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Abstract 

This paper presents a predictive aggregation rate model for spray fluidized bed melt 

granulation. The aggregation rate constant was derived from probability analysis of 

particle-droplet contact combined with time scale analysis of droplet solidification and 

granule-granule collision rates. The latter was obtained using the principles of Kinetic 

Theory of Granular Flow (KTGF). The predicted aggregation rate constants were 

validated by comparison with reported experimental data for a range of binder spray rate, 

binder droplet size and operating granulator temperature. The developed model is 

particularly useful for predicting particle size distributions and growth using population 

balance equations (PBE).   
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1. Introduction 

It is widely accepted that the engineering of particulate processes is substantially less 

well understood than that of fluids.  Two difficulties are frequently encountered: the flow 

of solids is generally much more complex than that of fluids and particles can interact 

changing their size and shape at almost any point in a process.  As a consequence 

fully–predictive models of fluidized bed melt granulation (FBMG) are very rare. 

 

In FBMG molten binder is sprayed onto a bed of suspended particles. The frequent 

particle-particle collisions lead to bonding by solidification of the liquid bridges formed 

between the individual particles. Since the molten binder enters at a point and is then 

distributed around the bed, these processes are necessarily spatially inhomogeneous. 

The most widely used model for predicting the particle size distribution (PSD) and 

growth during granulation, namely, the Population Balance Equation (PBE), adopts a 

lumping approach, with part of the aggregation rate kernel derived from experiment. An 

active spray zone (see Fig. 1) is proposed in this paper to derive a purely theoretical 

model for predicting aggregation efficiency and aggregation rate constant, taking into 

consideration the spatially distributed processes. 

 

2. Theory  

The central assumption in a PBE model is that the aggregation occurs as a 

consequence of binary particle collisions.  By analogy to second order reactions, the 

rate for this process is given by: 
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212,1 NNragg               (1) 

where aggr  is the rate in units of [ sm3# ], 2,1 is the aggregation kernel for collisions 

between particles in size class 1 and 2 in unit of [ m
3 s], 1N  and 2N  are the numbers of 

particles per unit volume [ 3# m ].  

 

Hounslow (1989) has shown that 2,1  for FBMG can be decomposed into a size 

dependence component and an aggregation rate constant ( o ) such that, 
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where 1D  and 2D  are the particle size of class 1 and 2. The rate constant, o , can be 

obtained by fitting the PBE predictions of PSD to the experimental data. Combining Eqs. 

(1) and (2), gives the aggregation rate as follows:  
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In order to develop a theoretically based aggregation rate constant, Tan et al. (2004) 

derived an expression for o  by linking Eq. (3) with the collision rate obtained from the 

principles of Kinetic Theory of Granular Flow (KTGF), to give: 
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where   is a parameter representing the aggregation efficiency, s  and og  represent 

the mixture granular temperature and the radial distribution function respectively. The 
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latter, og , is function of the solid concentration. According to Tan et al. (2004), s  and 

og  can both be obtained from suitable models, such as that based on the KTGF, while 

  can be determined experimentally by fitting the measured particles size distribution 

into a PBE.  

 

In a previous series of studies we discussed the time scale for four microscopic events 

that contribute to the overall aggregation efficiency of the process. The theoretical 

models predicting the time scales of (i) granule-granule collision (Chua et al, 2011a) (ii) 

binder droplet spreading (Chua et al, 2011b) and (iii) droplet solidification (Chua et al, 

2011c) have been developed. A graphical summary of the ranges of these time scales 

have been presented in Chua et al. (2011a). In this paper, we make use of these models 

to demonstrate that such a theoretical approach can be further extended to predict the 

granulation efficiency ( ) and aggregation rate constant ( o ), two of the most important 

parameters for predicting particle size growth and distribution using the population 

balance equation. 

