
niques that have been developed independently in a number of
disciplines [21, 23, 24] and have been successfully applied to a
variety of problems from prototyping [25] to solving hard com-
putational problems [26] and control of complex systems [27].
Here we demonstrate the potential and efficacy of our routing
algorithm by applying it to random networks, individualized
routing on the London subway network and the global airport
network. Together with other benchmark tests described in
the SI Appendix, we demonstrate that our algorithm achieves
better optimization compared to existing heuristics and state-
of-the-art approximation algorithms in various routing scenar-
ios; moreover, it is distributed, principled and does not require
fine-tuning of free parameters.

In addition to the significant algorithmic advances, several
macroscopic phenomena including a phase transition, scaling
rules as a function of network size and non-monotonic growth
in mean path length as a function of traffic volume are re-
vealed; these cannot be obtained by numerical studies and
provide new insights and understanding of optimal routing on
sparse networks.

Model
Consider a system of M polymers interacting on a network
of N nodes. Each node i = 1, . . . , N is connected to ki

neighbors denoted by the set Li and the connectivity ma-
trix Aij = Aji = 1 when i and j are connected and zero
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otherwise. Each polymer ν =1, . . . , M has two fixed ends and
occupies a path described by a self-avoiding walk on the net-
work, i.e. consecutive segments occupy topological neighbors
and each polymer ν goes through a node at most once. We
denote the variable σν

i = 1 when polymer ν occupies node i
and σν

i = 0 otherwise, and the number of polymers occupying
i as Ii =

P
ν σν

i . To penalize or encourage polymer overlap,
we define the Hamiltonian H to be a non-linear function of
the normalized flow λi = Ii/M , namely

H = M
X

i

φ(λi). [1]

The analytic solution and derived algorithm are generic for
any φ. While the current framework focuses on undirected
polymers and costs which incur at vertices, it is clear that
in some applications costs incur at the edges and edges may
be directed and weighted. Our framework, derivation and al-
gorithms accommodate costs on edges (using a factor graph
representation) as well as directed and weighted polymers,
making them suitable for most routing scenarios. The deriva-
tion and corresponding algorithms are given in SI Appendix
Sec. S3. We would like to point out that the algorithm pre-
sented below already accommodates directed traffic.

This model is equivalent to a setting of M source-
destination pairs, which we term communications, each of
which occupies a path on a network with N nodes. The vari-
able λi is thus the normalized traffic on node i and H the cor-
responding cost function. In the physical framework and the
zero-temperature limit, we minimize H to obtain the ground
state of the system or the optimal path configuration of the
corresponding routing system. Some simple forms of H are
already meaningful, for instance φ(x) = xγ , where the cases
with γ > 1 penalize overlaps to suppress congestion while
γ < 1 encourages overlaps to aggregate traffic [28, 29, 30].
The case of γ = 1 reduces to H ∝ Pν(

P
i σν

i ) whose ground
state corresponds to shortest-path routing.

Methods
Theoretical Approach.The main obstacle in accounting for
the interaction between paths is in keeping track of the cost at
local nodes or edges while maintaining path-integrity between
the two end points and avoiding redundant loops. Therefore,
in addition to the cost at the various nodes, given by Eq. (1),
we introduced a technique used in polymer physics [20], in the
study of self-avoiding walks [31, 32], to enforce the appropriate
path constraints.

The method is based on representing each node as an n-

component vector ~S of length
√

n. Denoting the angular in-

tegration over ~S as
R
¯ d~S, it has been shown [20] that all

positive moments of Sa vanish in the limit n → 0 except the

second moment 1
Cn

R
¯ d~SS2

a = 1 for any component a in ~S,

where Cn =
R
¯ d~S is a normalization constant. It then im-

plies that when n → 0 all nonvanishing terms that contribute
in

NY
i=1

�
1

Cn

Z
¯

d~Si

�
Sx,aSy,a

Y
(kl)

