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Abstract

A nature inspired decentralised multi-agent algorithm is
proposed to solve a problem of distributed task selection
in which cities produce and store batches of different mail
types. Agents must collect and process the mail batches,
without a priori knowledge of the available mail at the cities
or inter-agent communication. In order to process a differ-
ent mail type than the previous one, agents must undergo a
change-over during which it remains inactive.

We propose a threshold based algorithm in order to max-
imise the overall efficiency (the average amount of mail col-
lected). We show that memory, i.e. the possibility for agents
to develop preferences for certain cities, not only leads to
emergent cooperation between agents, but also to a sig-
nificant increase in efficiency (above the theoretical upper
limit for any memoryless algorithm), and we systematically
investigate the influence of the various model parameters.
Finally, we demonstrate the flexibility of the algorithm to
changes in circumstances, and its excellent scalability.

1. Introduction

Distributed systems are an active and important field
with applications ranging from distributed heterogeneous
computing systems [9] to mobile sensor networks [11]. In
such systems, resource and task assignment are important in
order to provide performance efficiently. Many current so-
lutions to these problems focus on a centralised approach.
However, there is growing feeling that the size of some
distributed systems is growing to the point where decen-
tralised approaches may become a necessity [6]. Note that
a decentralised solution to a problem in principle can not
be better than the best centralised solution. At minimum
a central controller could issue instructions causing agents
to act as they would have under the autonomous rules of
the best decentralised solution. In fact, access to global in-
formation and the ability to coordinate agents should allow
better performance than any collection of individuals. In

practice, however, limitations on resources such as compu-
tational power and/or communication costs [10] mean that
centralised solutions are not efficient in practice. This is
particularly true for large systems as the calculation timeof
an optimal allocation of tasks becomes a major limitation
[6]. Large systems also decrease the effectiveness of global
inter-agent communication. Shehory et al. [15] point out
that if n agents are communicating with each other, this in-
volves a total of O(n2) communications, potentially “over-
whelming” the communication network.

Rana et al. [14] suggest that many practical applications
will require large numbers of agents, and because of this
the poor scalability of centralised systems rules them out
as solutions to these problems. The challenge, therefore,
is to design decentralised solutions (involving only simple
local interactions) with a performance close to the best cen-
tralised solution.

The parallels between multi-agent systems and social
insects are well established and have inspired many al-
gorithms [2]. When taken at colony level, social insects
can be seen as examples of a self-organising multi-agent
system and, within these systems, behaviour has been ob-
served which fits well with the desirable properties de-
scribed above. Of particular interest is the fact that, within
a colony, the fraction of individuals engaged in particular
tasks changes in response to demand, which Beshers et al.
[1] describe as “one of the most prominent features of so-
cial insect colony behaviour”. Additionally, Grassé [8] ex-
plained that this behaviour emerges due to individuals act-
ing to modify the local environment and these modifica-
tions causing a change in local behaviour. This mecha-
nism, known as stimergy, involves no centralised control
and no global communication, such that any task allocation
algorithms based on this principle should avoid problems of
scalability.

In this paper, we study a task allocation problem from
a decentralised perspective in which agents must travel to
distributed task sites and perform tasks under certain con-
straints. As previous work on this problem indicated that
the efficiency of any solution is greatly limited when agents



cannot build up preferences towards task sites [7], we intro-
duce a system of memory to allow agents to specialise in
particular localities. We then test the performance of the al-
gorithm, its dependence on model parameters, and its scal-
ability through a series of simulations.

The rest of the paper is organised as follows. In section
2, we introduce the problem and identify the ways in which
performance can be lost. We then introduce the base unit of
agent decision making, i.e. the threshold model, and define
how it applies to our problem. In section 3, we define con-
ditions which a good solution to the problem should fulfil
and introduce a system of agent memory designed to meet
these conditions. Next in section 4, we present simulation
results of the system, and compare them to both theoreti-
cal and practical results of memoryless algorithms. Finally
in section 5, we summarise and draw conclusions from our
results and give an outlook to future research.

2. The Model

We propose a solution to a generic distributed task al-
location problem, the mail processing problem, introduced
by Bonabeau et al. [3] and developed into its current form
by Price et al. [12, 13]. In this problem, there is a set of
Nc cities, each of which is capable of producing and stor-
ing one batch each ofNm mail types. The cities are served
by a set ofNa agents, each of which has an associated mail
processing centre. Agents must travel to a city, choose a
batch of mail and take this batch to their processing cen-
tre, before repeating this process. There are, however, dif-
ferences between the mail types and each agenta, has a
mail-specialisationσa, indicative of the mail type its pro-
cessing centre can efficiently process. Processing mail of
this type takes the centre a fixed timetp, while the centre
must undergo achangeoverin order to process mail of type
m 6= σa, taking a total timetc > tp. After the changeover,
the centre is specialised to deal efficiently with mail typem.

