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Abstract— A fine control of the microstructured polymer fiber 

Bragg grating spectrum properties, such as maximum reflected 

power and 3-dB bandwidth, through acousto-optic modulation is 

presented. For simulation purposes, the device is modelled as a 

single structure, comprising a silica horn and a fiber Bragg 

grating. For similar sized structures a good correlation between 

the numerical results and the experimental data is obtained, 

allowing the strain field to be completely characterized along the 

whole structure. It is also shown that the microstructured 

polymer fiber Bragg grating requires less effort from the 

piezoelectric actuator to produce modification in the grating 

spectrum when compared with a silica fiber Bragg grating. This 

technique has potential to be applied on tunable optical filters 

and tunable cavities for photonic applications. 

 
Index Terms— Microstructured polymer optical fibers, 

Acousto-optic modulation, Fiber Bragg gratings. 

 

I. INTRODUCTION 

OLYMER optical fibers (POFs) are starting to be 

considered a viable alternative to silica fibers (SF) in 

applications such as short distance transmissions [1, 2], 

sensing [3, 4], Terahertz waveguides and filters [5], mainly 

due to their flexibility, larger core and simple connection. One 

of the major drawbacks pointed to POFs is the greater 

attenuation coefficient comparing to SF, a fact that limits their 

applications. However, recent studies show that the use of 

fluorinated polymers as core materials significantly reduces 

losses [6]. 

In-fiber Bragg gratings (FBGs) are pointed out as an 

interesting device for performing all-optical signal processing 
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and sensing, however most FBGs referenced in the literature 

are inscribed in SFs. On the other hand, for very short distance 

transmissions, POFs present advantages compared with 

conventional optical fibers, such as easy non-skilled handling 

and ruggedness. The scientific community has been 

investigating the possibility of inscribing FBGs in such fiber. 

A special type of POF is the microstructured POF (mPOF). Its 

geometry provides different properties compared to a step 

index fiber, such as an endlessly single-mode, air-guiding 

operation and the ability to expose the optical field of the 

guided modes to substances present in the holes. The first 

FBG inscribed in mPOF was obtained using a low-power 

helium cadmium (HeCd) laser at 325 nm [7]. The resulting 

Bragg grating had a Bragg wavelength (λB) of 1536 nm and a 

length of 10 mm. 

On the other hand, the acousto-optic (AO) effect is an 

important, fast and accurate mechanism that can be used to 

change and control several of the properties of Bragg gratings 

in SF and tapered fibers. It has been successfully applied in 

the design and construction of various low insertion loss all-

optical processing devices such as a tunable optical notch filter 

[8], tunable mode coupler [9], complex Bragg grating writing 

[10], gain equalization filter [11], among others.  

Concerning its mechanical properties, it is expected that the 

AO effect in mPOF would be more evident due to its lower 

acoustic impedance so improving the performance compared 

to the SF based devices. Therefore, this work demonstrates a 

fine control of the mPOF Bragg grating (mPOFBG) spectrum 

properties through the AO modulation. The interaction 

between an acoustic wave (AW) generated by longitudinal 

excitation and the written Bragg grating is presented. For 

simulation results, we apply the Finite Element Method (FEM) 

and Transfer Matrix Method (TMM) for designing an 

mPOFBG acousto-optic modulator (mPOFBG-AOM). The 

FEM approach allows the complete characterization of the 

strain field caused by the acoustic wave along the structure 

while the TMM is used to obtain the spectrum of the 

corresponding chirped grating. A similar theoretical approach 

is used to calculate the spectral response of an mPOFBG 

embedded in a host material system. Following the theoretical 

considerations, experimental results are also presented. 
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Experimental Overview 
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II. THEORETICAL BACKGROUND 

The FEM was introduced in the late 1950s in the aircraft 

industry [12]. The main advantages of the method are: the 

capability of modelling complex geometries, the consistent 

treatment of differential-type boundary conditions, and the 

possibility to be programmed in a flexible and general purpose 

format [13]. As the structure modelled here presents a variable 

shape along the longitudinal axis, the FEM is best suited to 

study the problem with the required accuracy. Fig. 1 shows the 

1-D discretization of the FBG-AOM, whose main parts are the 

silica horn and fiber containing FBG. The structure is 

composed of N one-dimensional elements of length Δz = LD/N 

separated by nodes, where LD is the total length of the FBG-

AOM. Each element is associated with a value that represents 

the area of the structure at that section. 