  

2.1. Aggregation rate 

In this analysis we are interested in expressing the aggregation rate in terms of mass 

instead of volume, i.e. per kg not m3 of bed, since reference to volume of the bed has 

little meaning– neither the actual volume of the bed, nor that of the region where 

aggregation occurs. Therefore, we write the mass based rate summed over the whole 

fluidized bed as: 
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where sM is the total mass in the bed, TN  is the number concentration per unit mass,   

is the aggregation efficiency,  collr  is the rate of granule-granule collision per unit volume 

and V  is the volume where aggregation takes place. 

 

Various functions for predicting the collision rate have been reported in the literature (e.g. 

Kapur et al., 1969; Goldschmidt, 2001; Darelius et al., 2005). Goldschmidt (2001) has 

shown that, within the context of a two-fluid model, the number of collisions between 

particles of phases 1 and 2 per unit volume per unit time can be given by: 

212,1 NNCrcoll               (6) 

where the collision rate constant is given by: 
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Following Tan et al. (2004), neglecting the divergence of the particle velocity field and 

assuming that all the particles are of equal density, Eqs. (6) and (7) can be combined to 

give: 
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Note that in Eq (8) we are assuming that  212,12 DDD  , where 2,1D  is the separation 

distance between two colliding particles 1D  and 2D  (centre to centre). Substituting Eq. 
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(8) in Eq. (5) after replacing the volume–based number, N , by the mass- based number, 

N  (i.e. ssNN  ), gives: 

      







 dVNN

DD
DDg

dt

Nd
Mr

s

s
sss

T
sagg 213

2
3
1

2
212,1,

2
2,1

113

2

1


   (9) 

 

2.2. Granulation  efficiency 

2.2.1. Probability of wetting 
We start by assuming that the drops do not overlap and that the wetted area per particle 

is equal to a droplet cross-sectional area multiplied by a constant.  It follows that for a 

particle with n  drops attached to its surface the probability that a contact point is wet is 

given by: 
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where od  and D

 

are the initial droplet and particle diameters. wk

 

is a constant relating 

the initial droplet diameter to the final diameter after spreading. In Chua et al., 2011b, we 

have shown that the constant wk  depends on the final equilibrium contact angle of the 

liquid binder with the spreading surface ( ) as follows: 
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If droplets collide with granules in an uncorrelated fashion, then over a time period t, the 

probability that the number of droplets on a granule’s surface is n , will be given by a 

Poisson distribution as follows: 
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where GD  is the droplet–granule collision time discussed below. It is not clear how 

many active droplets will be attached to the particle when it contact, however, we know 

that it is dependent on the duration of the time allowed for a particle to collect droplets. If 

we assume the maximum of this duration is equal to the droplet solidification time s  

then summing Eq. (12) over all values of n  and multiplying by Eq. (10) gives: 
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Both of the time scales, s  and GD  can be computed theoretically. In Chua et al. 

(2011c), we have shown that s   can be given by: 
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where l ,   and   are the binder density, thermal diffusivity and latent heat of fusion 

respectively, s  and psC  are the particle density and specific heat capacity respectively, 

mT  and sT  are the melting temperature of the binder and temperature of the particle 

respectively. We also have shown in Chua et al. (2011a) that the droplet-granule 

collision time, GD , can be given by the following Ballistic model (high-velocity droplets) 

(assuming a spherical sector spray zone): 
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Substituting Eqs. (14) and (15) in Eq. (13) gives the probability of wet surface contact as 

follows: 
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Now, making due allowance that this probability must be limited to 1, we write: 
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2.2.2. Aggregation efficiency 
We assume that the efficiency,  , can be expressed in term of the  probability of wet 

surfaces contact, wP , such that, 

 211 wP               (18) 

 

The use of Eq. (18) in the integral form of the aggregation rate given earlier in Eq. (9) is 

difficult; therefore, we make a simplification, without jeopardizing the solution accuracy, 

by assuming that Eq. (18) can be approximated by: 
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which then, after substituting wP  given in Eq. (16), reduces to the final efficiency form,  

   
 








 







 






r
D

dD

D

dD

rTTCk

Md
s

oo

smcpsw

DLo 



3

22

22222

2

2

3
exp

cos12

6
   (20) 

 



 9

Similar to the allowance used in Eq. (17), we limit the maximum aggregation efficiency 

to 1. A comparison of the aggregation efficiency values given by Eqs. (18) and (19) is 

shown in Fig. 2. Both expressions appear to exhibit the same behaviour with negligible 

numerical differences.  

