
June 2011
 first published online 8, doi: 10.1098/rspa.2010.0674467 2011 Proc. R. Soc. A

 
Max A. Little and Nick S. Jones
 
from piecewise constant signals. II. New methods
Generalized methods and solvers for noise removal
 
 

References

lated-urls
http://rspa.royalsocietypublishing.org/content/467/2135/3115.full.html#re

 Article cited in:
 
html#ref-list-1
http://rspa.royalsocietypublishing.org/content/467/2135/3115.full.

 This article cites 28 articles, 5 of which can be accessed free

This article is free to access

Subject collections

 (32 articles)statistics   �
 (252 articles)applied mathematics   �

 
Articles on similar topics can be found in the following collections

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

 http://rspa.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. ATo subscribe to 

 on January 28, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/content/467/2135/3115.full.html#ref-list-1
http://rspa.royalsocietypublishing.org/content/467/2135/3115.full.html#related-urls
http://rspa.royalsocietypublishing.org/cgi/collection/applied_mathematics
http://rspa.royalsocietypublishing.org/cgi/collection/statistics
http://rspa.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsa;467/2135/3115&return_type=article&return_url=http://rspa.royalsocietypublishing.org/content/467/2135/3115.full.pdf
http://rspa.royalsocietypublishing.org/subscriptions
http://rspa.royalsocietypublishing.org/


Proc. R. Soc. A (2011) 467, 3115–3140
doi:10.1098/rspa.2010.0674

Published online 8 June 2011

Generalized methods and solvers for noise
removal from piecewise constant signals.

II. New methods
BY MAX A. LITTLE1,2,* AND NICK S. JONES1,3

1Department of Physics and Oxford Centre for Integrative Systems Biology,
University of Oxford, UK

2Media Lab, Massachussetts Institute of Technology, Cambridge, MA, USA
3Department of Mathematics, Imperial College London, London SW7 2AZ, UK

Removing noise from signals which are piecewise constant (PWC) is a challenging signal
processing problem that arises in many practical scientific and engineering contexts. In
the first paper (part I) of this series of two, we presented background theory building
on results from the image processing community to show that the majority of these
algorithms, and more proposed in the wider literature, are each associated with a
special case of a generalized functional, that, when minimized, solves the PWC denoising
problem. It shows how the minimizer can be obtained by a range of computational solver
algorithms. In this second paper (part II), using this understanding developed in part I,
we introduce several novel PWC denoising methods, which, for example, combine the
global behaviour of mean shift clustering with the local smoothing of total variation
diffusion, and show example solver algorithms for these new methods. Comparisons
between these methods are performed on synthetic and real signals, revealing that our
new methods have a useful role to play. Finally, overlaps between the generalized methods
of these two papers and others such as wavelet shrinkage, hidden Markov models, and
piecewise smooth filtering are touched on.

Keywords: edge; jump; shift; step; change; level

1. Introduction

Piecewise constant (PWC) signals have flat sections with a number of abrupt
jumps. Often, we record a noisy PWC signal and want to recover the signal
buried in the noise. This is a ubiquitous problem found across many branches of
science and engineering. In the first paper of this series of two (part I), we showed
that this was a challenging problem because conventional linear digital filtering
methods are ineffective, due to the overlap in the frequency domain between the
noise and the jumps. We explained the need to use nonlinear techniques in order
to achieve effective PWC denoising, and that the nonlinearity of these techniques
makes them harder to understand than linear techniques, motivating our in-depth
exploration of this problem.
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3116 M. A. Little and N. S. Jones

Table 1. ‘Components’ for PWC denoising methods. All the methods in this paper can be
constructed using all pairwise differences between input samples, output samples and sequence
indices. These differences are then used to define kernel and loss functions. Loss functions and
kernels are combined to make the generalized functional to be minimized with respect to the
output signal m. Function I (s) is the indicator function such that I (s) = 1 if the condition s is
true, and I (s) = 0 otherwise.

(a) difference d description

xi − mj input–output value difference; used in likelihood terms
mi − mj output–output value difference; used in regularization terms
xi − xj input–input value difference; used in both likelihood

and regularization terms
i − j sequence difference; used in both likelihood and

regularization terms

(b) kernel function description

1 global
I (|d| ≤ W ) hard (local in either value or sequence)
I (|d|2/2 ≤ W )
exp(−b|d|) soft (semi-local in either value or sequence)
exp(−b|d|2/2)
I (d = 1) isolates only sequentially adjacent terms when used

as sequence kernel
I (d = 0) isolates only terms that have the same index when used

as sequence kernel

(c) loss function influence function (derivative of loss
function) kernel × direction