 
Fig. 1. Discretization of the FBG-AOM in linear elements. Each element has a 
characteristic function area. 

  

The differential equation of motion that represents the 

acoustic wave propagation in the structure is known as: 
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where u is the axial displacement, which is dependent on the 

position z and on the time t, and /du dz  is the longitudinal 

strain ɛ. The term ( )A z  accounts for the variable size of the 

structure along the z axis. E and ρ are the Young modulus and 

density, assumed to be 72.5 GPa and 2200 kg/m
3
 for the silica 

and 3GPa and 1180kg/m
3
 for the polymer, respectively. One 

assumption established was to neglect the damping of the 

acoustic wave in the structure. The initial and boundary 

conditions are defined as: 
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The external excitation ( )P t  is applied as the combination of a 

constant load (PDC) and a harmonic load of frequency w and 

amplitude P0 generated by the piezoelectric transducer (PZT). 

A classical linear approach for the finite elements is 

employed. After the one-dimensional discretization, the final 

matrix form of the problem is given by: 

, Mu Ku P                       (3) 

where u and u  represent the nodal displacement and 

acceleration vectors, respectively. The vector P is the nodal 

generalized force and has a null value, except for the first 

component, associated with the node at z = 0. In this 

expression, M and K are the mass and stiffness matrices of the 

structure, respectively, obtained by the superposition of the 

mass and stiffness matrix of each element, which are 

expressed as: 
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where superscript e represents an element with particular 

properties. For the simulation, the applied load is assumed as 

being a concentrated point load at the base (larger diameter) of 

the silica horn. Considering the excitation in the form of 

0      ( ) DCP P Pexp jwt and assuming a linear system, the 

solution of the problem can be found by solving the equations: 

, DC DC DCMu Ku P               (6) 

 

 0 . t tMu Ku P exp jwt             (7) 

Eq. (6) represents the contribution of the component, PDC, 

which is understood as a static pre-tension applied to the 

structure before the onset of the acoustic wave. Therefore, the 

acceleration is null and (6) can be reduced to: 

1
.DC DCu P

K
                  (8) 

Since the time dependent load generated by the piezoelectric is 

harmonic and 0tu , the solution for (7) has the form 

0 ( ).tu u exp jwt  After replacing it in (7) one obtains: 

 2

0 0  w M K u P               (9) 

Note that u0, the displacement vector solution, is highly 

dependent on the amplitude P0 and frequency w of the 

acoustic wave. Thus, the complete solution will be given by: 

0. DCu u u                  (10) 

Once the displacement field is obtained, the strain field in each 

of the finite elements can be found by differentiation, as: 
1

.
 




e e
e u u

z
                 (11) 

In this case, as the finite element is linear, u
e+1 

and u
e
 are the 

displacements in the local nodes e+1 and e, respectively. 

On the other hand, the result for a uniform grating is an 

effective refractive index (neff) perturbation in the core 

described by: 

   eff eff

2π
z   z 1  υcos z

Λ
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  
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where effn is the average change of the effective refractive 

index,  is the fringe visibility (assumed unitary in this work) 

and Λ is the grating nominal pitch. As the grating imposes a 

dielectric perturbation to the waveguide, it forces the coupling 

between the propagating modes. The theory of coupled-modes 

[14, 15] is a useful and very well proven tool for describing 

this behavior. The set of coupled first-order differential 

equations used to describe the propagation is given by: 

    ˆ   
dR

j R z S z
dz

              (13) 
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    *ˆ    
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dz
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where ( )R z  and ( )S z  represent the propagating and counter-

propagating modes, respectively; and the parameter k is 

defined as 

eff  n





.                  (15) 

In these equations ̂ represents the general ‘‘dc” self-coupling 

coefficient, which is written as a sum of two terms: 

eff
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In the first term called detuning, 
  2   D effn is the ‘‘design 

wavelength” for a Bragg scattering within an infinitesimal 

variation of the effective index (
  0) effn , i.e., a grating that 

is infinitely weak.   