�
1 + Akl

~Sk · ~Sl

�
[2]

are of the form Axk1Ak1k2 · · ·AklyS2
x,aS2

k1,aS2
k2,a · · ·S2

kl,a
S2

y,a,
where ki represents the i-th node index of the correspond-
ing path/polymer segment; these sequences represent self-
avoiding paths over nodes (x, k1, k2, . . . , kl, y), joining the end
nodes x and y [20]. Each node that is part of these paths
incurs a cost as in Eq. (1); a sum over all possible paths of all

communications provides the partition function Z, as detailed
in SI Appendix Sec. S1.1. To obtain typical macroscopic prop-
erties one needs to average Z over topologies (given a degree
distribution) and node-pair choices, termed quenched disor-
ders in statistical physics. This requires the use of the replica
or cavity methods of spin glass theory [21, 22], as presented
in SI Appendix Sec. S1.

The aim of the analysis is two-fold: (1) At the macro-
scopic level, we derive the stable traffic distribution P (I) in
the limit of very large systems to obtain the average cost (en-
ergy) 〈E〉 = 〈φ(I/M)〉, the average path length, given by
the total occupancy divided by M , i.e. 〈L〉 = N

M
〈I〉, and

the average fraction of idle nodes given by fidle = 〈δ(I)〉, de-
tailed in SI Appendix Sec. S1.4. Angled brackets denote an
average over P (I), which includes averages over all variable
states for a given network and over choices of network and
end-point instances. (2) At the microscopic level, the cavity
based analysis [33] translates to an algorithm which optimizes
path configuration in a principled, distributed and computa-
tionally efficient manner.

Optimization algorithm.The analytical solutions for infinite
systems translate into an optimization algorithm valid for fi-
nite systems, as detailed in SI Appendix Sec. S2. The derived
algorithm is based on sending a couple of messages aν

j→i and
bν
j→i at the zero temperature limit, from node j to node i for

each index ν; these characterize the energy contributions of
communication ν at edge j → i, originated from the source
and destination directions, respectively. The messages take
the form:

aν
j→i =8>>>>>>>><>>>>>>>>:

min
l∈Lj\{i}

�
aν

l→j

�−min

24−φ′(λν∗
j ), min

l,r∈Lj\{i}
l6=r

�
aν

l→j + bν
r→j

�35 ,

Λν
j = 0

− min
l∈Lj\{i}

�
bν
l→j

�
, Λν

j = 1

∞, Λν
j = −1

[3]

bν
j→i =8>>>>>>><>>>>>>>:

min
l∈Lj\{i}

�
bν
l→j

�−min

24−φ′(λν∗
j ), min

l,r∈Lj\{i}
l6=r

�
aν

l→j + bν
r→j

�35 ,

Λν
j = 0

∞, Λν
j = 1

0, Λν
j = −1

[4]

where Λν
j = +1,−1 for source and destination, respectively,

and is zero otherwise; the general cost function φ and the set
of nodes in the neighborhood of node j is denoted as Lj . The
value of λν∗

j is given by the solution of λν
j in

λν
j =

1

M
+

1

M

X
µ6=ν

(
|Λµ|

+(1− |Λµ|)Θ
0@−φ′(λν

j )− min
l,r∈Lj

l6=r

�
aµ

l→j + bµ
r→j

�1A9=; ,

[5]

The step function Θ(x) takes values Θ(x) = 0, 0.5, 1 for
x < 0, x = 0 and x > 0, respectively. Solutions of Eq. (5)
are obtained by setting λν

i = I/M and a test integer I start-
ing from I = 0 until a self-consistent λν

j is found. Finally,
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after the set of messages in Eqs. (3) and (4) converges to
non-fluctuating values, the optimal configuration of path ν on
each node j is given by

σν
j = |Λν |+ (1− |Λν |)Θ

0@−φ′
�
λν∗

j

�− min
l,r∈Lj

l6=r

�
aν

l→j + bν
r→j

�1A ,

[6]

where λν∗
j is the solution of Eq. (5) after convergence, and

σν
j = 1 if the communication ν passes through node j and

zero otherwise. The generalized algorithms which accommo-
date weighted and directed communications, generic costs on
nodes and edges, as well as separate costs defined on directed
edges are given in SI Appendix Sec. S3. The computational
complexities of these algorithms are discussed in SI Appendix
Sec. S2.2.