composition

L0(d) = |d|0 simple
L1(d) = |d|1 L′

1(d) = 1 × sgn(d)
L2(d) = |d|2/2 L′

2(d) = 1 × d
LW ,1(d) = min(|d|, W ) L′

W ,1(d) = I (|d| ≤ W ) × sgn(d) composite
LW ,2(d) = min(|d|2/2, W ) L′

W ,2(d) = I (|d|2 ≤ W ) × d
Lb,1(d) = 1 − exp(−b|d|)/b L′

b,1(d) = exp(−b|d|) × sgn(d) composite
Lb,2(d) = 1 − exp(−b|d|2/2)/b L′

b,2(d) = exp(−b|d|2/2) × d

In part I, we identified some broad principles at work common to many existing
PWC denoising methods. We showed that the PWC denoising problem can
be understood as 0-degree spline interpolation, or level-set recovery, because
typically there will be either only a few isolated jumps in the signal, or just
a few distinct levels. We formalized a generalized functional equation (table 2),
and showed that each of the methods introduced in part I are associated with a
special case of this functional, and that this functional is assembled from a few,
general ‘component’ functions (table 1). Finally, we demonstrated that each PWC
denoising method attempts to minimize the generalized functional obtained using
some kind of computational solver, many of which are special cases of a handful
of quite general algorithms.
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Having introduced the components, the generalized functional and solver
algorithms for existing methods in part I, in this second of these two papers
we investigate how some of these existing concepts can be generalized. There is
more than one potential starting point for this. One approach is to ask about the
range of validity of their associated solvers: what properties must the functional
satisfy to allow this solver to be applied? Another approach is to attempt to
synthesize new functionals that are ‘hybrids’ of existing methods, leading to new
methods that have their own merit as PWC denoising methods.

To recap, the notation used in part I is as follows. We wish to recover an N sam-
ple, discrete-time PWC signal mi ∈ R, for i = 1, 2, . . . , N , from an observed signal
corrupted by an additive noise random process ei ∈ R, i.e. x = m + e. As discussed
in part I, all the PWC denoising methods investigated in these two papers are
associated with special cases of the following general functional equation:

H [m] =
N∑

i=1

N∑
j=1

L(xi − mj , mi − mj , xi − xj , i − j). (1.1)

Here x is the input signal of length N , and m the output of the noise removal
algorithm, of length N . This functional combines difference functions into kernels
and losses (tables 1 and 2). A large number of existing methods can be expressed
as special cases of the resulting functional assembled from these components
(table 1). Various solvers can be used to minimize this functional to obtain the
output m.

In part I, the 0-degree spline and level-set models for PWC signals were
introduced. The PWC signal has only a few jumps occurring between indices
i and i + 1 where mi �= mi+1. The M jumps in the signal occur at the spline
knots with locations {r1, r2, . . . , rM+1}, together with the boundary knots r0 = 1
and rM+1 = N + 1. The PWC signal is reconstructed from the values of the
constant levels {l1, l2, . . . , lM+1} and the knot locations, e.g. mi = lj for rj−1 ≤ i < rj ,
where j = 1, 2, . . . , M + 1. The level-set for the value l ∈ U (U refers to the set of
all unique values in the PWC signal) is the set of indices corresponding to l ,
G(l) = {i : mi = l}. The complete level-set over all values of the PWC signal G is
formed from the union of these level-sets, which also makes up the complete index
set, G = ⋃

l∈U G(l) = {1, 2, . . . , N }. The level-sets form a partition of the index set,
so that G(lA) ∩ G(lB) = ∅ for all lA �= lB where lA, lB ∈ U.

In part I, the definition of a PWC signal is that the number of jumps is small
compared to the number of samples, e.g. M/N � 1, or, that the number of unique
levels is small compared to the number of samples |U|/N � 1. Here, we say that
a signal satisfying either condition has the PWC property.

The structure of this paper is as follows. Synthesizing the knowledge from
part I, §2 of this paper goes on to motivate and devise new PWC denoising
methods and solvers. Section 3 compares the numerical results of several PWC
denoising tasks on synthetic and real signals, and discusses the accuracy of
methods and efficiency of different solvers, drawing implications for the choice
of methods, solvers and parameter values. Finally, §4 summarizes the findings
of the paper and connects to other approaches, including wavelets, hidden
Markov models (HMMs), piecewise smooth (PWS) filters and nonlinear diffusion
partial differential equations (PDEs), and mentions possible directions for
future research.
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Table 2. A generalized functional for noise removal from PWC signals. The functional combines
differences, losses and kernel functions described in table 1 into a function to be minimized over
all samples, pairwise.

generalized functional for piecewise constant noise removal

H [m] =
N∑

i=1

N∑
j=1

L(xi − mj , mi − mj , xi − xj , i − j)

existing methods function L notes

linear diffusion (1/2)|mi − mj |2I (i − j = 1) solved by weighted mean filtering;
cannot produce PWC solutions;
not PWC

step-fitting (Gill 1970;
Kerssemakers et al.
2006)

(1/2)|xi − mj |2I (i − j = 0) termination criteria based on
number of jumps; PWC

objective step-fitting
(Kalafut & Visscher
2008)

(1/2)|xi − mj |2I (i − j =
0) + l|mi − mj |0I (i − j = 1)

likelihood term the same up to log
transformation; regularization
parameter fixed by data; PWC

total variation
regularization (Rudin
et al. 1992)