This above described theory is applicable to uniform 

gratings, where the average refractive index change is 

constant. However, an acoustic wave will lead to a chirp in the 

grating, making its pitch non-uniform. Therefore, the 

reflection and transmission spectra from the two-mode 

coupling theory can be calculated by considering a piecewise 

approach, whereby the grating is divided into discrete uniform 

sections that are individually represented by a matrix. The 

solution is found by multiplying the matrices associated with 

each one of the sections. The characteristic equation is solved 

by equating to zero the matrix determinant. The resulting 

polynomial enables the determination of the eigenvalues. 

The grating of length L can be treated as a quadripole, as 

shown in Fig. 2. R and S represent the co-propagating and 

counter-propagating modes, respectively. 

 

Fig. 2. Bragg grating in the core of an optical fiber. 

 

For convenience, the amplitude (0)R  of the incident wave 

is normalized, in such a way that the maximum value is equal 

to the unit at the origin (z = 0). Splitting the grating in M 

uniform sections and defining 
iR  and 

iS  as amplitudes of the 

fields across the section i, the propagation is described by: 
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where 
B

iT is a 2x2 matrix given by   
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 where z  is the length of the i
th

 uniform section and 

2 2ˆ    B   . The coefficients ̂  and k have local values at 

the i
th

 section. Since the matrices for each section are known, 

the application of the boundary conditions, (0)  1 R  for   0z  

and   0S L  for  z L , causes the final equation to be: 
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The T11~T22 terms represent the grating amplitude and phase 

response of the first segment. From (20) one concludes that 

 
11

1
 R L
T

. Therefore, the reflected amplitude for each 

wavelength can be found as 
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and the reflected power will be given by  
2

  ( ) . r     

III. COMPUTATIONAL SIMULATION 

Fig. 3 shows the steps of the algorithm for the acousto-optic 

effect simulation. First, one is concerned with the input of the 

FBG-AOM dimensions, such as the radius and the length of 

the silica horn and the length of the Bragg grating. In the 

second step the FEM is used to model the device, whereby a 

desired load is applied to the base of the silica horn. The result 

is the strain field calculated along the structure. However, only 

the strain field in the FBG region is used as the input to the 

Transfer Matrix method. The shift of the design wavelength 

along the z-axis as a function of the strain field is assumed as: 

      0   1 1     D D ez p z            (22) 

where pe  is the photoelastic coefficient and ( )z  is the strain 

field calculated in the previous step through Eq. (11). It is 

important to note that this equation establishes the connection 

between the two methods. Finally, in the fourth step the TMM 

method gives the reflected and transmitted FBG spectra. The 

structure is designed using 26000 nodes/m. Each point along 

the structure corresponds to one element node. The quantity of 

nodes in the FBG region depends on its length. For example, 

for LGrating = 10 mm, there are 260 elements in the grating 

region, which is enough to obtain an accurate strain field for 

resonance frequencies in study. The number of sections in the 

TMM is chosen to be the same as the number of elements used 

in the FEM for the grating region. In the example, the discrete 
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structure is excited with different acoustic wave frequencies of 

load amplitudes P0 = 1.5 N and PDC = 0 N, where P0 will vary. 

 

 
Fig. 3. Block diagram of the FBG-AOM simulation. 