In some instances the iterative equations fail to converge,
this suggests that solution space in the infinite system case is
fragmented and non-ergodic; this corresponds toreplica sym-
metry breaking (RSB) [21, 22],a complicated energy landscape
with numerous local minima that typically hinder algorithmic
convergence (details in SI Appendix Sec. S5). This is typi-
cal in the case of hard computational problems. Convergence
is improved by assigning a random bias εi to each node [34],
akin to an external field, guiding the system to one of the
local minima. These biases can be easily incorporated in the
present formulism by replacing φ(x) with φi(x) for each node
i such that φi(x) = φ(x)+xεi. In cases where a large number
of source-destination pairs are identical, we further replace
εi by εν

i for each communication ν to break the degeneracy
brought about by Eq. (5). Details can be found in SI Ap-
pendix Sec. S2.1.

Results
Microscopic Solution - Finding Best Paths.Employing the
suggested algorithm, we can optimize path choices using the
cost H ∝ Pi Ii

γ . We illustrate the characteristic results ob-
tained by applying the algorithm using two costs, with γ = 2
(convex, γ > 1) and γ = 0.5 (concave, γ < 1), to a system
of 10 source-destination pairs communicating on a random
regular graph with N = 50 and k = 3 as shown in Fig. 1.

Figure 1(a) demonstrates how a cost with γ > 1 penalizes
congestion: the blue, orange and violet communications are
routed via non-shortest paths to avoid overlap, especially in
the central congested part of the network. This holds when
traffic is heavy and one aims to distribute it uniformly. In
contrast to the reduced-congestion solutions, Fig. 1(b) shows
solutions obtained for H ∝ Pi Ii

0.5, aimed at concentrating
traffic. More specifically, the blue, orange and violet commu-
nications are all routed via the central congested part of the

Fig. 1. Optimized path configurations on a regular random network. The net-

work comprises 50 nodes (each with k = 3) and 10 source-destination pairs. The

corresponding costs are (a) H ∝ Pi Ii
2, and (b) H ∝ Pi Ii

0.5. The path of

each communication is illustrated by nodes and edges of a specific color, while black

nodes are shared by more than one path. The size of a node is proportional to the

amount of traffic through it, and square nodes represent source or destination of each

communication.

network that mainly consists of source and destination nodes,
making best use of these nodes as relays and leaves many of
the other nodes idle. In the case of the Internet or transporta-
tion networks, idle nodes can be switched off to save resources.

To demonstrate the efficacy of the algorithm for more real-
istic systems we examine the performance of the algorithm on
the London subway network based on real passenger source-
destination data obtained by the Oyster card system [35]. We
report results for vertex costs only, but similar pictures have
been obtained for edge costs and directed traffic. Figure 3(a)
shows how congestion is reduced by the algorithm when γ = 2
is used and traffic is fairly uniform even in the central region
(see inset), at the cost of longer individual routes for global
optimization. Table 1 shows that the cost E =

P
i I2

i ob-
tained by our algorithm is 20.5% smaller than that of the
shortest path configuration obtained by the commonly used
Dijkstra algorithm [9], with only a slight increase in average
path length by 5.8%. Practically, traffic optimization of this
type may be achieved through differential pricing, or by auxil-
iary information provided either individually or globally. On
the other hand, when γ = 0.5 is used, paths for the same
passenger set are consolidated at major routes and stations
as shown in Fig. 3(b). While the size of some of the nodes
increases, other branches such as the ones passing through
“Holborn” and “Great Portland Street” (see inset) are all but
idle. This scenario may be relevant at times when the service
is reduced for some reason, for instance a strike or at late
evening; service on the shared branches can remain active
while the frequency of other less-loaded services decreases.

To better compare the solutions obtained in the two sce-
narios, we plotted the corresponding traffic at individual sta-
tions for the London underground data set in descending order
(for γ = 0.5) as shown in the inset of Fig. 2. The optimized
states of γ = 2 show less traffic for overloaded stations and
higher traffic for less-loaded ones; for instance, “Green Park”.