(1/2)|xi − mj |2I (i − j =
0) + g|mi − mj |I (i − j = 1)

convex; fused Lasso signal
approximator is the same; PWC

total variation diffusion |mi − mj |I (i − j = 1) convex; partially minimized by
iterated 3-point median filter;
PWC

mean shift clustering min((1/2)|mi − mj |2, W ) non-convex; PWC
likelihood mean shift

clustering
min((1/2)|xi − mj |2, W ) non-convex; K -means is similar but

not a direct special case (see
text); PWC

soft mean shift clustering 1 − exp(−b|mi − mj |2/2)/b non-convex; PWC
soft likelihood mean shift

clustering
1 − exp(−b|xi − mj |2/2)/b non-convex; soft-K-means is similar

but not a direct special case (see
text); PWC

convex clustering shrinkage
(Pelckmans et al. 2005)

(1/2)|xi − mj |2I (i − j = 0)
+g|mi − mj |

convex; PWC

bilateral filter (Mrazek
et al. 2006)

[1 − exp(−b|mi −
mj |2/2)/b]I (|i − j | ≤ W )

non-convex

new methods proposed in this paper

jump penalization (1/2)|xi − mj |2I (i − j = 0)
+g|mi − mj |0I (i − j = 1)

non-convex; PWC

robust jump penalization |xi − mj |I (i − j = 0)
+g|mi − mj |0I (i − j = 1)

non-convex; PWC

robust total variation
regularization

|xi − mj |I (i − j = 0)
+g|mi − mj |I (i − j = 1)

convex; PWC

soft mean shift total
variation diffusion

1 − exp(−b|xi − mj |2/2)/b +
g|mi − mj |I (i − j = 1)

non-convex; PWC

weighted convex clustering
shrinkage

(1/2)|xi − mj |2I (i − j = 0) +
g|mi − mj |I (|xi − xj | ≤ W )

convex; PWC

convex mean shift
clustering

|mi − mj | exp(−b|xi − xj |) convex; PWC

Proc. R. Soc. A (2011)
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2. New methods and solvers for PWC denoising

We will start in §2.1, by seeing how the very simplest stepwise jump placement
solvers introduced in part I can be generalized. We then discuss the connection
between total variation regularization introduced in part I and regression splines,
and in doing so motivate a novel coordinate descent method (§2.2). By considering
a generalization of total variation regularization, we will give a novel convex
method that can handle statistical outliers in the noise, and can be solved using
off-the-shelf linear programming algorithms in §2.3. Next, in §2.4, in addressing an
important limitation of convex clustering shrinkage (see part I), we will motivate
a weighting trick that not only improves the usefulness of convex clustering
shrinkage, but also leads to a novel version of mean shift clustering (defined in
part I) that provides a new clustering method and associated solver algorithm.
Finally, in §2.5, by exposing some of the limitations of total variation diffusion and
mean shift clustering, we develop a hybrid method with improved performance,
and derive a new solver algorithm for it.

(a) Jump penalization and robust jump penalization

Stepwise jump placement methods (see part I, §4.1) can ensure that the
solutions have the PWC property, which makes it interesting to ask whether the
idea can be generalized. The conceptual simplicity of the stepwise jump placement
solver algorithm is compromised if the regularization term depends on the knot
locations. This happens in the case of total variation regularization, where the
regularization term involves the absolute value of adjacent differences. It also
occurs where minimizing the likelihood term given the fixed knot configuration
is not straightforward or requires considerable computational effort. Thus, the
greatest appeal of stepwise jump placement algorithms is as a minimizer for
functionals that combine the non-zero count regularization term with adjacent
sequence kernel, |mi − mj |0I (i − j = 1), but, more generally, likelihood terms such
as (1/p)|xi − mj |pI (i − j = 0), where p ≥ 1. We can therefore suggest novel jump
penalization methods:

L = (1/p) |xi − mj |pI (i − j = 0) + g|mi − mj |0I (i − j = 1) (2.1)

for p ≥ 1 and freely chosen regularization parameter g ≥ 0. For p = 2, the mean
formula lj = (rj − rj−1)−1 ∑(rj )−1

i=rj=1
xi applies when calculating the levels of the spline

fit, whereas for p = 1 the median formula is required to calculate the levels instead:

lj = median(xrj−1 , xrj−1+1, . . . , x(rj )−1) (2.2)

(recall that rj is the time index of the jth knot of the spline). From a statistical
point of view, this jump penalization method with p = 1 is valuable where
the noise distribution is symmetric and heavy-tailed, because in this situation
the mean will be heavily influenced by outliers, but the median is robust to these
large deviations. The functional is non-convex and non-differentiable, and thus
not amenable to methods such as linear or quadratic programming (as discussed
in part I, §4.2), and will pose non-convergence challenges for numerical methods
(see part I, §4.5) for the associated initial value problem. However, the greedy

Proc. R. Soc. A (2011)
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search used in stepwise jump placement requires reconstructing the spline fit
for each putative new jump location and this is not necessarily computationally
efficient.