 

The mechanical properties of the mPOF can be achieved 

applying the theory of homogenization [16] or applying 

concepts of mixture rules of composite materials [17] used in 

this work. In order to adjust the FEM applied to a 

conventional FBG, the effective Young's modulus is 

calculated for the mPOFBG subtracting the equivalent amount 

of material on the homogeneous polymer fiber. Thus, the 

effective transversal area is given by: 

2( )
4

 eff hA A n d


              (23) 

where n is the number of holes, dh  is the diameter of each hole 

and A is the transversal area of a circle with the same diameter 

of the fiber. This way, the effective Young's modulus for the 

mPOF is given by: 

,
eff

eff

A
E E

A
                 (24) 

,
eff

eff

A

A
                    (25) 

where ρ is the density of the polymer. Knowing the effective 

area, the effective Young's modulus and the effective density, 

one can calculate the stiffness and mass matrices, used in the 

FEM analysis, treating the mPOFBG as a homogeneous 

conventional fiber [18]. The application of FEM to the mPOF 

model can be performed assuming geometrical symmetry for 

both main directions within transversal section. Here, we also 

consider the dimensions of the fiber used (SF or mPOF). 

IV. SIMULATION RESULTS AND DISCUSSION 

When an acoustic wave is coupled into a fiber where an FBG 

is inscribed it generates a standing mechanical wave. A 

detailed study of the natural vibration modes of the 

mechanical structure can be found in literature [22] and the 

main results will be summarized briefly here for completeness. 

The FEM modal analysis using a commercial software 

(ANSYS) showed that: (i) most low frequency resonant modes 

generate flexural acoustical waves; (ii) longitudinal resonant 

modes are mostly observed in high frequency regimes (the 

acoustic longitudinal wavelength is small and the structure 

does not support the existence of flexural waves); (iii) at low 

frequency regimes, in an hybrid mode the flexural regime is 

dominant but there is also an interaction with a low frequency 

longitudinal acoustic wave. Flexural acoustic waves cause 

microbendings in the fiber and reduce the FBG reflectivity 

consequently. The effect of the longitudinal wave in the FBG 

modulation plans depends on its frequency namely the 

relationship between the acoustic wavelength and the FBG 

length. If the acoustic longitudinal wavelength is lower than 

the FGB length, the strain field transferred to the FBG has 

both compression and rarefaction and additional bands appear 

on both sides of the grating reflection spectrum. When the 

longitudinal wave is equal or longer than the FBG length the 

compression and/or rarefaction strain field will result in a shift 

of the Bragg wavelenght or even cause a linear variation in the 

grating period (chirp). 

 

A.  Strain field behaviour 

Fig. 4 shows the modulator response (PZT is coupled to the 

horn-fiber system) in terms of fiber displacements, which is 

decomposed into axial (z direction) and transversal 

displacements (xy direction). Although all analyzed acoustic 

modes have both components of the displacement field, the 

longitudinal acoustic waves are characterized by the larger 

displacements in z direction. The transversal displacements 

are due to lower amplitude flexural oscillations which are 

polarized in xy plane, transversally to the fiber axis. Also, at 

lower frequencies (flexural regime) the flexural acoustic 

waves are mostly characterized by the larger displacements in 

xy direction however, some displacements in z direction are 

observed.   

 
Fig. 4. AOM frequency response in terms of the fiber transversal and axial 

displacements. 

A numerical comparison of the mechanical properties along 

mPOFBG-AOM and the similar structure with silica FBG 

(SFBG) is performed. Figs. 5 (a) and (b) detail the dimensions 

of the FBG-AOM used in the FEM model (similar to the 

experimental structure). A comparison of the strain field along 

the mPOFBG-AOM length and the similar structure with 

SFBG-AOM is shown in Figs. 5 (c,e)-(d,f), when the grating 

length is LGrating = 2 mm and 10 mm, respectively. The strain 

field was achieved by FEM considering a sinusoidal excitation 

source applied on the base of the silica horn with resonance 

frequencies (fR) of 302 kHz and 1 MHz, and load amplitudes 
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P0 = 1.5 N and PDC = 0 N. According to the results presented 