Each centre also has a mail queue in order to buffer the
immediate effects of changeovers. This queue is capable of
holding up toLq batches of mail and, while there is space
in the queue, the agent continues to collect mail (i.e. re-
mainsactive). When a processing centre finishes process-
ing a batch of mail, it will immediately start processing the
next batch in its queue (i.e. the batch which was collected
the longest time ago), thus freeing a space in the queue. As
centres must process mail in the order in which it was col-
lected,σa denotes the mail type last taken by agenta and
will be the specialisation of the centre when it comes to pro-
cess the next collected piece of mail.

In order to simulate this system, we discretise time into
steps of the amount of time it takes an agent to visit a city
and return with mail. This allows us to define our mea-
sure of an algorithms performance, i.e. theefficiency, as the

average amount of mail processed per agent per time step.
During each time step the following happens:

1. Each city which is missing a batch of mail of any type
produces a new batch of mail of this type.

2. Each active agent chooses and visits a city.

3. Each city randomly determines the order in which its
visiting agents are allowed to act.

4. Each agent examines the available mail at the city in
a random order, selecting or rejecting each batch indi-
vidually until either one is selected or all are rejected.

5. Each agent returns to its processing centres and de-
posits any mail it has collected in the queue.

6. Each processing centre either processes the next piece
of mail in its queue, or continues its changeover.

Note that the definition of this problem as “mail process-
ing” is completely arbitrary. Cities are merely localised
task-sites, and the mail types are just different types of
tasks. The processing centres and their behaviour can be
seen as a generic way to introduce a cost into switching task
type. In fact Campos et al. [5] study an almost identical
problem but describe it as one of truck painting.

The problem of efficiency maximisation can also be seen
as minimisation of loss of efficiency, and in [7] we have
identified the causes for agents to fail take up mail. For an
agent with specialisationσa, the efficiency loss sources are:

(ℓ.1) The agent is inactive due to a full queue.

(ℓ.2) The visited city has mail of typeσa, but the agent re-
jects all mail.

(ℓ.3) The visited city has some mail, but none of typeσa,
and the agent rejects all mail.

(ℓ.4) The visited city has no available mail at the time of the
agent’s action.

2.1. Variable Threshold Model

While a fair proportion of the loss sources (in particular
ℓ.4) is determined by the agent’s city choice, an agent still
needs an efficient method of decision making concerning
the take up of mail once it has arrived at a city. In particular,
a method that strikes a good balance betweenℓ.1 (caused by
repeated change overs) andℓ.3 (rejection of non-specialised
mail types), is necessary. It has been shown that the a model
known as the variable threshold model is a good mecha-
nism for controlling this tradeoff [12, 13, 7]. The original
threshold model is a social-insect inspired method of task
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allocation developed by Bonabeau et al.[4] in order to ex-
plain the flexibility of of social insect colonies. It postulates
that tasks can be split into distinct tasks and that each in-
dividual within a colony has a threshold,θ for each type
of task which determines its likelihood of engaging in that
task. Each instance of a task has a stimuluss, which indi-
cates the priority of the task for completion. Upon encoun-
tering a task with stimuluss, the individual compares it with
its corresponding threshold. It will engage in the task with
high probability ifs >> θ, low probability if s << θ, and
probability close to0.5 if s ≈ θ.

The threshold model was then developed into the vari-
able threshold model by Theraulaz et al. [16], in which
individuals undertaking a task increase their probabilityof
undertaking similar tasks by decreasing their threshold for
this type of task and by increasing their thresholds for all
other task types. This allows for the population to have a
distribution of specialisations that follows demand.

In order to apply this model to our problem, we define
each mail type as being a different type of task. A batch of
mail is seen as an instance of a task and the stimulus is taken
to be the amount of time it has been waiting at a city. When
a batch of mail is created it is assigned a waiting time of1
and this time increases by1 every time step. Each cityc,
therefore, has a set of waiting timeswc = (wc,1, ...wc,Nm

)
wherewc,m is the waiting time of themth mail type.