 

2.3. Average aggregation rate constant 
In section 2.1 we have shown how a mass based aggregation rate [Eq. (9)] can be 

obtained by making use of collision rates obtained from the principles of KTGF. Now, 

comparing Eq. (3) with Eq. (9) lead to the following mass-based aggregation rate 

constant: 
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For mono-disperse granules, or where volume fraction does not vary with size, and 

defining the spray zone, of volume szV , as the region in which binder is available, Eq. (21) 

takes the form: 
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For a symmetrical spray zone in the form a spherical sector of half angle   (see Fig. 1), 

with   drrdVsz
2cos12   , the aggregation rate constant as a function of distance, r , 

from the spray zone tip is given by: 



 10

 




0

22
23cos13

drrg
M sso

s

s
o           (23) 

 

In order to calculate the rate constant, the integral part in Eq. (23) must be determined 

by, for example, evaluating the areas under the curves in Fig. 3.  Numerical evaluation 

of those integrals gives, for particle diameters of 175μm , 200μm  and 300μm  values for 

o  of 2.78x10-8 kgm-0.5s-1, 2.77x10-8 kgm-0.5s-1 and 2.84x10-8 kgm-0.5s-1 respectively. It is 

clear that o  is nearly constant for the three different sizes considered, thus in good 

agreement with the experimental observations of Tan et al. (2006).  

 

If for simplification we assume that the spray zone is hydrodynamically uniform, with s  

and s  independent of r , then Eq. (23) can be written to give an average aggregation 

rate constant as follows: 
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In this equation, the lumped quantity  2
s

 

 can be resolved from Computational Fluid 

Dynamic (CFD) simulation (see Chua et al., 2011) and og

 

is function of s . The quantity 

under the integral can be determined by making use of the approximate aggregation 

efficiency given in Eq. (20), such that: 
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Finally, substituting Eq. (25) in Eq. (24) gives the following approximate average 

aggregation rate constant: 
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In practice, this equation allows for the determination of the average aggregation rate 

constant once the granulator operating conditions are known. The hydrodynamic 

parameters, s  and s  can be obtained, to a good degree of accuracy, using available 

CFD techniques as we have shown in Chua et al. (2011a).  

 

2.4. Probability of liquid bridge rupture 
Previous experimental investigations by Tan et al. (2006) have shown that the bed 

temperature has two competing effects on the aggregation rate constant depending on 

the bed temperature: (i) enhanced binder spreading at low bed temperature, thus 

increasing the wet fractional coverage of the particle, or in other words, increasing the 

probability of granule-granule contacts at the wet surface (ii) granules breakage at high 

bed temperature close to the binder melting point, which is believed to be due to 

increasing probability of liquid bridge rupture with decreasing the binder viscosity. While 

the above proposed formulations indeed takes into consideration the effect of bed 

temperature on the aggregation rate constant through the binder solidification term, it 

lacks the appropriate formulation to account for this effect on the probability of liquid 

bridge rupture as the bed temperature increases (i.e. due to reduced binder viscosity).  
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For this purpose, it is proposed to quantify the probability of liquid bridge survival at high 

temperature by using Ennis (1991) force balance between binder viscosity and particle 

inertia expressed in terms of the Stokes number. The Stokes number is defined in terms 

of the ratio of initial particle kinetic energy to the energy dissipation at collision as follows: 
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where ou  is the inter-particle approach velocity (collision velocity) and   is the binder 

viscosity, given as function of temperature as follows (Chua et al. 2001b): 
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where T  is the temperature in Kelvin and  oT  = 273 K.  