in Fig. 4 and also considering a decomposition of the strain 

field, for 302 kHz and 1 MHz the strain field is presented by 

its transversal and longitudinal component, respectively. As 

can be seen in Fig. 5, the strain field amplitude is higher for 

the mPOFBG than for SFBG due to its smaller stiffness. It is 

also verified that the acoustic wavelength is shorter for the 

mPOF, as expected. The behavior of the structure can be 

studied under the influence of parameters such as the 

frequency of the acoustic wave, the applied load or its 

dimensions. Using the dimensions given in Table 1 the 

following sections detail the behavior of the reflected grating 

spectrum as these parameters are varied. 

 

LGrating = 2 mm      LGrating = 10 mm 

   

    

   
Fig. 5. Diameter of the AOM structure as function of the FBG length: (a) 2 
mm and (b) 10 mm. Superposition of strain fields for mPOFBG and SFBG 

under the influence of the AO effect when grating length is (c,e) 2 mm and (d, 

f) 10 mm. 

 

TABLE I. FBG LENGTH AND RESPECTIVE ACOUSTIC WAVE INTERACTION 

LENGTH OF THE HORN-FIBER 

FBG length (mm) 2 10 

Interaction length: horn-fiber (mm) 72 80 

For a given device dimension the strain also varies with the 

PZT excitation frequency. The acousto-optic effect in the fiber 

will be enhanced when the excitation of the natural resonant 

modes of the silica horn–fiber structure are best matched to 

the frequencies delivered by the PZT. Previous results show 

that all resonant modes measured in the PZT are again 

observed in the combined structure, but with slight changes in 

frequency values because the anisotropic constants used in 

simulations did not include the PZT losses [22]. Those losses 

reduce the impedance-phase amplitude, which affects the 

localization of some resonances by the condition of minimum 

impedance and null phase.  Fig. 6 shows strain variation as a 

function of the PZT excitation frequency for the dimensions 

detailed in Table 1 (in this case for 72 mm of interaction 

length). When a longer piece of mPOF is added on the set (the 

case of 80 mm interaction length – Table 1), it reduces the 

stiffness of the fiber, and a small shifting of the resonance 

frequencies range happens. Also, comparing these data with 

the results obtained in [21] for SF, the resonance frequencies 

are distinct for mPOF, as expected, due to the different 

mechanical properties (mPOF and SF). The strain fields are 

much higher than for SF, with more than two orders of 

magnitude. 

 
Fig. 6. Strain variation versus the PZT excitation frequency. 

 

B.  Frequency and load variation 

 Fig. 7 shows the grating reflection spectra calculated using 

the theory and computational simulation described in Sections 

II and III. By exciting the structure with acoustic waves of 

different frequencies the grating spectrum shows other 

characteristic wavelengths. We simulated the grating 

reflection spectra in mPOF for three different scenarios: (i) 

using flexural regime at 126 kHz (Fig. 7 (a)); (ii) using 

longitudinal regime at 1 MHz (Fig. 7 (b)) and 3.5 MHz (Fig. 7 

(c)); (iii) to obtain similar spectral shape in SF and mPOF 

(Fig. 6 (d)). For these scenarios the preload PDC is chosen to be 

null and the amplitude of the harmonic load P0 is changed. 

The FBG length is LGrating = 2 mm. In the first scenario the 

PZT actuator works in the bending regime at 126 kHz as seen 

in Fig. 6 (a). It shall be noted that P0 is much lower for 

mPOFBG due to smaller stiffness in comparison with the 

SFBG (inset of Fig. 7 (a)). As expected, a decrease of the 

grating reflectivity was achieved. In the second scenario the 

PZT actuator works in the stretching and compression regime, 

with symmetric displacement amplitude as seen in Fig. 7 (b) 