Similar experiments were carried out on the global air-
port network [36]. Applying the optimization algorithm (3-4)
to the data one obtains the results presented in Fig. 2 and
Fig. 5. Similar trends to those of the subway network are
observed: air-traffic consolidates at airports that are on main
routes in the case of γ = 0.5, such as Frankfurt, Toronto
and Beijing; while several popular airports such as Tokyo,
Newark and Hong Kong show a reduced air-traffic in the case
of γ = 0.5 represented by the red line. Table 1 shows the
cost obtained by our algorithm when γ = 2 is 56% lower than
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Fig. 2. Optimized traffic at individual airports and London subway stations (inset).

The airports and stations are plotted in descending order of traffic in the optimized

state of H ∝ P
i Ii

0.5 (red lines). Symbols (×) in blue correspond to the op-

timized traffic with H ∝ Pi Ii
2. Squared symbols refer to airports and stations

mentioned in the text that are much higher than the red lines. The optimized airport

traffic is obtained from the single instance shown in Fig. 5 and the optimized subway

traffic is obtained by averaging over the 30 passenger sets as in Table 1.
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γ = 2 γ = 0.5

EP−ED
ED

LP−LD
LD

EP−ED
ED

LP−LD
LD

London subway network −20.5± 0.5% +5.8± 0.1% −4.0± 0.1% +5.8± 0.3%
Global airport network −56.0± 2.0% +6.2± 0.2% −9.5± 0.2% +8.6± 1.2%

EP−EMC(α∗)
EMC(α∗)

LP−LMC(α∗)
LMC(α∗)

EP−EMC(α∗)
EMC(α∗)

LP−LMC(α∗)
LMC(α∗)

London subway network −0.70± 0.04% +0.72± 0.10% No existing algorithm
Global airport network −3.09± 0.59% +0.90± 0.64% for comparsion

Table 1. A comparison of average cost E =
P

i Iγ
i and path length L = 1

M

P
i Ii obtained by our algorithm (P), the Dijkstra algorithm

(D) and the modified min-cap congestion aware algorithm (MC) [13] at individual optimal α∗ for each instance. Results are averaged over
sets of source-destination pairs recorded in each 1 minute interval between 8:30 am – 9:00 am on one Wednesday in November 2009 for
the London subway network, and 5 sets of 300 randomly drawn source-destination pairs for the global airport network. The values after
the ± signs indicate to the corresponding standard error.

Fig. 3. Optimized traffic on the London subway network. A total of 218 real passenger source-destination pairs are optimized, corresponding to 5% of data recorded by the

Oyster card system between 8:30am - 8:31am on one Wednesday in November 2009 [35]. The network consists of 275 stations. The corresponding costs are (a) H ∝Pi Ii
2,

and (b) H ∝ Pi Ii
0.5. Red nodes correspond to stations with non-zero traffic. The size of each node and the thickness of each edge are proportional to traffic through

them. Insets: zoom on the central region. Nodes are drawn according to their geographic position.

that obtained by the Dijkstra’s shortest paths, with a slight
increase in path length of 6.2%. This may be due to the
availability of a large number of alternative paths in airport
network. We note that a lower cost is also achieved in the
cases of γ = 0.5. These results show that our algorithm op-
timizes a given generic cost, at a price of modest increase in
the average path length.

To evaluate the performance of the suggested algorithm
(with γ = 2 only) we compared our results against those
obtained using a representative state-of-the-art congestion-
aware routing algorithm, which we call the min-cap (MC)
algorithm [13], based on multi-commodity flow. As the latter
aims to optimize a linear cost, we have introduced a tunable
parameter α such that the quadratic cost is optimized by an
extensive search for an optimal α∗ (see SI Appendix Fig. S8).
Details are found in SI Appendix Sec. S4. We emphasize
that this comparison is limited to congestion-aware algorithms
(γ ≥ 1) as we have not identified existing efficient optimiza-
tion algorithms for concave costs that facilitate route consol-
idation, e.g. the results shown in Figs. 1(b), 3(b) and 5(b).