 

From the principles of kinetic theory of granular flow, ou  can be obtained in terms of the 

granulation temperature,  , such that, 
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Thielmann et al. (2007) identified a critical stokes number, above which the liquid bridge 

rupture becomes effective, as follows: 
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where e  is the particle-particle restitution coefficient (taken here as 0.95), h  and ah  are 

the thickness of the binder layer and the characteristic measure of the particle surface 
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asperity respectively. Based on experimental evaluations for fine-grained particles, 

Krupp (1976) suggested a value of 0.1 µm for the surface asperity. Thielmann et al. 

(2007) suggested a value of 2.5 µm and Makkawi (2004) identified this to fall within the 

range of 0.08-6 µm for small glass beads in the range of 90-1850 µm. For the particle 

size and type considered in this study, an average value of ah = 5 µm is used. The 

binder thickness over the particle surface is estimated using geometrical analysis of 

binder base area and the contact angle, such that, 
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where   is the particle-liquid binder contact angle and fd  is the diameter of the final 

spreaded liquid droplet on the particle surface, given by owf dkd  (Chua et al., 2011b). 

Finally, and following a similar approach suggested by Thielmann et al. (2007), the 

probability of liquid bridge survival, sP  is described mathematically as follows,  
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where   is an adjustable parameter introduced due to uncertainly in the value of *St . 

According to Eq. 32, particles colliding with *StSt   are of low inertia that considerably 

dissipates upon collision; hence coalescence and subsequent liquid bridge solidification 

occur. Particles colliding with *StSt   are of high inertia that give rise to rebound after 

collision and hence, result in exponential decay of liquid bridge survival probability. The 

probability of survival obtained by using Eq. (32) is demonstrated in Fig. 4 for a selected 

range of parameters. Note that the probability of liquid bridge survival exponentially 
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decays after reaching a given bed temperature and then gradually approaches zero as 

the temperature gets closer to the binder melting point of 44 oC. 

 

Now, incorporating the proposed probability of liquid bridge survival in the aggregation 

rate constant, given earlier in Eq. (27), we obtain the following modified version: 
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3. Parametric analysis and model validation   
We present in this section comparison of the predicted aggregation rate constant with 

experimental data for a range of fluidized bed temperature, binder droplet sizes and 

spray rates. These three parameters play a major role in defining the fluidized bed 

granulator performance. 

 

3.1. Binder spray rate 
In the previous sections, we have shown, through theoretical modelling, that the 

aggregation rate constant is directly proportional to the binder spray rate [see Eq. (26)]. 

At the single particle level, the increase in binder spray rate will result in increasing the 

wet particle area, which upon collision may lead to successful agglomeration. Fig. 5 

shows a comparison between the calculated aggregation rate constant and 

experimental data obtained from Tan et al. (2006). The results confirm reasonable 

agreement between our model prediction and the reported experiment data. Most 
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important, this figure demonstrates the critical sensitivity of the fluidized bed granulator 

performance with respect to the binder spray rate.  

 

3.2. Binder droplet size 
In fluidized bed granulation, the binder droplet size is controlled by the atomizing air 

pressure. Fig. 6 shows the predicted aggregation rate constant in comparison with 

experimental data for an atomizing air pressure of 1 to 2 bars, which corresponds to a 

droplet size in the range of 18.5-39.5 m. It is clear that the predictions follow the same 

experimental trend and are quantitatively valid, especially at high binder droplet size. 

The results also indicate that, within the range considered, the aggregation rate constant 

increases with increasing binder droplet size. This is mainly due to the enhanced 

particles wetting and to the reduction in the binder solidification time, both are highly 

desirable features for successful aggregation (see Chua et al., 2011b,c). 