and (c). Fig. 7 (b) shows also the grating reflection spectrum 

when P0= 0 N is applied at 1 MHz showing one central peak, 

λB0. Applying load, side bands appear and if P0 is increased, 

more side bands appear but the central band is attenuated. The 

wavelength difference between the central band and the side 

bands is estimated as Δλ = λB2-λB0 = λB1-λB0 = λB3-λB1 = λB4-λB2 

= 1.08 nm. The same difference is obtained between 

consecutive side bands. Fig. 7 (c) shows a similar behavior 

with a higher resonance frequency. The figure also shows a 

greater difference between the side bands due to the frequency 

increase. To obtain similar spectral shape in the SF and 

mPOF, it was necessary to apply a lower resonance frequency 

as well as lower PZT load to the mPOF as shown in the Fig. 7 

(d). It shows that the mPOFBG requires less effort from the 

PZT actuator.  
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Fig. 7. Reflected spectra when excitations are applied with frequency at (a) 

126 kHz, (b) 1 MHz and (c) 3.5 MHz. (d) Similar spectral shape SF and 

mPOF. The FBG length is 2 mm. 
 

C.  Influence of the dimensions 

The influence of the horn dimensions on the strain observed 

along the structure allows the optimization of each of its parts. 

Applying different resonance frequencies and PZT loads, the 

strain field seen by the grating can be modified through 

changes in the dimensions of the silica horn. Fig. 6 shows the 

strain behavior as a function of the diameter and of the length 

of the silica horn for SF and mPOF. A modification of the 

horn dimensions causes changes in the resonance frequencies 

of the device. Numerical results show that an increase of the 

silica horn base diameter causes an increase in the stiffness 

and mass of the system, leading to a decrease of the 

displacement and strain fields along the FBG (Figs. 8 (a) and 

(b)). Fig. 8 (c) shows the results when a low amplitude load of 

P0 = 0.05 N is applied and we concluded that the strain fields 

are higher for mPOF, regardless of the applied voltage and 

resonance frequency. By simulation results, the silica horn 

with 1 mm of base diameter presents the best result in terms of 

strain field. On the other hand, a change of the silica horn 

length does not cause significant variations in these fields, as 

shown in Fig. 8 (d), and, once more, the mPOF strain fields 

are much higher than for SF regardless the resonance 

frequency and FBG length. The strain field is also higher 

(more than one order of magnitude in relation to Fig. 8 (a)) 

when long FBGs are used as shown in Fig. 8 (b). 

 

   
Fig. 8. Strain behavior versus the silica horn (a, b, c) diameter and (d) length. 

 

In fact, the observation of the AO effect in a 2 mm grating 

is already a significant result when compared to the same 

effect in a SF, which requires a length of few centimeters to be 

noticed. Furthermore, from the simulation results we can 

observe effects of the different FBG lengths (such as 10mm 

length), allowing optimisation for POF applications that 

require FBGs with different characteristics such as bandwidth 

and/or reflected power, among others.  

V. EXPERIMENTAL REALIZATION AND RESULTS 

The Bragg gratings used to perform the experiments were 

inscribed in PMMA-based few mode mPOF through the phase 

mask technique, using a continuous wave HeCd laser with an 

output wavelength of 325nm and a power of 30mW. The 

mPOF has an outer diameter of 150 μm and a core diameter of 

15μm. The core is bounded by four rings of holes as shown in 

Fig. 9 (a). Details of the production process of the mPOF are 

described in [19]. The laser beam was focused vertically 

downward using a 10-cm focal length cylindrical lens, through 

a 1061nm period phase mask and onto the fiber. The mPOF 

was laid on a v-groove and taped down using polyimide tape. 

This type of fiber has a typical inscription time of 40 to 60 

min. The Bragg wavelength of the inscribed grating was in the 

region of 1570 nm with a length of 2 mm, determined by the 

width of the UV laser beam. The inscription process was 

monitored using a 1550nm multimode 50∕125 μm silica fiber 

coupler, a broadband light source, and an optical spectrum 

analyzer (OSA). For the inscription, a temporary connection 

was made using a FC/APC contact connector on a 50∕125 μm 

silica fiber which was then butt coupled to the bare POF using 

an x-y-z translation stage. A small amount of index matching 

gel was used in the coupling to reduce Fresnel reflections. 