Each agenta is given a set of thresholdsθa =
(θa,1, ...θa,Nm

), whereθa,m is the agent’s threshold for tak-
ing mail type m. Upon encountering a task of typem
with stimulusw, the probability of an agenta accepting
is determined by its thresholdθa,m and itsthreshold func-
tion Θ(θa,m, w). Here, we have opted for the exponential
threshold function [7]:

Θ(θ, w) =

{

0 if w = 0,
wλ

wλ+θλ otherwise,
(1)

whereλ is some appropriately chosen positive exponent.

Both the efficiency and the the flexibility (the capacity of
the system to adapt to new situations) are determined by the
mechanism in which the agents adapt their thresholds. Ini-
tially an agent takes its thresholds uniformly in the interval
[θmin, θmax]. Upon taking mail, the agent applies anupdate
rule to each of its thresholds. Here, we use the switch-over
(SO) update rule [7] which has been shown to give near op-
timal efficiency in the case of random city choices. Upon
accepting mail of typem an agenta updates its thresholds
as follows:

θa,n =

{

θmin if m = n,

θmax otherwise.
(2)

3. Memory

While the threshold model with well chosen of rules and
parameters can provide a good solution to this problem, it
is always limited by the likelihood of poor city choices. An
agent choosing a city at random is no more likely to visit a
city which has no other agents visiting it than it is to visit
a city at which has already had all its mail taken, thus leav-
ing the first city unserved and the agent without mail. The
upper limit this puts on the efficiency can be calculated [7]
analytically in the limitNa → ∞, and is given by:

Nm
∑

k=1

χk(t)



1 − PRa/c
(k) −

Ra/c − k

Ra/c

∞
∑

j=k+1

PRa/c
(j)



 ,

(3)
whereχk(t) is the proportion of cities with exactlyk avail-
able pieces of mail at the beginning of time stept, and
where PRa/c

is the Poisson distribution with parameter
Ra/c (the ratio of agents to cities). Since in the current
setting cities always replace any taken mail, we have that
χk(t) = δk,Nm

, whereδ is the Kronecker delta.
For fixed resources (number of agents) and environment

(number of cities and mail types) the only way to improve
on this limit is to change the profile of agents visiting cities,
and hence the way in which agents choose cities. When
designing an efficient method for agents to visit cities, it is
useful to establish some conditions on how agents should
be allocated to cities in ideal circumstances:

(c.1) No city should be visited by fewer agents than it has
mail available.

(c.2) For each mail typem that a city has available, exactly
one of its visiting agents should have specialisation
σa = m.

Globally, c.1 minimisesℓ.4 while c.2 reduces the tradeoff
betweenℓ.1 & ℓ.3. However, while a lack of appropriately
specialised agents can be rectified by the threshold model,
c.1 is impossible to fulfil with ifRa/m < 1, whereRa/m =

Na

Nc×Nm
is the ratio of agents to mail. Hence, we must add a

third condition to ensure that no cities go unserved for long
periods of time.

(c.3) If c.1 & c.2 cannot be fulfilled over a single time step,
they should be fulfilled uniformly at all cities over a
longer period.

In an attempt to fulfil these conditions while maintaining
the decentralised nature of the algorithm (no knowledge of
the state of cities before agents visit them), and the relative
simplicity of its component agents, we propose aStimulus
Based (SB)system of agent memory in which taking mail
from a city increases an agent’s chance of revisiting the city
in the future.
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Each agenta is assigned a memory~Ma, consisting of
a set ofµa paired variables ~Ma ≡ {(Ca,ℓ,Wa,ℓ), ℓ =
1, .., µa}, whereCa,ℓ is a city which the agent has taken
mail from in the past, and whereWa,ℓ is a weight assigned
to this memory.

An agenta either bases its selection of city on its mem-
ory ~Ma with probabilityρa, or chooses one randomly with
probability1 − ρa. The parameterρa ∈ [0, 1] allows us to
move continuously from a memoryless scenario (ρa = 0),
to one completely dominated by the memory (ρa = 1). The
total probability that agenta visits city c is given by

V (c| ~Ma) = ρa M(c| ~Ma) + (1 − ρa)
1

Nc
(4)

where M(c| ~Ma) is the probability that cityc is visited
given that memory ~Ma is used. Initially, the probability
for choosing a specific city from the memory was taken
to be its normalised weight Wa,ℓ

