

A Language for Self-Adaptive System Requirements

Jon Whittle, Pete Sawyer, Nelly Bencomo

Computing Department,
InfoLab21,

Lancaster University,
Lancaster LA1 4AW, UK

Betty H.C. Cheng
Department of Computer Science and

Engineering,
Michigan State University,

East Lansing, MI 48824, USA

ABSTRACT

Self-adaptive systems have the capability to autonomously
modify their behaviour at run-time in response to changes in
their environment. Such systems are now commonly built in
domains as diverse as enterprise computing, automotive control
systems, and environmental monitoring systems. To date,
however, there has been limited attention paid to how to
engineer requirements for such systems. As a result, self-
adaptivity is often constructed in an ad-hoc manner. In this
paper, we argue that a more rigorous treatment of requirements
relating to self-adaptivity is needed and that, in particular,
requirements languages for self-adaptive systems should include
explicit constructs for specifying and dealing with the
uncertainty inherent in self-adaptive systems. We present some
initial thoughts on a new requirements language for self-
adaptive systems and illustrate it using examples from the
services domain.

1. Introduction
A system has goals that must be satisfied and, whether these
goals are explicitly identified or not, system requirements should
be formulated to guarantee goal satisfaction. This fundamental
principle has served systems development well for several
decades but is founded on an assumption that goals are fixed. In
general, goals can remain fixed if the environment in which the
system operates is stable. Hence, for example, using
conventional development techniques and systems
infrastructures, banking systems can be developed on the
assumption that the fundamental characteristics of the financial
services industry remain stable. However, in the 1980s,
deregulation caused fundamental changes to the UK financial
services industry. So significant were these environment
changes that UK banking systems had new goals. Many existing
systems had to undergo costly changes and completely new
systems had to be developed to adapt to the new environment.
Deregulation of the UK financial services industry caused
fundamental changes to banks’ operating environments but this
change took place over a period of time that was sufficiently
long to allow developers to make the necessary system
adaptations. Increasingly, there is a demand for systems whose
environment changes at a rate that necessitates the system to
adapt in real time and with minimal intervention of developers.

As an example, a mobile device may need the ability to adapt in
order to take advantage of new services as they come in range
and become available. The goals of such a system may remain
constant (e.g., to provide users with access to communication
and information services) but subtle trade-offs in how they are
satisfied may be necessary. For example, the choice of service to
use may be constrained by a preference for certain service
providers that may not always be available. The need for such
trade-offs poses significant challenges for system developers but
it is also possible to envisage systems where the environment is
so volatile that the goals themselves change, and change so fast
that systems need to adapt at run-time. (We acknowledge,
however, that at the highest level of abstraction, invariant goals
exist that indicate the fundamental services that must be
provided by an adaptive system.)
Consider, for example, an autonomous vehicle designed for use
in hazardous environments. One of its goals is to extinguish
fires. It is a valuable vehicle so it also has a goal to preserve its
capability to fight future fires, perhaps specified as (amongst
others) a requirement that the temperature of the vehicle’s
casing must be maintained below some threshold value. If
operating at the scene of a chemical fire (say) where the fire is in
danger of reaching a tank of explosive chemicals, however, the
second goal may have to be relaxed or disappear. Hence, in such
circumstances, it may be better to allow the vehicle to remain in
position spreading fire-suppressant chemicals for longer than
guarantees the vehicle’s survival, if this offers the best chance of
avoiding an explosion. Note that there is an implicit trade-off
between the two goals and it is easy to hypothesise
circumstances where, even in non-emergency situations, the
state of the environment might mean that achieving both goals
was infeasible.
Quite aside from the obvious challenges of implementing such a
self-adaptive system (although great strides in developing
adaptive infrastructures have been made in recent years [9]), it is
difficult to specify requirements to satisfy goals that:

• may change in the sense that their priority in relation to
other goals may evolve;

• may disappear, as in the case of the self-preservation goal
above;

• may have been unanticipated by the analyst.