After the inscription, the grating was spliced to a SF using UV 

curable glue [20].  

 
 

 

 
 

 

 
 

 

(c) 

(a) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

 

 
Fig. 9. (a) Microscope image of end face of few mode mPOF. (b) Acousto-

optical modulator design and geometric properties. (c) Schematic apparatus 

used to excite acoustic waves in the silica horn structure. 

 

The AOM is composed of a PZT (PZ26 model disc - 

www.physikinstrumente.com), a silica horn and the mPOF 

containing the Bragg grating (see Fig. 9 (b)). The AOM is the 

same used in our previous works [10,11]. The silica horn 

length is Lhorn = 50 mm, with a base diameter Φ = 3 mm, a tip 

diameter Φ = 1 mm and central hole diameter Φ=150.5 μm. 

The initial tension of the FBG is adjusted using micro-

resolution translation stages. The end of the fiber is fixed in a 

holder, which enables the generation of an acoustic standing 

wave. The acoustic wave interaction length of the horn-fiber is 

72 mm and 80 mm when the FBG length is 2 mm and 10 mm, 

respectively, as shown in the Table 1. It should be note that 

the acoustic wave interaction length is the total length of the 

FBG-AOM, LD. The set was swept over the range from 1 kHz 

to 1.5 MHz to investigate the acoustic effects on the mPOFBG 

and to compare with FBG in silica fiber. As one can see in 

Fig. 9 (c), the AOM is connected to an arbitrary function 

generator and the reflected spectrum was monitored by an 

OSA with wavelength accuracy of 1 pm. 

Fig. 10 (a) shows that the acoustic excitation at 77 kHz 

leads to a broadening of the FBG spectrum, which can be 

controlled by means of the PZT load (VPZT). When the PZT 

load is set at 20V, the FBG amplitude is totally suppressed. 

This result can be explained considering the coupling 

mechanism of the propagating modes. The lower reflectivity 

of the grating is due to changing period along the grating 

length that disrupts the phase matching, leading to a lower 

coupling to the counter-propagating mode [22]. For example, 

this behavior can be used for add-drop multiplexers in low 

frequency regimes. It should be noted that maximum 

amplitude measurement of each spectrum is made between the 

values of noise background and main peak (Fig. 10 (a)).  

Fig. 10 (b) shows the spectral behavior of the grating when 

the applied VPZT is changed between 0 V and 20 V and with 

the acoustic wave frequency set at 77 kHz. It is possible to 

control the 3-dB bandwidth of the reflected spectrum by 

tuning the applied VPZT. As the PZT load is increased the 

phase mismatching effect also increases. In the case of 3-dB 

bandwidth measurements, results are presented for PZT loads 

up to 17 V, the maximum measurable 3-dB bandwidth value. 

For higher loads, the FBG is suppressed. Figs. 10 (c-e) show 

the measured-simulated FBG spectra when the grating is 

excited with the 77 kHz resonance for different VPZT. The 

measured spectra are compared to the modelled TMM spectra 

obtained from previously assessed FEM simulations. At VPZT 

= 10 V the amplitude of the harmonic load delivered by the 

PZT is P0 = 0.63 N (verified through simulations). The 

differences in reflectivity and wavelength bandwidth between 

measured-simulated results are due to grating variations 

originating in the grating inscription process. The 

experimental results show a good agreement with the 

simulated data. 

     

 
Fig. 10. (a) Spectrum behavior when a 77 kHz frequency acoustic wave 
excites the mPOFBG, varying VPZT from 0 to 20 V. (b) 3-dB FBG bandwidth 

behavior as a function of the PZT load (experimental results and simulated 

data) for an acoustic excitation of 77 kHz. FBG measured-simulated spectra 

when (c) AW is OFF, (d) VPZT is 7 V (corresponding an amplitude of the 

harmonic load P0 = 0.5 N) and (e) VPZT is 15 V (P0 = 0.8 N). 