In the relevant literature (Gill 1970; Kerssemakers et al. 2006; Kalafut &
Visscher 2008), we have only encountered the idea that stepwise jump placement
proceeds with introducing new knots until a termination criteria is reached.
However, this stepwise jump placement strategy has the disadvantage that the
minimizer that leads to the smallest possible value of the functional might only
be achievable by stepwise removal of jumps. Therefore, it may be necessary to
place a jump at every location, and perform iterative jump removal to attempt
to lower the functional. Similarly, because the non-zero count loss is non-convex,
the functional is not convex either, and there may be another solution that
lowers the functional further. In fact, minimizing the functional is a combinatorial
optimization problem, because the number of knots is an integer quantity.
Therefore, it can be addressed by the wide array of techniques that have been
developed for such problems (Papadimitriou & Steiglitz 1998).

The jump penalization methods introduced above have another useful
interpretation where the PWC signal represents a discrete-time stochastic process
that can have both positive and negative jumps of any height. The count number
of a Poisson process is an important special case of this where the jumps are
all of the same height and positive only, and the time interval between jumps
is exponentially distributed. In that case, the probability of obtaining a jump in
any one discrete-time sampling interval is just r = t/m, where t is the sampling
interval and m is the mean time between jumps. In the corresponding discrete-time
setting, the number of jumps is a random variable that is Bernoulli distributed
with parameter r. Then the appropriate choice of regularization parameter is
g = log((1 − r)/r). At one extreme, when r = 1

2 , that is, a jump is exactly as likely
as no jump in any one sampling interval, this factor is zero, so the number of jumps
plays no role in the minimizer of the functional, which is just the input signal
x . At the other extreme, when r → 0, the mean time between jumps becomes
infinite, so a jump in any interval becomes improbable, and g → ∞. This forces
the number of jumps to zero when minimizing the functional.

(b) Regression splines and coordinate descent

In this section, we demonstrate the intimate connection between total variation
regularization (table 2 and part I, §3.3), which is of major importance in PWC
denoising applications and spline regression, and how a simple new solver can be
applied to find the solution. For the special case of total variation regularization,
for which L = (1

2)|xi − mj |2I (i − j = 0) + g|mi − mj |I (i − j = 1), the functional
becomes:

H [m] = 1
2

N∑
i=1

(mi − xj)2 + g‖Dm‖1, (2.3)

where ‖.‖1 is the (entrywise) vector 1-norm, and D is the N × N first difference
matrix with +1 on the main diagonal, and −1 on the diagonal above it. This is
shown to be equivalent to the following functional (Kim et al. 2009):

H [m] = 1
2‖Sm − x‖2

2 + g‖m‖1, (2.4)

Proc. R. Soc. A (2011)
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where ‖.‖p is the (entrywise) vector p-norm, to be minimized over the new
variables (these new variables are spline coefficients related to the original
variables m, see below). The N × N matrix S = (D−1)T has the form:

S =

⎡
⎢⎢⎢⎢⎣

1
1 1
1 1 1
...

...
...

. . .
1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎦, (2.5)

which contains a discrete, 0-degree (constant) spline in each row, with a knot
placed at positions 1, 2, . . . , N respectively. This demonstrates that total variation
denoising is also a Lasso regression problem using a set of constant splines as basis
functions, and the aim is to produce a sparse approximation with as few non-zero
knot coefficients as possible (Steidl et al. 2006; Kim et al. 2009).

The general Lasso regression problem has been studied extensively in the
statistics and machine-learning literature, and there are a large number of solvers
that can be used to find the only minimum of the functional above. These include
subgradient techniques such as Gauss–Seidel and grafting (Schmidt et al. 2007),
but also methods that use a smoothed approximation to the 1-norm including
EpsL1, log-barrier, SmoothL1, and expectation–maximization (EM) (Schmidt
et al. 2007).

Reformulation as a constrained least-squares problem leads to interior-point,
sequential quadratic programming and variants (Schmidt et al. 2007). However,
computational savings might be made by exploiting the special structure of this
total variation regularization problem.

Minimizing the generalized functional with respect to variation in one of the
variables alone (when the others are held fixed) can sometimes be conducted
analytically, or is simple to compute approximately. This observation has led to
a number of very simple coordinate descent solvers for regularization problems
(Friedman et al. 2007; Schmidt et al. 2007). It has been shown that such
coordinate descent solvers are minimizers for functionals of the form:

H [m] = F [m, x] +
N∑

i=1

Gi(mi), (2.6)

where the likelihood functional term on the left is convex and differentiable, and
the regularization functions Gi are convex. The regularization term displayed
here is separable: but the functionals in this paper do not have separable
regularization terms. Special adaptations are therefore required in order to apply
coordinate descent to the total variation regularization problem, for example
see Friedman et al. (2007). This involves identifying the conditions under which
groups of variables need to be merged and varied together. However, we make
the observation here that the Lasso spline regression problem obtained from
the total variation regularization method is separable, and that the spline
regression matrix above has a particularly simple form. This allows us to develop
a simple coordinate descent solver for total variation regularization that avoids
the complexity of detecting and grouping variables altogether.