 

3.3. Fluidized bed temperature 
Fig. 7 shows the predicted aggregation rate constants, using Eq. (26) and its modified 

version Eq. (33), in comparison with the experimental data of Tan et al. (2006) for 

different bed temperatures. The aggregation rate constant given by Eq. (27) shows 

critical deviations as the bed temperature increases (T>34 oC). This is due to a 

recognized limitation of Eq. (26) in predicting the effect of liquid bridge rupture, which in 

this case is due to the decreased in binder viscosity. The modified equation [Eq. (33)], in 

which such an effect is incorporated through the probability of liquid bridge survival term, 

appear to show a relatively better match with the experimental data as indicated by the 
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dip in aggregation rate constant at high bed temperatures. However, it must be noted 

that such a corrective approach is critically sensitive to the parameters used and 

requires careful setting of the adjustable parameter , which in this case is equal to 30. 

 

An alternative approach to interpreting the data in Fig. 7 is to use the ratio of the 

predicted to the measurement aggregation rate constants  measuredopredictedo    for 

approximate quantification of the probability of particle breakage, or what we referred to 

by liquid bridge survival. This will not be discussed in this paper and it is open for future 

investigations and debate.  

 

4. Conclusion  

We have shown that the aggregation rate for spray fluidized bed granulation can be 

derived by combining a probability analysis of particle-droplet contact with time scale 

analysis of granule-granule collisions and droplet solidification rates. This is an important 

step for future development of new generations of theoretical models for the prediction 

of particle size distribution and size growth in a fluidized bed melt granulator. 

 

The model given by Eq. (26) provided quantitatively valid data and successfully 

predicted the experimentally observed linear relationship between the aggregation rate 

constant and the binder droplet size and injection rate. However, Eq. (26) is only 

accurate for low bed temperature, well below the binder melting point, or when the effect 

of liquid bridge rupture is negligible. To overcome this limitation, we proposed a modified 

aggregation rate constant [(Eq. (33)] by introducing liquid bridge survival probability term. 
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This appears to produce qualitatively improved predictions that are reasonably matching 

the experimentally observed behaviour at high operating temperature. However, Eq. (33) 

must be treated carefully as it is critically sensitive to the various parameters used and 

requires setting of an adjustable parameter. 
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Notation 

2,1C  collision rate constant (m3 s-1)   

psC  specific heat capacity of solid (J kg-1 oC -1) 

e  particle-particle restitution coefficient (-) 

fo dd  ,  spray droplet diameter before and after spreading respectively (m) 

2,1D  Inter-particle distance between two colliding particles (m) 

D  representative size of granule through granulation process (m) 

wk  ratio of final droplet cross-sectional area to initial droplet area (-) 

DM  droplet injection rate (g min-1) 

sM  mass of solid in granulator (kg) 

m  mass of a single particle (kg) 

n  number of binder droplets attached to a particle (-) 

N  number concentration of particle per unit volume (# m-3) 

N  number concentration of particle per unit mass (# kg-1) 

TN  total number of particles in the fluidized bed (-) 

WP  probability of wet contacts (-) 

nP  probability of n number of liquid drops on a particle (-) 

sP  probability of liquid bridge survival (-) 

r  distance from the spray nozzle tip (m)  

aggagg rr ,  volume and mass based aggregation rates respectively (# m-3 s-1, # kg-1 s-1) 

collr  rate of granule-granule collision (# m-3 s-1) 
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StSt,  Stokes numbers defined in Eqs. (27) and (30) respectively (-) 

ms TT ,  solid and binder melting point temperatures respectively (oC) 

t  time (s) 

su  solid velocity (m s-1) 

V  volume of the fluidized bed (m3) 

szV  

Greek symbols  

  thermal diffusivity (m2 s-1) 