Clearly, this final category is beyond the capabilities of existing
technologies, yet it is not outside the scope of the vision of fully
autonomic computing such as that articulated in [6]. Existing
requirements techniques are unsuited even to the expression of
the first two classes of goal. Mandating goal or requirement
satisfaction using the traditional “shall” (the vehicle shall ensure
its own survival) is unhelpful because it does not allow
requirements to be relaxed. Simply picking a different modal
verb (the vehicle should ensure its own survival) doesn’t help
much. Fit Criteria [11] may be used to define different levels of
requirement satisficement but their principal role is to define
how to verify a requirement. It is important to retain this crucial
role for fit criteria and not conflate it with the separate issue of
the specification of uncertainty. Traditional behavioural
modelling techniques are poorly suited also, although notations
such as i* [15], that allow the analyst to model NFR (non-
functional) trade-offs go some way to help. However, these
typically support only enumeration of alternative goals that are
known at design time.

This paper makes the first steps towards defining a requirements
language that addresses the first two problems identified above.
We sketch out a vocabulary that allows analysts to mark
requirements that may be relaxed at run-time and embody this in
a requirements engineering language, RELAX. Our ultimate aim
is to address uncertainty in requirements to support self-adaptive
systems development, in a way such that the uncertainty can be
specified declaratively rather than by simply enumerating all
alternative goals. Doing so will enable run-time adaptation
modules to reason about goal satisfaction at run-time in such a
way that critical goals are never jeopardised but non-critical
goals may be left unsatisfied temporarily. The paper also
outlines a process for translating traditional requirements into
RELAX requirements. This process supports requirements
engineers who must determine points of flexibility in their
requirements.

The paper is structured as follows. Section 2 outlines RELAX.
Section 3 applies it to an example from the smart office domain.
Section 4 describes related work and is followed by conclusions
and a discussion of further work.

2. RELAX: a Requirements Engineering
Language for Self-Adaptive Systems
In this section, we present our initial work towards a
requirements engineering language, RELAX, for self-adaptive
systems. RELAX is based on two fundamental principles:

• In practice, most requirements are written as textual
documents.

• Requirements for self-adaptive systems should build
in flexibility in the way that goals are satisfied or
traded-off against each other.

As a result, RELAX is a textual requirements language that
includes a vocabulary for identifying explicit points where
flexibility is allowed. Furthermore, since understanding where
points of flexibility are allowed (or disallowed) is generally
difficult, we propose a requirements process that guides
engineers in modifying a set of traditional requirements into a
set of RELAX requirements.

2.1 Vocabulary for Identifying Flexibility

Typically, textual requirements prescribe behavior using a
modal verb such as SHALL (or WILL) that defines actions or
functionality that a software system must always provide. For
self-adaptive systems, however, such statements are overly
prescriptive and requirements should instead mark explicit
points where the system is free to trade-off or relax
requirements. We propose a specific vocabulary for expressing
these kinds of requirements. This vocabulary enables
requirements engineers to explicitly identify requirements that
should never change as well as requirements that may change
under certain conditions. Our vocabulary currently includes the
following keywords.

2.1.1 Modal verb:
SHALL – we retain the conventional modal verb for expressing a
requirement. This is because, even in self-adaptive systems,
some requirements are forever invariant.
However, for a requirement that contributes to the satisfaction of
goals that may be temporarily left unsatisfied, the inclusion of a
temporal or ordinal RELAX-ation modifier will define the
requirement as RELAX-able. In such a case, the requirement
statement should also define the conditions for RELAX-ation
using the MONITOR and ENVIRONMENT keywords (which
are explained under Section 2.1.4).