Proc. R. Soc. A (2011)
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In particular, note that the original variables are obtained using m = Sm where
are the spline coefficients, so that each element is just the cumulative sum of the
spline coefficients:

mi =
i∑

j=1

mj . (2.7)

Similarly, going the other way, the spline coefficients can be obtained from the
original variables using successive differences:

mi = mi − mi−1 (2.8)

with m1 = m1. Also, note that at g = 0, the original variables are equal to the
input signal x , therefore the descent algorithm can be usefully initialized with the
successive differences of the input signal. It is useful to understand this descent
algorithm as a two-step process, (1) an update step:

w = mk + S∗T (x − S∗mk) (2.9)

followed by (2) the shrinkage step:

mk+1
1 = sgn(wi) max

( |wi| − g

‖S‖ , 0
)

(2.10)

with initial conditions m0
i = (xi − xi−1)‖S‖, and m0

1 = x1‖S‖, and S∗ = S/‖S‖,
where ‖S‖ = √

N (N + 1)/2. Normalization of the spline matrix is required
to prevent iterates from diverging. These steps (1) and (2) are repeated
until convergence. The original variables at convergence can be recovered
using mi = 1/‖S‖ ∑i

j=1 mj . We can understand equation (2.9) followed by
equation (2.10) as the regression coefficient obtained by regressing the error
x − S∗mk in equation (2.9) onto the ith variable mk

i (Friedman et al. 2007). The
shrinkage term (2.10) is just the solution to the absolute penalized least-squares
regression (2.4), if we fix all the variables except the variable i.

Using the observations about the matrix S above, the update step can be
simplified considerably:

wi = mk
i + 1

‖S‖
N∑

j=1

(
xj − 1

‖S‖
j∑

l=1

mk
l

)
= mk

i + 1
‖S‖

N∑
j=i

xj − 1
‖S‖2

N∑
j=i

j∑
l=1

mk
l .

(2.11)
The expanded form of the expression on the right shows that the term in x can
be pre-computed, which can lead to further computational savings. Although
simple, this coordinate descent algorithm requires a large number of iterations
to reach convergence, particularly for small g, because on each iteration, the
variable mi does not change very much. Therefore, the speed of convergence is
partly dependent upon the size of g. Furthermore, the iterates before reaching
convergence do not represent the solution at smaller values of g, because g is
fixed during the iteration. Thus, iteration of this algorithm does not obtain the
regularization path automatically, as it does for the piecewise linear regularization
path follower for the same problem (Hofling 2009). For some applications,
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where we want the whole set of solutions when varying g ≥ 0, this could be a
drawback. We note here that a related approach to PWC denoising was proposed
independently in the geosciences literature (Mehta et al. 1990).

(c) Robust total variation regularization and linear programming

Total variation regularization (see table 2 and part I, §3.3) is a useful technique
if the noise distribution is Gaussian. If the noise is not Gaussian, or there are
outliers in the noise, then we can adapt the technique to increase its robustness
by replacing the square likelihood loss with the absolute loss instead. The robust
total variation functional becomes

L = |xi − mj |I (i − j = 0) + g|mi − mj |I (i − j = 1), (2.12)

which can be cast as a least absolute regression problem:

m = argmin
m

H [m] = argmin
m

∥∥∥∥
[

x
0N

]
−

[
IN

−gD̃

]
m

∥∥∥∥
1
, (2.13)

where IN is the N × N identity matrix, 0N the N × 1 zero matrix, ‖ · ‖1 the
vector 1-norm, and D̃ is the N × N first difference matrix (see §2.2), but with
the last row all zero. This is in the form of a linear program (a linear problem
with linear inequality constraints), which is solvable using, for example, simplex
or interior-point methods (Boyd & Vandenberghe 2004; Koenker 2005). To our
knowledge though, specialized fast or regularization path-following methods (see
part I, §4.7) for this robust total variation regularization problem do not exist, as
they do for non-robust total variation regularization (but see Koenker et al. 1994
for related ideas and Darbon & Sigelle 2006 for an approach in the case where
the signals are integer rather than real, and also references therein).

(d) Weighted convex clustering shrinkage

Convex clustering shrinkage (see table 2 and part I, §3.3) has an advantage
over mean shift and other clustering methods (see part I, §§3.3 and 4.6), in that
the functional is convex, so there exists a unique solution that minimizes the
functional and it can be found by fast quadratic programming algorithms such as
the interior point technique. However, the method can be highly sensitive to the
choice of regularization parameter g: there is typically only a small range over
which the solution transitions from every sample belonging to its own cluster,
to the emergence of a single cluster for all samples. To reduce this sensitivity
and expand the useful range of the regularization parameter, a simple proposal
is to focus the clustering only on those samples in x that are initially close to
each other. Samples that are far apart initially cannot therefore become clustered
together. This leads to the following adaptation to the convex clustering shrinkage
functional:

L = ( 1
2

) |xi − mj |z I (i − j = 0) + g|mi − mj |I (|xi − xj | ≤ W ). (2.14)

This adaptation relaxes the sensitivity to g by ensuring that, with an appropriate
choice of W , the emergence of a single cluster for all samples cannot be reached.
This method retains the convexity properties of the original, because the weights
are based on the input signal which is fixed. It is therefore amenable to quadratic
programming. The parameter W controls the extent of the value kernel, that is,
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how close the input samples need to be subject to sample distance reduction. As
before, a small regularization parameter constrains the solution to be similar to
the input signal.