Table 1 shows a modest gain in cost over the optimized
MC results at individual α∗ for each run, far less than the
gain obtained with respect to Dijkstra’s algorithm. Neverthe-
less, our algorithm provides a lower energy for all α values,
unachievable by the MC algorithm even after fine-tuning (see
SI Appendix Fig. S8). Our algorithm also results in shorter
average path length L in addition to lower cost E in ran-

dom regular graphs (see SI Appendix Table S1), used as a
controlled benchmark problem. Moreover, it is distributed,
principled, does not require fine-tuning of free parameters
and, most importantly, has the flexibility to accommodate any
(non-pathological) cost function designed to address specific
needs.

Path Adaptivity. Figure 4 illustrates the adaptivity of our al-
gorithm after removing the London subway station “Bank”
(black node). Nodes and edges which show an increase (de-
crease) in optimized traffic are colored red (blue), respectively,
with their size and thickness proportional to the magnitude of

Fig. 4. Changes in optimized traffic in the central London subway network after

the removal of the station “Bank” (black node). The corresponding costs are (a)

γ = 2 and (b) γ = 0.5. Nodes and edges which show an increase (decrease) in

traffic appear in red (blue), where their size and thickness correspond to the magni-

tude of increase (decrease). Nodes and edges with no traffic changes appear in white

and black, respectively. Passengers source-destination pairs are identical to those

of Fig. 3, except for the removal of pairs starting or ending destinations in “Bank”.
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Fig. 5. Optimized traffic at individual airports of the global air network. A total of 2480 airports constitute nodes while edges represent the existence of direct flights

between airport pairs [36]. Since the real demand in terms of source-destination pairs is unavailable, it was artificially generated by selecting a set of 300 randomly drawn

source-destination pairs. Red nodes correspond to airports with non-zero traffic; the size of nodes indicates the air-traffic through particular airports, edges are omitted for

clarity. (a) For H ∝Pi Ii
2 traffic is routed to be almost uniformly distributed to reduce congestion. (b) For H ∝Pi Ii

0.5 air-traffic consolidates at the main hubs.

increase (decrease). Nodes and edges with no traffic changes
are in white and black, respectively. In the case of optimiza-
tion using γ = 2, the original traffic through “Bank” is re-
routed either via “Embankment” or via “Old Street”. This
re-distribution of traffic cannot be achieved by ordinary algo-
rithms such as routing tables, shortest-path or minimal weight
routing without taking into account the interaction between
paths.

On the other hand, in the case of γ = 0.5, almost all the
original traffic through “Bank” is diverted to “Old Street”.
As the original traffic via “Bank” is substantial (see inset of
Fig. 3(b)), significant changes at some stations have to be
made, although only a small number of stations are subject
to re-routing compared to the case of γ = 2.

Macroscopic Behavior in Routing. In addition to the micro-
scopic solutions obtained, we would like to explore the macro-
scopic behavior of the system. We first examine the depen-
dence of average path length 〈L〉 on the number of interacting
communications M . Random regular networks, Erdös-Rényi
(ER) and scale-free (SF) graphs are studied as they serve
as standard benchmark problems and resemble overlay net-
works on the Internet. Theoretical results are obtained by
solving numerically a set of recursive equations described in
SI Appendix Sec. S1.4; simulation results are obtained us-
ing Eqs. (3) and (4). The inset of Fig. 6(a) shows results
obtained for random regular graphs. Two remarkable phe-
nomena are observed for both γ = 2 or γ = 0.5: (i) average
path length 〈L〉 peaks at intermediate M instead of increasing
monotonously; (ii) it approaches asymptotically the shortest
path L1 as M →∞ (formally, the value of 〈L〉 when M = 1).
Small deviations between theory and simulations are due to
finite size effects.

The observed non-monotonic trends imply the existence
of interesting routing phenomena. In the case of γ = 2, it

implies that the system is very sensitive to congestion in the
intermediate range of M . Particularly when M is small, many
communications are routed through longer routes as they face
stiff competition for shorter ones. However, as M increases
further, traffic become more homogeneous and 〈L〉 decreases
since communications are routed via shorter routes as longer
ones are equally congested, matching the experience of frus-
trated drivers on congested roads. This is reflected in the
lower cost obtained by our algorithm in comparison with Di-
jkstra algorithm, which peaks at 20% for intermediate M as
shown in Fig. 6(b). Similar trend is observed for γ = 0.5
as different communications co-operate to share routes in the
intermediate range of M . As M increases further, traffic be-
comes more homogeneous and there is less advantage to prefer
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Fig. 6. Dependence of the optimized state on the number of communications.

