Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice

Fuentes, M.E., Nowakowski, D.J., Kubacki, M.L., Cove, J.M., Bridgeman, T.G. and Jones, J.M. (2008). Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice. Journal of the Energy Institute, 81 (4), pp. 234-241.

Abstract

Short rotation willow coppice (SRC) has been investigated for the influence of K, Ca, Mg, Fe and P on its pyrolysis and combustion behaviours. These metals are the typical components that appear in biomass. The willow sample was pretreated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with each individual metal at the same mol g biomass (2.4 × 10 mol g demineralised willow). Characterisation was performed using thermogravimetric analysis (TGA), and differential thermal analysis (DTA) for combustion. In pyrolysis, volatile fingerprints were measured by means of pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). The yields and distribution of pyrolysis products have been influenced by the presence of the catalysts. Most notably, both potassium and phosphorous strongly catalysed the pyrolysis, modifying both the yield and distribution of reaction products. Temperature programmed combustion TGA indicates that combustion of biomass char is catalysed by all the metals, while phosphorus strongly inhibits the char combustion. In this case, combustion rates follow the order for volatile release/combustion: P>K>Fe>Raw>HCl>Mg>Ca, and for char combustion K>Fe>raw>Ca-Mg>HCl>P. The samples impregnated with phosphorus and potassium were also studied for combustion under flame conditions, and the same trend was observed, i.e. both potassium and phosphorus catalyse the volatile release/combustion, while, in char combustion, potassium is a catalyst and phosphorus a strong inhibitor, i.e. K impregnated>(faster than) raw>demineralised»P impregnated.

Publication DOI: https://doi.org/10.1179/014426008X370942
Divisions: Engineering & Applied Sciences > Chemical engineering & applied chemistry
Engineering & Applied Sciences > European Bioenergy Research Institute (EBRI)
Additional Information: Copyright 2010 Elsevier B.V., All rights reserved.
Uncontrolled Keywords: Willow SRC,biomass,catalysis,metal acetates,combustion,pyrolysis
Full Text Link: http://eprints. ... 8/7/jonesJ1.pdf
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
http://maney.co ... p/journals/eni/ (Publisher URL)
Published Date: 2008-12
Authors: Fuentes, M.E.
Nowakowski, D.J.
Kubacki, M.L.
Cove, J.M.
Bridgeman, T.G.
Jones, J.M.

Export / Share Citation


Statistics

Additional statistics for this record