2.1.2 Temporal RELAX-ation
We currently offer three temporal modifiers, as follows.
AS CLOSE AS POSSIBLE TO <frequency> – expresses a
requirement that something occurs repeatedly but the frequency
may be relaxed. The ideal frequency of occurrence is defined
but the modifier allows one to represent uncertainty about the
frequency and which conditions in the environment will permit
frequency relaxation. The requirement will be completely
satisfied if the actual occurrence is periodic and at the ideal
frequency. If this is unachievable, however, the system should
ensure that the event occurs periodically at a frequency that is as
close to the ideal as conditions permit, or aperiodically at a mean
frequency that is as close as is achievable to the ideal. The
clause implicitly mandates the system to opportunistically adapt
in order to achieve as close to the ideal frequency and as close to
being periodic as is feasible.
AS EARLY AS POSSIBLE AFTER <event> – expresses a
requirement that an event occurs immediately after the defined
event or, if that is not possible, with minimal delay. Again,
implicit in the clause is the requirement that the system adapts to
minimize the delay whenever an opportunity to do so occurs.
EVENTUALLY – expresses the requirement that something must
occur. How soon it occurs is less important but eventual
occurrence must be guaranteed, by adaptation of the system if
necessary.

2.1.3 Ordinal RELAX-ation
RELAX also supports the following ordinal modifier.
AS {MANY|FEW} <subject> AS POSSIBLE – permits one to
mandate that the system maximizes or minimizes some
occurrence. Again, opportunistic adaptation is implicitly
required of the system.

2.1.4 Alternative RELAX-ation
A straightforward case is to enumerate alternatives, any of
which might satisfy a goal (and the system may choose
autonomously):
MAY <behaviour> OR <behaviour>

2.1.5 Defining the conditions for RELAX-ation
RELAX-able requirements should also define conditions for
when they can be relaxed. These conditions give guidance to the
self-adaptive system as to when and how adaptation decisions
can be taken. Each RELAX-able requirement specifies two
additional pieces of information labeled by the following two
condition keywords.
MONITOR <property+> – defines the set of properties that need
to be monitored by the executing system in order to evaluate the
state of the environment.
ENVIRONMENT <property+> – represents a projection on or a
viewpoint of the set of properties that define the system’s
environment, and that are needed to evaluate the temporal or
ordinal RELAX-ation conditions.
The MONITOR and ENVIRONMENT properties will be the
same in many cases. Since ENVIRONMENT captures the “state
of the world” and MONITOR defines properties to be
monitored, then if the state can be monitored directly,
ENVIRONMENT and MONITOR will coincide. Often,
however, environmental variables cannot be monitored directly
because, for example, they are not observable, and so
MONITORable properties that provide evidence on the state
must be monitored instead.
We make no claim that the RELAX vocabulary is complete.
Rather, we have so far identified the temporal, ordinal and
alternative categories of RELAX-ation modifiers. It is probable
that others will be needed for some problem domains. The set of
keywords identified here represents our first attempt to define a
useful RELAX vocabulary, based on a number of example
systems studied thus far.

2.2 Process for Deriving RELAX
Requirements from Traditional
Requirements

Defining a vocabulary for specifying flexible requirements is but
the first step towards a requirements methodology for self-
adaptive systems. Identifying points of flexibility is itself a
difficult task. We therefore propose a process for developing
RELAX requirements based on an existing set of traditional
requirements in the form of SHALL statements. This process is
based on the assumption that those requirements for which we
will accept sub-optimal satisfaction are not somehow ‘obvious’.
Rather, we expect requirements engineers to be able to write
down SHALL statements fairly easily, using standard elicitation
techniques. The requirements engineer should then carefully
examine each SHALL statement to see if there are opportunities
to relax it and, indeed, if relaxation should be allowed. The steps
in the process are given below and shown in Figure 1:
1. Derive a set of requirements expressed in the traditional

way, by making every requirement implicitly mandatory
using the modal verb SHALL.

2. For each SHALL statement, consider whether it must
always be satisfied no matter what, or whether it could be
relaxed under certain circumstances. In the former case,
leave the SHALL statement as is. In the latter case,
consider how well can it be satisfied under different
conditions and at what cost to the available computational
or data resources. Requirements for which sub-optimal
satisfaction is acceptable (RELAX-able requirements) imply
that some form of adaptation may be necessary to make the
best use of the available resources according to the degree
of satisfaction that is acceptable. Replace the SHALL with
the appropriate RELAX modifier.