2,1  aggregation rate constant for particle size classes 1 and 2 (m3 s-1) 

o  ,0  average volume and mass based aggregation constants (m5/2 s-1, kg m-0.5 s-1) 

s  solid mixture granular temperature (kg m2 s-2) 

  binder-particle equilibrium contact angle (degree)  

ls  ,  solid and liquid binder densities respectively (kg m-3)  

  latent heat of fusion (J kg-1) 

  aggregation efficiency (-) 

  adjustable parameter used in Eq. (32) (-) 

GD  droplet-granule collision time scale (s) 

S  binder solidification time scale (s) 

  spray zone half angle (degree) 

s  volume fraction of solid (-) 

og  radial distribution function (    131
max/1


  s ) (-) 
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  Viscosity of the binder (kg m-1 s-1) 

  particle-particle restitution coefficient (-) 
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Fig. 1. Schematic representation of spray zone in a fluidized bed spray melt granulator 
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Fig. 2.  Aggregation efficiency as function of the distance from the spray nozzle 
estimated using Eqs. (18) and (19). The parameters used in the equations are:  od 40 

m, l 1093 kgm-3, s 2500 kgm-3, 


DM 8 gmin-1,  155 kJkg-1,  5.7x10-7 m2s-1, 

pC 0.84 kJkg-1K-1, mT 44 oC, sT 34 oC,  22.5o,  35.0o.
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Fig. 3. Graphical determination of the average aggregation rate constant, o , for three 

different particle sizes using Eq. (23). o  is given by the area under the curve. 
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Fig. 4.  Probability of liquid bridge survival as function of the fluidized bed operating 
temperature estimated using Eq. (32). The parameters used are: liquid binder PEG1500 
with properties, od 20 m,  = function of temperature (see Chua et al. 2011b), 
22.5o,  0.012 m2s-2,  35.0o, 95.0 , D 300 m, oh = 5 µm ,2500 kgm-3, s
2500 kgm-3, n = 30. 
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Fig. 5. Comparison of experimental and predicted aggregation rate constant using Eq. 
(27). The experiment of Tan et al. (2006) was carried out with glass beads and PEG1500 
as a binder, spray nozzle pressure of 1.5 bar, fluidizing air velocity of 0.97 ms-1 and a 
bed temperature of 32 oC. The parameters used in the model are:  od 28.5 m, l
1093 kgm-3, s 2500 kgm-3,  155 kJkg-1,  5.7x10-7 m2s-1, pC 0.84 kJkg-1K-1, 

mT 44 oC,  22.5o, 


DM 8 gmin-1, s 0.04, sM 0.6 kg,  0.012 m2s-2,  35.0o. 
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Fig. 1. Comparison of experimental and predicted aggregation rate constant using Eq. 
(27). The experiment of Tan et al. (2006) was carried out with glass beads of primary 
size of 175 µm and PEG1500 as a binder, fluidizing air velocity of 0.97 ms-1 and a bed 
temperature of 32 oC. The parameters used in the model are: D 300 m, l 1093 

kgm-3, s 2500 kgm-3,  155 kJkg-1,  5.7x10-7 m2s-1, pC 0.84 kJkg-1K-1, mT 44 

oC, sT 32 oC,  22.5o, 


DM 8 gmin-1, s 0.04, sM 0.6 kg,  0.012 m2s-2, 
35.0o 
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Fig. 7.  Comparison of experimental and predicted aggregation rate constant using Eq. 
(26) and its modified version of Eq. (32). The experiment of Tan et al. (2006) was carried 
out with glass beads of primary size of 175 µm and PEG1500 as a binder, spray nozzle 
pressure of 1.5 bar and fluidizing air velocity of 0.97 ms-1. The parameters used in the 
model are: od 20 m, D 300 m, l 1093 kgm-3, s 2500 kgm-3,  155 kJkg-1, 

 5.7x10-7 m2s-1, pC 0.84 kJkg-1K-1, 


DM 8 gmin-1, mT 44 oC,  22.5o,  0.012 

m2s-2,  35.0o, 95.0 . 
 

 

 