(a) The rescaled path length (〈L〉 − L1)(N/ log N) and (b) the cost differ-

ence (〈E〉D − 〈E〉P )/〈E〉D (D and P stand for the Dijkstra algorithm and our

algorithm respectively), as a function of the rescaled number of communications

M/(N/ log N), for random regular graphs with N = 100, 200, 500, 1000
and k = 3; results were obtained for H ∝ P

i Ii
2. The value of L1 in

(a) corresponds to the value of the shortest path〈L〉. Insets: (a) 〈L〉 and (b)

(〈E〉D − 〈E〉P )/〈E〉D as a function of M for N = 100 on random regular

graphs of degree k = 3, with cost exponents γ = 2 and γ = 0.5. The error bars

for simulation results are of the order of the symbol size. All simulation results are

averaged over 2000 realizations.
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a busy but longer route, making shorter routes more cost-
effective. We note that the peak in 〈L〉 for the case of γ = 2
occurs at a smaller M value compared to γ = 0.5, implying
that traffic homogeneity is achieved at smaller M in the case
of γ = 2.

While similar behaviors are observed for ER graphs (see
SI Appendix Sec. S6), SF networks show a much slower de-
crease of 〈L〉 after attaining its maximum, possibly due to
the intrinsic node degree inhomogeneity which leads to traffic
inhomogeneity even at large M . This suggests that shortest-
path routing is effective when M is large and topology is ho-
mogeneous, but not in networks with high degree variability.

The scaling property of path lengths is shown in Fig. 6(a).
Rescaled path length (〈L〉 −L1)(N/ log N) with γ = 2 at sys-
tem sizes N = 100, 200, 500 and 1000, plotted as a function of
the rescaled number of communication, M/(N/ log N) fall on
top of each other almost identically. A similar data collapse
is also observed in ER graphs shown in SI Appendix Sec. S4.
It implies that the non-monotonic behavior observed for path
lengths, and thus the network sensitivity to congestion, de-
pend on M and N only through M/(N/ log N). The latter
is roughly proportional to the average traffic on a node since
log N is proportional to the average shortest distance between
any two nodes in random regular networks [37, 38] and ER
graphs [39]. In other words, the optimal behavior of routing
on these graphs depends only on the average node traffic, re-
gardless of system size and number of communications. The
rescaling also appears in the reduced cost obtained by our al-
gorithm as shown in Fig. 6(b). Note that theoretical results
have been obtained in the infinite system limit; finite N val-

ues have been introduced here merely to determine the scaling
properties of M .

We have also examined the fraction of idle node as a func-
tion of γ. This revealed a phase transition, an abrupt change
in the fraction of idle nodes around the γ = 1 value (see SI
Appendix Fig. S11 and Sec. S7). The implication is that even
a small change in the power γ is sufficient to effectively power
down unnecessary routers or close redundant subway stations,
with little impact on the cost or average route length.

Discussion
Optimal routing is one of many hard problems on networks
that one should tackle in order to use limited and usually over-
stretched resources efficiently. The common characteristic of
these problems is their global nature and thus the difficulty
in solving them at both macroscopic and microscopic levels
with limited computational resources. By applying methods
from the physics of interacting polymers and disordered sys-
tems we obtained typical properties of routing problems and
derive a readily applicable, principled, generic, distributed
and adaptive routing algorithm. Improvements over state-
of-the-art algorithms in the intermediate traffic regime where
M ∼ N log N are considerable but are modest in the very
sparse and dense traffic regimes. These findings will have di-
rect impact on a number of different research areas of practical
and societal relevance, from traffic to communication and lo-
gistics; but more importantly, may open the way for solving
many other crucial and non-localized problems on networks.
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