(e) Convex mean shift clustering

The use of input-signal dependent weights for enhancing the usefulness of a
PWC method presented above is a trick that can be applied more widely. For
example, mean shift clustering (table 2) is not convex, but it is possible to produce
a simple adaptation that is convex:

L = |mi − mj |I (|xi − xj | ≤ W ) (2.15)

for which the associated influence function is I (|xi − xj | ≤ W )sgn(mi − mj). This
should be contrasted with the influence function for mean shift clustering with
absolute (rather than square) loss which is I (|mi − mj | ≤ W )sgn(mi − mj). To
see why this new method can be considered a convex version of mean shift
clustering, consider that a solver for the descent ordinary differential equations
(ODEs) for this method (see part I, §§4 and 4.5) would be initialized with
m0 = x , such that, the influence function for the first iteration of this solver
is I (|mi − mj | ≤ W )sgn(mi − mj), and this coincides exactly with the influence
function for (absolute) mean shift (table 1). The adaptive Euler solvers (see part
I, §4.6) for the absolute mean shift and convex mean shift are, respectively:

mk+1
i = mk

i −
⎛
⎝ N∑

j=1

I
(|mk

i − mk
j | ≤ W

)⎞⎠
−1

N∑
j=1

I
(|mk

i − mk
j | ≤ W

)
sgn

(
mk

i − mk
j

)
,

(2.16)

mk+1
i = mk

i −
⎛
⎝ N∑

j=1

I
(|xk

i − xk
j | ≤ w

)⎞⎠
−1

N∑
j=1

I
(|xk

i − xk
j | ≤ W

)
sgn

(
mk

i − mk
j

)
(2.17)

(Note: with the square loss in classical mean shift in equation (2.16), the adaptive
solver simplifies to the iterated mean, as shown earlier.) One way of understanding
the relationship to conventional mean shift is that the value kernel for convex
mean shift does not change during iterations, whereas for mean shift the kernel
weights are re-computed on each iteration.

(f ) Soft mean shift total variation diffusion and predictor–corrector integration

We have seen in part I (§4.6), that clustering methods have the PWC property
in terms of level-sets, and total variation regularization in terms of splines. These
different methods have certain disadvantages. The level-set representation is
described in terms of levels, and this determines the locations of the jumps.
A consequence of this is that rapid changes in the mean of the noise can
cause rapid, spurious transitions between levels. On the other hand, the spline
representation sets the location of the jumps, which in turn determines the
constant levels. Therefore, the spline model is vulnerable to gradual, systematic
changes in the level of constant regions due to changes in the mean of the noise,
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for example. Clustering methods such as mean shift provide constraints on the
levels of constant regions and these could be used to alleviate the weaknesses of
total variation algorithms, by contrast, the temporal constraints built into total
variation algorithms could help prevent spurious transitions of clustering methods
that are insensitive to temporal sequence.

Here we show that it is possible to synthesize the two representations using a
novel PWC method that combines the global behaviour of mean shift clustering
with the sequentially local behaviour of total variation regularization, using the
following functional:

L = 1 − exp
(−b|xi − mj |2/2

)
/b + g|mi − mj |I (i − j = 1). (2.18)

Here, b is a kernel parameter that determines the effective ‘precision’ of the mean
shift: if b is large, then the solution can differentiate small peaks in the amplitude
distribution, if small, then only large peaks are detected. Because of the form of
equation (2.18), we call this method soft mean shift total variation diffusion. The
regularization parameter determines the relative influence of the total variation
regularization term: if small, then locally sequential runs of close values have little
influence over the solution; if large, then modes in the amplitude distribution can
be broken up in order to find sequential constant runs instead.

Although not necessarily the best or most efficient solver, for the purposes of
illustration, we invoke concepts from part I, §4.6 and propose a two-step, midpoint
predictor–corrector integrator for the resulting descent ODEs (Iserles 2009):

m∗
i = mk

i − Dh

2

N∑
j=1

F ′(mk
i − xj)k1(i − j) − g

Dh

2

K∑
j=1

G ′(mk
i − mk

j )k2(i − j),

(2.19)

mk+1
i = mk

i − Dh

N∑
j=1

F ′(m∗
i − xj)k1(i − j) − gDh

K∑
j=1

G ′(m∗
i − m∗

j )k2(i − j)

(2.20)

with initial condition m0 = x . Using this integrator, we obtain the following solver
for this new PWC denoising algorithm:

m∗
i = mk

i − Dh

2

N∑
j=1

exp
(−b(mk

i − xj)2/2
)
(mk

i − xj)

− g
Dn
2

[
sgn(mk

i − mk
i+1) − sgn(mk

i − mk
i−1)

]
, (2.21)

mk+1
i = mk

i − Dh

N∑
j=1

exp
(−b(m∗

i − xj)2/2
)
(m∗

i − xj)

− gDh
[
sgn(m∗

i − m∗
i+1) − sgn(m∗

i − m∗
i+1)

]
. (2.22)

At the boundaries, we have mi , m∗
i ≡ 0 for i < 1 and i > N for the total

variation part of the expression above. Although the regularization term is not
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differentiable everywhere, this finite difference solver is reasonably stable for small
Dh, and experience shows that convergence to a useful, approximate solution is
possible within a few hundred iterations.