3. For each RELAX-ed SHALL statement, analyse the
environment, with the express purpose of identifying
environmental volatility that is likely to be manifested at
run-time and that is likely to lead to relaxing the
satisfaction of the requirement. The goal of this step is to
identify characteristics of the environment which will
determine whether or not the requirement should be
relaxed. Ultimately, the environment states may be discrete
(as in the case of domains in [4]) or continuous. Capture the
relevant characteristics of the environment using the
RELAX ENVIRONMENT keyword.

4. For each RELAX-ed SHALL statement, identify the
observable properties of the environment which determine
whether or not to relax the requirement. Capture these
using the MONITOR keyword. As stated earlier,
ENVIRONMENT and MONITOR will coincide except in
the case when environmental properties cannot be directly
sensed.

Figure 1: RELAX Process.

Note that implicit in this process is the likelihood that trade-offs
in requirement satisfaction will be necessary. It is inevitable,

therefore that several passes through the requirements will be
necessary to establish what those trade-offs should be.
Note also that the process describes a way of incrementally
building up a model of the environment. This is in contrast to
including an explicit task to model the environment. The latter is
difficult in practice because it is hard to understand which
environmental factors might be relevant. Following the RELAX
process, the relevant environmental characteristics are driven by
the requirements, and, in particular, the relaxable requirements.

3. Example

We illustrate RELAX with an example from the smart office
domain. The following scenario gives the context of the
example:
Alice stores her personal office data using a number of handheld
and fixed computing devices. She carries two PDAs with her: a
Blackberry, which is principally used for business contacts, and
an iPhone, which is mainly for personal contacts. In addition,
Alice’s desktop computer in her office maintains a business
contact database and Alice’s business partner, Joe, also
maintains business contacts on both his desktop (in an adjacent
office) and a set of PDAs. Alice’s office is a state-of-the-art
smart room, which detects Alice’s arrival every morning and
initiates a data synchronization process to ensure that Alice’s
Blackberry, iPhone and desktop, and Joe’s desktop, all maintain
a consistent list of business contacts. This synchronization
process is repeated every 30 minutes as long as Alice is in the
room. (Note that only business contacts which are also personal
contacts are stored on Alice’s iPhone.) The synchronization
process is driven by Alice’s desktop, which acts as a centralized
controller for this process. The smart office environment,
therefore, ensures data integrity and consistency at all times,
enabling Alice to maximize her productivity without danger of
losing important contact information.
In addition to this scenario, new devices (e.g., new PDAs) may
be added at any time. This is done by a connection procedure
initiated by Alice. Similarly, Alice may disconnect devices.
Finally, Alice may act as an administrator and may abort the
synchronization process if desired. This can be initiated from
any of the connected devices.
Given the task of deriving requirements for this smart office
environment, a traditional requirements engineering process
might result in the list of requirements given in Table 1.
This set of requirements represents the ideal situation. Note the
use of the SHALL keywords to prescribe behaviours that must
be present in the final system. Given these requirements, a
designer might implement the synchronization process as a two-
phase commit protocol which would distribute data to all
connected devices, except in the case of failure, in which case
the system would roll back so that devices use a previous
version of the data consistently.
The designers of the smart room, however, would like to build
in self-adaptivity to make the system more flexible in an
uncertain environment. For example, network outages or device
malfunctions could mean that it may not always be possible to
consistently synchronize all devices. In this case, instead of
rolling back (which may result in Alice missing important new

business contacts), the system might be able to find another way
of reaching a malfunctioning device (e.g., by communicating via
a neighboring PDA or other networking medium, such as
Bluetooth).

Table 1: Traditional Requirements for Alice's Smart Office.

Synchronization
S1: The synchronization process SHALL be initiated when
Alice enters the room and at 30 minute intervals thereafter.
S2: The synchronization process SHALL distribute data to all
connected devices in such a way that all devices are using the
same data at all times.
Connection
C1: An authorized device SHALL be allowed to connect at any
time.
C2: Once connected, current data SHALL be distributed to the
device immediately.
Disconnection
D1: A device SHALL be allowed to disconnect at any time.
Aborting
A1: An administrator SHALL be allowed to abort data updates
at any time. The system rolls back to the previously used data.