Pµa
j=1

Wa,j
. However, we en-

countered the problem that self-reinforcement tends to lead
to one weight becoming so much larger than all the oth-
ers that it completely dominates, thus making stable multi-
ple city-specialisation virtually impossible. In general, this
may lead to some cities being well served while others are
neglected in violation of conditionc.3 (for similar reasons
values ofρa < 1 are needed). This effect can be avoided by
the introduction of a maximum usable weightLa, and by
replacing theWa,ℓ with min(Wa,ℓ,La), such that

M(c| ~Ma) =

µa
∑

ℓ=1

min(Wa,ℓ,La)
∑µa

j=1
min(Wa,j ,La)

δc,Ca,ℓ
, (5)

when
∑µa

j=1
Wa,j > 0, andM(c| ~Ma) = 1

Nc
otherwise.

This allows for uniform probabilities in a small subset of
cities (needed forc.3), while allowing the weights them-
selves to become large (giving the agents’ city choices sta-
bility). Note that although this stability is an advantage in
the current scenario, it would leave the agent vulnerable ifa
breakdown were to occur at a city for which it has built up
a large weight.

In a similar spirit to the threshold model, we propose a
memory weight update that is stimulus based. In SB mem-
ory, cities do not occur more than once in an agent’s mem-
ory, such that an agent can remember up toµa cities. Each
city in the agent’s memory is assigned an individual weight
which increases when an agent takes mail from that city
proportionally to the stimulus (waiting time) of the taken
mail, and decreases when it does not. We loosely define a
city to bewell servedif it has a set of agents which return to
it repeatedly and ensure that all types of mail are taken from
it with regularity. Specialisation of any new agent in a city
which is already well served adds nothing toc.1, c.2, and
should be avoided. As agents have no direct knowledge of

other agents’ memories and specialisations, they must infer
it from the only available information at a city, namely the
waiting times. Mail at well served cities will tend to have
low waiting times compared to poorly served cities, such
that it makes sense to make the increase in weights propor-
tional to the waiting time of taken mail. Upon taking mail
with waiting timew from city c the agent’s memory is up-
dated as follows:

1. If Ca,ℓ = c (city c is already in the agent’s memory),
then its weight is increased byw:

(Ca,ℓ,Wa,ℓ) → (Ca,ℓ,Wa,ℓ + w) (6)

2. Otherwise ifw is at least as big as the least weight
Wa,ℓ then cityc replaces this lowest weighted element.

(Ca,ℓ,Wa,ℓ) → (c, w) (7)

Note that in case of multiple equal minimum weights,
only the city which was last visited the longest time
ago is replaced.

3. All unmodified, non-zero weights decay.

(Ca,ℓ,Wa,ℓ) → (Ca,ℓ,Wa,ℓ − 1) (8)

Note that if no mail is taken, all non-zero weights decay.
We define an agent which has a weight of at leastLa in
a city is city-specialisedin that city. Note that an agenta
can in principle be city-specialised in up toµa cities. Now,
we can formalise the definition of a well served city as a
city which has an agenta specialised in it with mail spe-
cialisationσa = m for every mail typem, such thatc.1,
c.2 are fulfilled locally. If it persists, a well served city
can be seen as an example of emergent cooperation between
agents. Each agent minimises the waiting time of its given
mail type which decreases the chance of changeovers for
other city-specialised agents. In return its own chance of
a changeover is decreased by the low waiting times of all
other mail types. This situation resolves the conflict be-
tweenℓ.1 andℓ.3 and could, in principle, lead to perfect
efficiency.

Assuming thatNm, Ra/m andµa are fixed and finite,
both the memory requirements to implement this algorithm,
and the number of operations per time step, scalelinearly
with the system sizeNa. An agents behaviour (including
memory) is only affected by the stimulus detected at cities
and this is independent ofNa, hence, each agent performs
O(1) operations. Cities must performNm operations to in-
crease their waiting times and in the worst case (all agents
visiting a single city) must performNa − 1 operations to
randomly order the agents.
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4. Results

While the full optimisation of the model’s parameters for
particular circumstances is beyond the scope of this paper,
we do study the influence of some key parameters on the
system’s qualitative behaviour. Parameters that are not ex-
plicitly varied, are set to some default values, which we take
to be the same as in [7] for comparison with memoryless
algorithms. Hence, we takeNm = 2 which is the most
interesting case, as the distribution of agents to cities be-
comes more uniform with increasingNm such that the up-
per limit on the efficiency (3) tends to1. Furthermore, we
takeRa/m = 1, as this is both the minimum ratio at which
all cities could in principle be served perfectly, and the max-
imum ratio at which all agents could take mail every itera-
tion (no wasted resources). We also setNa = 5 × 104 and
have shown in [7] that this is sufficient to neglect finite size
effects. For the threshold function (1), we takeλ = 2 and
setθmin = 0 in order to minimiseℓ.2, andθmax = 50 suf-
ficiently high to avoid most repeated changeovers. Finally,
for the memory parameters, we takeµa = 10, La = 10 and
ρ = 0.95.