3. Numerical results and discussion

In this section, we discuss the results of applying the existing and new methods
and solvers of this paper to typical PWC denoising problems. First, we focus
on qualitative comparisons; subsequently, we report quantitative performance
analysis and analysis of real signals. We use these comparisons to motivate
some general observations about method, solver and parameter value choices in
practical settings.

(a) Qualitative comparisons: performance under outliers and drift

We first tested the ability of the methods to recover the step while ignoring
two isolated ‘outliers’ that could be incorrectly identified as level transitions, the
results are shown in figure 1. Up until now, we have assumed that the noise is
statistically independent, but in practice, it may have some kind of correlation.
We, therefore, devised another challenging test: recover a unit step signal with
linear drift in the mean of the noise as a confounding factor, see figure 2. In
each case, method parameters were optimized to achieve the output that is
closest (under the root mean square error (RMSE) ) to the known step signal, by
searching over a grid of parameter values.

In the case of outliers, the new jump penalization and mean shift total
variation diffusion methods (figure 1k, l , j) appear to produce the most accurate
results. Mean shift clustering and bilateral filtering are able to recover the step
(figure 1d, h), but are unable to ignore the outliers. K -means can ignore the
outliers (figure 1f ), but exhibits an incorrect transition near the leading step edge,
because a sample near the edge is closer in value to the height of the step. Total
variation regularization and the robust total variation regularization (figure 1b,i)
correctly ignore the outliers, but tend to identify many small, spurious edges; this
is true also of iterated median filtering (figure 1a). Although these spurious jumps
in total variation methods can be removed by further increasing the regularization
parameter, this will be at the expense of introducing very significant bias into the
estimate of the level of the constant regions (essentially, this is a consequence
of the piecewise linearity of the regularization path). There is, however, no
corresponding parametric control over the iterated length 3 median filter, which
converges on a root signal that has many spurious jumps. Soft mean shift, convex
mean shift and the weighted convex clustering shrinkage (figure 1e,n,m) fail to
ignore the outliers and also show some spurious transitions between levels. The
objective step-fitting (see table 2) method (figure 1c) also places jumps at the
outliers, and in other, spurious locations. Convex clustering shrinkage fails to
identify the step at all and is also influenced by the outliers (figure 1g).

With drift, we can see that mean shift, soft mean shift, K -means and mean
shift total variation diffusion (figure 2d,e,f ,j) are able to recover the step and
ignore the drift very effectively. These methods are successful in this case because
they are largely insensitive to the sequential ordering of the input samples
(with the exception of mean shift total variation diffusion); they are simply
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Figure 1. Response of PWC denoising methods to a step of unit height with additive Gaussian
noise (s = 0.25) and two extreme outliers. The methods are (a) iterated median filter for total
variation diffusion, (b) total variation regularization (g = 1.5), (c) objective step-fitting, (d) mean
shift clustering (W = 0.42), (e) soft mean shift clustering (b = 15), (f ) K -means (K = 2), (g)
convex clustering shrinkage (g = 0.02), (h) bilateral filter (W = 2, b = 10), (i) robust total variation
regularization (g = 1.5), (j) soft mean shift total variation diffusion (b = 10, g = 2.0), (k) jump
penalization (g = 1.0), (l) robust jump penalization (g = 3.0), (m) weighted convex clustering
shrinkage (g = 1.0, W = 0.22) and (n) convex mean shift clustering (g = 1.0, W = 0.22). (Online
version in colour.)

converging on peaks in the distribution of the input sample that turn out to
be largely unaffected by the drift. Jump penalization, objective step-fitting and
bilateral methods (figure 2k,l ,c,h) are unable to ignore the drift, but produce
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Figure 2. Response of PWC denoising methods to a step of unit height with additive Gaussian
noise (s = 0.25) and linear mean drift. The methods and parameters are as described in figure 1.
(Online version in colour.)

the smoothest solutions. Weighted convex clustering shrinkage and convex mean
shift (figure 2m,n) are not confused by the drift, but have some spurious edges.
Total variation regularization is also adversely affected by the drift and introduces
a small, incorrect jump, but is appreciably better than robust total variation
regularization (figure 2b,i). Arguably, the worst performing methods are iterated
median filtering and convex clustering shrinkage (figure 2a,g).
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(b) Qualitative comparisons: solver efficiency

Next, in order to understand the efficiency of different methods and solvers,
we apply a representative selection of iterative solvers to the basic task of noise
removal from a short, unit synthetic step corrupted by the Gaussian noise.
Figure 3 shows the resulting output signal, and the iteration path of the solver:
that is, the curves traced out by the samples in the solution as the iterations
proceed. This is a plot of the iteration number on the horizontal axis, against
the values of the samples on the vertical axis. The distance reduction principle is
apparent in the output as the solver iterates towards convergence to a minimum
of the associated functional. It is also possible to discriminate methods that
use only value kernels such as mean shift and K -means, from methods that use
local sequence kernels (for example, total variation regularization and bilateral
filtering). The former can only merge together samples that are close in value,
therefore, the iteration paths do not intersect. On the other hand, the latter can
constrain those that are sequentially close to merge together, and the iteration
paths can intersect.