Of course, a requirements engineer could make an analysis of
the existing requirements and derive specific instances where
adaptivity, such as the example given above, might be desired.
In such a case, one could easily reformulate the requirements.
For example, S2 could be modified to the following statement:

S2: The synchronization process SHALL distribute
data to all connected devices in such a way that all
devices are using the same data at all times. If a
device is malfunctioning, synchronization SHALL
be carried out by communication with a
neighbouring device.

The problem with this approach is that the requirements
engineer must enumerate all possible points where adaptivity
might be required. The result, in effect, would be a tree of
alternative requirements, where each path through the tree
defines a possible behaviour of the system. In particular, this
approach would not allow for unanticipated adaptations because
possible behaviours are only those predefined by the set of
enumerations.
Instead, the RELAX process allows for specific points of
flexibility or uncertainty to be identified, but does not mandate a
discrete set of alternatives. In this way, potentially unanticipated
adaptations are allowed, as long as they conform to the
declaratively specified flexibilities in the requirements.
We continue with the smart office example and show how to
apply the RELAX process to incorporate explicit flexibilities
into the requirements in Table 1. In essence, the process
systematically examines each requirement and asks under which
environmental conditions the requirement might not be
satisfiable. For each such environmental condition, the
requirements engineer should then ask: (i) Does it matter that the
requirement cannot be satisfied? (ii) Is adaptation required to

enable satisfaction of the requirement? If (ii), then the
requirement is augmented to use the RELAX vocabulary and to
include aspects to MONITOR and aspects of the
ENVIRONMENT, as discussed in Section 2.1.
To illustrate, consider requirement S1. Now imagine that the
requirement cannot be satisfied for some reason – perhaps,
communication links are broken, or perhaps the smart office
system is redeployed in a different environment where devices
have different characteristics. In either case, synchronization
may not be possible every 30 minutes. Following RELAX, we
modify S1 to a new requirement S1’ as follows:
S1’: The synchronization process SHALL be initiated when
Alice enters the room and AS CLOSE AS POSSIBLE TO 30
minute intervals thereafter. MONITOR: actual synchronization
intervals. ENVIRONMENT: connection between devices that
might adversely affect synchronization interval.
The MONITOR slot here specifies quantities that should be
monitored by a design solution so that the inherent flexibility in
the requirement can be achieved. In this case, the system would
need to monitor how close the synchronization intervals are to
30 minutes and, if they repeatedly go beyond this threshold, it
would need to choose an alternative design. Note that the
requirement does not explicitly list alternative solutions and so a
run-time adaptation module could even download new design
solutions on-the-fly. The ENVIRONMENT slot determines
aspects of the environment that affect satisfaction of the
requirement. Taken as a whole, across all requirements, the
ENVIRONMENT descriptions define a model of the
environment relevant for the self-adaptive system.
In this example, the MONITOR and ENVIRONMENT
descriptions are the same. However, this need not be the case.
Generally, MONITOR defines variables that can be directly
observed. ENVIRONMENT defines contextual characteristics
that may not be possible to observe directly. Hence, there is an
analogy with control systems in which sensors may only be able
to measure particular variables but try to estimate true values for
non-observable variables related to the measured variables in
some way. (For example, estimate the position of an aircraft by
measuring the distance from known reference points.)
Table 2 gives the full set of modified requirements for the smart
office application. Consider the RELAX requirement for S2:

S2’: The synchronization process SHALL distribute
data to all connected devices in such a way that AS
MANY devices AS POSSIBLE are using the same
data at all times. Those devices not updated SHALL
know it. EVENTUALLY, all devices should use the
same data. MONITOR: number of non-updated
devices. ENVIRONMENT: number of consistent
devices.