Figure 1 shows the performance of the algorithm over
the course of a single run. We see that efficiency quickly
tends to a high value whileℓ.1-ℓ.4 all take small values. We
see the reason behind this in the specialisation behaviour,
with cities being well served by either singly or double
specialised agents, fulfillingc.3. Subsequently, some of
the remaining unspecialised agents gain specialisation ina
city being served by a doubly specialised agent, which then
loses its second specialisation, This fulfilsc.1 andc.2 and
allows further increases in efficiency.

Figure 2 shows the influence ofρ on the efficiency. The
efficiency is a monotonically increasing function ofρ, with
the most marked increase taking place forρ > 0.5. This
increase can be explained by the specialisation behaviour,
with city-specialisation starting to become prevalent at this
point, as agents return often enough to cities for their aver-
age weights to increase. Although specialisation in up to 10
cities is in principle possible, we observe that most agents
specialise in a single city. Double city-specialisations also
occur for intermediately high values ofρ, but forρ ≈ 1 the
chances of a specialised agent to visit another city become
so small that very few doubly specialised agents emerge.
We note, furthermore, that although the overall efficiency
is maximised forρ = 1, this is clearly not optimal for the
fraction of well served cities or the maximum waiting times.
With increasingρ a smaller and smaller fraction of agents
visit cities at random, such that not well served cities are
less and less likely to be visited. The sharp increase after
ρ > 0.95 is due to the fact that city-specialised agents not
only never choose cities at random, but also stop specialis-
ing in multiple cities.
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Figure 1. Efficiency and loss sources (top),
and specialisation behaviour (bottom) for
Ra/m = 1 and ρ = 0.95 over a single run of
500 iterations. After a sharp initial increase,
there is a slow increase in the efficiency to
its asymptotic value which is mainly due to a
corresponding decrease in ℓ.2. Other losses
become approximately static from the 50th

iteration onwards. Most agents are either
singly or doubly specialised by this point
which is followed by a slow loss of doubly
specialised agents. The proportion of well
served cities quickly tends to 1.
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Figure 2. Efficiency and loss sources (top),
specialisation behaviour (middle), and maxi-
mum waiting time (bottom) as a function of ρ

for Ra/m = 1 averaged from iteration 401 to
500. Efficiency increases with ρ with the rate
increasing after ρ = 0.5. ℓ.1 and ℓ.3 decrease
correspondingly with ℓ.2 static and ℓ.4 negli-
gible. Singly specialised agents appear near
ρ = 0.5, followed shortly by well served cities.
Some of agents change from singly to dou-
bly specialised agents at higher values of ρ

before decreasing again. Maximum waiting
times increase steadily with a sharp increase
at ρ = 1.
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Figure 3. Efficiency and loss sources (top),
and specialisation behaviour (bottom) as a
function of Ra/m for ρ = 0.95 (which is op-
timal for Ra/m = 1 only) averaged from iter-
ation 401 to 500. The efficiency initially in-
creases sharply and surpasses the memory-
less limit before decreasing and asymptoti-
cally approaching the limit from above. ℓ.1
decreases with Ra/m while ℓ.2-ℓ.4 increase
with the rate of increase growing after ef-
ficiency reaches its maximum. The modal
number of specialisations decrease as Ra/m

grows with peaks occurring at approximately
the inverse of the number of specialisations.
As expected, the fraction of well served cities
initially shows a sharp increase and asymp-
totically tends to 1.
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Figure 4. Efficiency and loss sources as a
function of θmax for Ra/m = 1 and ρ = 0.95
averaged averaged from iteration 401 to 500.
The efficiency increases sharply initially, be-
fore peaking and declining slowly. ℓ.1 de-
creases with θmax while ℓ.3 and ℓ.4 increase
following a similar trend to efficiency but at
lower values, while ℓ.2 exhibits a slow mono-
tonic increase.