 

Fig. 11 (a) shows an example of spectral shaping when an 

acoustic excitation of 193 kHz is turned ON. In this example, 

the side lobe of the reflection spectrum of the FBG is 

suppressed, due to an induced apodization, leading to a better 

filter response. At 193 kHz, the acoustic wavelength (~ 3.09 

mm) is larger than the grating length (LGRATING = 2 mm). Once 

the length between the PZT and the beginning of the FBG (60 

mm) and the acoustic wavelength are known, the wave 

position relatively to the FBG can be estimated, i.e. the ratio 

between them give us the wave position relatively to the FBG 

as shown in Fig. 11 (b). When acoustic wave is turned ON 

there is a maximum of the standing acoustic wave at z = 0.  

Taking into account the calculated standing wave period, it is 

possible to write the FBG in a wave zone which induces an 

apodization such as the center of the FBG is positioned in a 

node (zero displacement – see Fig. 11 (b)).   

In Fig. 11 (c), the acoustic excitation of 214 kHz results in 

a spectral broadening of the FBG. This may be a result of the 

grating being in the transition between the compression and 

rarefaction strain fields, corresponding to both blue and red 

shifting of the λB. Therefore, this behavior demonstrates a 

bandwidth tuning structure as a function of the PZT load. 

     

 
Fig. 11. (a) Grating reflection spectrum behavior when the AW is switched 

“ON” (20 V) and “OFF” considering a frequency at 193 kHz..  (b) Diagram 

(a) 

(c) 

(a) (b) 
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showing the wave position relatively to the FBG. (c) Reflected spectrum 

behavior when the AW is switched “ON” and “OFF” considering a frequency 
at 214 kHz. 

 

In this experimental work the acoustic excitation is only 

observed in low-frequency regime, i.e. when the longitudinal 

acoustic wavelength is longer that the FBG length (2 mm). 

Indeed, from Fig. 6 we can conclude that for a device using 

mPOF, mostly resonance frequencies are located below 1 

MHz (shorter acoustic wavelength). At this particular 

frequency and for 3.5 MHz, the appearance of additional 

bands on both sides of the grating reflection spectrum should 

be experimentally observed. Therefore, further developments 

will be focused in the increasing of the FBG length in order to 

increase the acoustic-optic interaction length and thus improve 

the peak reflectivity of the secondary lobules. 

VI. CONCLUSION 

In summary, we have demonstrated that the excitation of an 

FBG written in mPOF through acoustic waves can be attained. 

Results show that it is possible to dynamically control the 

properties of the grating spectra even with a grating length of 

2 mm through the AOM, which has not been possible in SFs.  

The FEM and the TMM present the advantage of 

calculating the strain along the whole structure allowing the 

determination of the influence of the structure dimensions 

(horn, fiber and FBG sizes) on the grating reflected spectrum 

when an acoustic wave propagates along its axis. Furthermore, 

the physical characteristics of the structure can be adjusted in 

order to obtain the desired strain and FBG spectrum. The 

approach takes into account the load induced by the acoustic 

wave, which can be associated with the characteristics of the 

PZT actuator used for its excitation. The simulation results 

obtained using the method correlate well with experimental 

data. The strain field along an mPOFBG–AOM and a similar 

structure with SFBG-AOM was determined, showing that the 

strain field amplitude is higher along the mPOFBG due to its 

smaller mechanical stiffness. 

The obtained results can be used in the development of fine-

tuned optical filters using low voltage sources and low 

frequency regimes, to obtain tunable optical filters and to 

control the shape of the spectrum. Developments focused on 

the behavior in different gratings (such as phase shifted FBGs 

and long period gratings) and different lengths for photonic 

applications, such as tunable notch filters or tunable cavities, 

are in progress. 
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