S2’ in fact supports a high degree of flexibility that goes well
beyond the original requirements. It is up to the requirements
engineer, of course, to decide if such flexibility is really desired.
S2’ makes use of two RELAX keywords – AS MANY AS and
EVENTUALLY – to specify that temporary inconsistencies can
be tolerated.
We briefly comment on the remaining RELAX requirements in
Table 2. C1’ and D1’ both relax the immediacy constraint on
connection or disconnection of devices. To keep track of these
requirements, the average device (dis)connection times should

be monitored. C2’ is similar but concerns relaxation of
constraints on distributing data to new devices. A1 has been left
as is to illustrate that it is not mandatory to relax requirements. It
is perfectly acceptable, if the analyst deems it so, to mandate
strict requirements that should never be made more flexible –
that is, an invariant of the system.

Table 2: RELAX Requirements for Alice's Smart Office.

Synchronization
S1’: The synchronization process SHALL be initiated when
Alice enters the room and AS CLOSE AS POSSIBLE TO 30
minute intervals thereafter. MONITOR: synchronization interval
at each iteration. ENVIRONMENT: synchronization interval.
S2’: The synchronization process SHALL distribute data to all
connected devices in such a way that AS MANY devices AS
POSSIBLE are using the same data at all times. Those devices
not updated SHALL know it. EVENTUALLY, all devices
should use the same data. MONITOR: number of non-updated
devices. ENVIRONMENT: number of consistent devices.
Connection
C1’: A device SHALL be allowed to connect AS EARLY AS
POSSIBLE after it requests it. MONITOR: average device
connection times. ENVIRONMENT: number of devices
requesting a connection.
C2’: Once connected, current data SHALL be distributed to the
device AS EARLY AS POSSIBLE. MONITOR: average device
data update times. ENVIRONMENT: number of devices
requesting a connection.
Disconnection
D1’: A device SHALL be allowed to disconnect AS EARLY AS
POSSIBLE after it requests it. MONITOR: average device
disconnection times. ENVIRONMENT: number of devices
requesting disconnection.
Aborting
A1: An administrator SHALL be allowed to abort data updates
at any time. The system rolls back to the previously used data.

3.1 Towards Flexible Designs

RELAX requirements make no assumptions about how to satisfy
them in a design. RELAX requirements should be mapped into a
set of alternative designs between which the run-time system
can choose. The challenge is to structure the design alternatives
in such a way that design choices can be composed easily and
that supports the maximum degree of flexibility. Existing
methods from component-based design and/or software product
lines could be used for this purpose, as well as techniques used
for structuring knowledge-based systems, such as [13] in which
“open” components are described by preconditions and have
open slots where their behavior can be altered. No matter which
design strategy is employed, there needs to be a set of guidelines
for mapping the RELAX vocabulary concepts down to a chosen
structuring method (e.g., variation points in software product
lines).

4. Related Work
There has been growing interest in the specification of
requirements for self-adaptive systems (see, for example, [1,2]),
particularly using goal based models [4,7,8,10,14]. One of the
most prolific research efforts in this area is that undertaken by
Mylopoulos et al. [7, 14, 8]. Goal models and feature models are
used to specify possible behaviours of autonomic systems,
emphasizing the self-configuration, self-healing, and self-
optimization aspects present in self-adaptive systems. They use
goal models to capture variability in the problem domain.
Furthermore, they “try to capture all the different ways the
system’s goals can be achieved in that domain” [8]. This last
objective is very different from our aim since all possible
alternatives must be enumerated. Hence, unanticipated
adaptations are not possible. However, the approaches are
complementary as the goal models work cited above, including
our own work [4], can be leveraged and benefit from the
RELAX specifications proposed here.
A related topic is run-time monitoring of the environment to
assess requirements conformance (e.g., [3]). An important
contribution in this direction is the ReqMon framework [1].
ReqMon is used by analysts in the development of requirements
monitors in the domain of enterprise services. Using ReqMon,
the system can send a warning when the system has failed to
satisfy a specified requirement. ReqMon seeks to define a
language for requirements and definition of monitors, and
analyze monitor feedback. Complementary to this work, we
could map RELAX requirements to monitors specified using the
monitor specification language provided by ReqMon. Such a
combination of efforts could be a step towards enabling a self
adaptive system with run-time awareness of requirements (a
notion called “requirements reflection” by Finkelstein [2]).