In figure 3 we compare efficiency with the upper bound
on efficiency of any algorithm using random city choices,
given by equation 3. At low values ofRa/m high ℓ.1 leads
to low efficiency compared to the limit as high average wait-
ing times overwhelm the selectivity of the threshold func-
tion, leading to multiple changeovers. Note that this is a
consequence of our choice ofθmax, higher values would
lead to increased efficiency at lowRa/m (due to lowerℓ.1)
and decreased efficiency at highRa/m (due to higherℓ.2,
ℓ.3).

As Ra/m increases,ℓ.1 decreases without much of an
increase inℓ.2-ℓ.4 as city specialisation becomes useful.
Note that the average number of city specialisations be-
comes approximatelyR−1

a/m meaning that the agents are
acting to serve approximately all the mail. This leads to
most cities being well served well beforeRa/m = 1, fulfill-
ing c.3 and allowing efficiency to surpass the memoryless
limit. The proportion of singly specialised agents contin-
ues to increase, fulfillingc.1 andc.2, but this does not lead
to increased efficiency as it is inherently limited by the fact
that there are less batches of mail than there are agents. Ef-
ficiency decreases asℓ.2-ℓ.4 increase, with these increases
caused by both the lack of mail and the low average waiting
times of the remaining batches. This means that less agents
specialise in cities and efficiency approaches the memory-
less limit, which also tends to the true upper limitR−1

a/m for
high values.

Efficiency Final Efficiency
Best Memoryless 0.626 0.633
Memoryless Limit N/A 0.729

With Memory 0.953 0.986

Table 1. Comparison of the algorithm’s av-
erage efficiency with memory ( ρ = 1) and
using the best memoryless algorithm with
the theoretical limit for a memoryless algo-
rithm. Starting from uniform initial condi-
tions and with no city-specialised agents, the
efficiency is averaged over 500 iterations and
the final efficiency is averaged over a sub-
sequent 100 iterations. We see that memory
provides a large boost in efficiency, and an
even larger boost in the final efficiency.

Figure 4 shows the influence ofθmax on the efficiency.
We observe that (too) low values forθmax cause a high
probability of changeovers (highℓ.1). The peak in effi-
ciency is reached at approximatelyθmax = 20, after which
it decreases due to increases inℓ.2. These increases are due
to higher average initial thresholds which lower the proba-
bility of initial mail uptake and hence specialisation. The
behaviour is markedly different from that found in a mem-
oryless system, for which much lower values ofθmax are
optimal [7]. The increase in the optimal value ofθmax is
due to the increased need to avoid changeovers. At a well
served city an agent that undergoes a changeover must not
only cope with the penalty in processing time, but must now
also compete for mail with another agent with whom it was
previously cooperating.

Table 1 compares the theoretical upper limit of memo-
ryless efficiency, the best actual efficiency for a fully op-
timised memoryless algorithm [7], and the best efficiency
obtained in this paper using SB memory with partially op-
timised parameters. Note that we use efficiency as the mea-
sure of performance and so takeρ = 1 even though this dra-
matically increases maximum waiting times and is not op-
timal for other measures such as the fraction of well served
cities. The values in the left column include the initial phase
in which the agents have to (self-) organise their behaviour,
and as such are also indicative for the adaptability and the
speed at which this organisation takes place. The values
in the right column give the all out performance once the
self-organisation is more or less completed. Note that the
final efficiency of the only partially optimised SB memory
system is at 98.6%, which is indeed very close to perfect
efficiency.
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5. Conclusions and Future Work

In this paper, we have introduced the SB model of agent
memory as a solution to a problem of distributed task selec-
tion. The performance of this model has been investigated
under the variation of key parameters and is close to that
of the best centralised solution, while retaining the neces-
sary conditions for good scalability such as a (very) limited
information flow, localised decision making and relatively
simple agents. In particular, the elimination of random city
choices allows the system to exceed the theoretical upper
limit on memoryless efficiency by35.3% after convergence
and to obtain near perfect efficiency. This is partially due to
emergent cooperation between the agents, which resolves
the conflict between the need for agent flexibility, and the
constraints of the model.

The performance, however, may still be limited by both
the (not fully optimised) choice of agent parameters, and
by the rules for decision making (SO update rule and ex-
ponential threshold function). Hence, the use of a genetic
algorithm to find optimal parameters and of genetic pro-
gramming to find improved rules, should lead to even better
results. In addition, it would be interesting to study the per-
formance of SB memory in a dynamical environment (with
non-constant probabilities of mail production) as has been
done for memoryless algorithms [7], and to compare it with
other mechanisms of memory.
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