5. Conclusions
This paper presented initial work defining RELAX, a new
language for the requirements specification of self-adaptive
systems. The RELAX philosophy and the vocabulary specified
so far explicitly acknowledges the need to deal with the levels of
uncertainty, which are unavoidable when introducing self-
adaptation capabilities to systems. To illustrate the viability and
benefits of languages like RELAX we have presented a realistic
example in the service-oriented domain.
RELAX allows analysts to specify “incomplete” systems, where
“incomplete” here does not imply poor specifications, but
instead acknowledges the possibility of a valid, yet unknown,
specific behaviour.
 Future work will continue to expand the vocabulary of RELAX
based on a number of industry case studies. We also plan to
explore the integration of RELAX specifications with goal-
based approaches that offer principled ways to structure the
different design alternatives that we speculate can be derived
from RELAX requirements. Furthermore, our vision is to rely
on run-time infrastructures that could support the realization of
those designs. More work is needed to support increasingly
sophisticated monitoring needs, such as adaptive monitoring to
respond to the changing environmental and system conditions.
Finally, we will explore the use of probabilistic logics [5] and

multi-valued logics to define the semantics of the RELAX
language.

6. References
[1] D.M. Berry, B.H.C. Cheng, and J. Zhang. The four levels of
requirements engineering for and in dynamic adaptive systems.
In 11th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ'05), Porto, Portugal,
2005.
[2] B. H. C. Cheng, J. Whittle, A. Finkelstein, N. Bencomo, J.
Magee, J.Kramer, S. Park, and S. Dustdar. Requirements
engineering section of software engineering for self-adaptive
systems: A research road map. 2008.
[3] S. Fickas and M.S. Feather. Requirements monitoring in
dynamic environments. In Second IEEE International
Symposium on Requirements Engineering (RE'95), 1995.
[4] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and
B. H.C. Cheng. Goal-based modeling of dynamically adaptive
system requirements. In 15th Annual IEEE International
Conference on the Engineering of Computer Based Systems
(ECBS), 2008.
[5] L. Grunske. Specification patterns for probabilistic quality
properties. In Proceedings of the 30th international Conference
on Software Engineering, ICSE '08, Leipzig, Germany, 2008.
[6] J.O. Kephart and D.M. Chess. The vision of autonomic
computing. IEEE Computer 36(1), (2003), 36(1), 2003.
[7] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu.
Towards requirements-driven autonomic systems design. In
DEAS '05: Proceedings of the 2005 workshop on Design and
evolution of autonomic application software, 2005.
[8] A. Lapouchnian, Y. Yu, S. Liaskos, and J. Mylopoulos.
Requirements-driven design of autonomic application software.
In Proceedings of CASCON 2006, 2006.
[9] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H.C.
Cheng. Composing adaptive software. IEEE Computer,
37(7):56–64, 2004.
[10] M. Morandini, L. Penserini, and A. Perini. Towards goal-
oriented development of self-adaptive systems. In SEAMS '08:
Proceedings of the 2008 international workshop on Software
engineering, 2008.
[11] S. Robertson and J. Robertson. Mastering the Requirements
Process. Addison-Wesley, 1999.
[12] W. Robinson. A requirements monitoring framework for
enterprise systems. Requirements Engineering, 11(1):17 – 41,
2005.
[13] J. Whittle and J. Schumann. Automating the
implementation of kalman filter algorithms. ACM Transactions
on Mathematical Software, 30(4):434–453, 2004.
[14] Y. Yijun, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and
J. Leite. From Goals to High-Variability Software Design,
volume 4994. Springer Berlin / Heidelberg, 2008.
[15] E. S. K. Yu. Towards modeling and reasoning support for
early-phase requirements engineering. In RE ’97: Proceedings
of the 3rd IEEE International Symposium on Requirements
Engineering (RE’97), Washington, DC, USA, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