In terms of the number of iterations, the forward stepwise jump placement
algorithm for jump penalization methods are the most effective, converging on
a solution in two steps (figure 3f ). Next, we find kernel adaptive step-size Euler
integrators for mean shift, K -means and bilateral filtering taking at most five
steps (figure 3b, c, d). The forward linear regularization path following solver for
total variation regularization is next, taking 10 steps to reach the unique optimum
solution (figure 3a). Weighted convex clustering shrinkage with non-adaptive
step-size Euler integration takes some 300 steps to converge (figure 3g). Lastly, the
two-step mid-point predictor–corrector integrator for mean shift total variation
regularization converges to a solution after about 500 iterations (figure 3e).

Analytic minimizers for the generalized functional (1.1) are only available in
the case of purely linear systems (simple quadratic loss functions). Therefore,
numerical algorithms are required generally. The solvers described in this paper
are not necessarily the most efficient that could be applied to each method.
However, there are some general observations that can be made.

When the loss functions are convex and combined in convex combination this
can be advantageous because then it is known that there is one unique minimizer
for the functional, given fixed parameters. This avoids the uncertainty inherent
to non-convex methods, where we do not know whether the solution obtained
is the minimizer associated with the smallest possible value of the functional or
not: there may be a better solution obtained by starting the solver from different
initial conditions. This may require us to run the solver to convergence many times
to gain confidence that the result is the best possible. Having said this, whether
it matters that the solution is optimal depends on practical circumstances. For
many PWC denoising methods the functionals are convex, and in terms of
computational complexity, interior point algorithms are very efficient (Boyd &
Vandenberghe 2004).

If there are only a few jumps then forward stepwise jump placement, as
described in part I, §4.1 is very efficient. However, we cannot know whether a
sequence of jumps placed by this forward-only algorithm is the best because
the jump penalization functional is non-convex. Therefore, the same issues
about uncertainty in the optimality of the results occur as with any non-convex

Proc. R. Soc. A (2011)

 on January 28, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


3130 M. A. Little and N. S. Jones

1.0
(a)

(b)

(c)

(d)

(e)

(g)

( f )

2

1 2 3 4 5

1 2 3 4 5

4 6 8 10

2

100

1.0 1.2 1.4 1.6 1.8 2.0

200 300 400 500

100 200
iteration

300 400 500

4 6 8 10

0.5

x i
, m

i

–0.5
0

1.0
0.5

x i
, m

i

–0.5
0

1.0
0.5

x i
, m

i

–0.5
0

1.0
0.5

x i
, m

i

–0.5
0

1.0
0.5

x i
, m

i

–0.5
0

1.0
0.5

x i
, m

i

–0.5
0

1.0
0.5

x i
, m

i

–0.5
0

2 4 6
index i

8 10 12

Figure 3. Iteration paths for solvers applied to a representative sample of PWC denoising methods.
The noise is Gaussian (s = 0.25). The left column shows the final, converged outputs of each method
and the right column shows the associated iteration path taken towards convergence. The vertical
axes are the values of the input (blue circles) and output (black line) samples, and the known PWC
signal (thin blue line). The methods and solver algorithms are (a) total variation regularization
by piecewise linear forward regularization path follower, (b) mean shift with adaptive step-size
Euler integration, (c) K -means with adaptive step-size Euler integration, (d) bilateral filtering
with adaptive step-size Euler integration (e) mean shift total variation diffusion with predictor–
corrector two-step integration, (f ) jump penalization with forward stepwise jump placement and
(g) weighted convex clustering shrinkage with Euler integration. Method parameters are chosen to
give good PWC recovery results. (Online version in colour.)

functional. The scope for stepwise jump placement algorithms is quite narrow,
because it requires an easily solvable likelihood function given the fixed
spline knots.
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Although having the widest scope of all, we have seen that finite difference
methods for the descent ODEs can take hundreds of steps to converge, and are
therefore relatively inefficient. However, the simple measure of adapting the step-
size can cut the number of iterations required to reach convergence enormously,
as we have seen for the mean shift and other clustering methods. Simple finite
differences are only practical then if modified with adaptive step-sizes or some
other approach to speeding up convergence.

The scope for (forward) piecewise linear regularization path followers for
PWC denoising turns out to be reasonably wide (Rosset & Zhu 2007), and
if path linearity can be dropped, even wider (Rosset 2004). Therefore, if
the full regularization path of solutions is required, path following methods
can be efficient, as we have seen for total variation regularization. To our
knowledge, backwards path following has only been investigated for total
variation regularization.

Coordinate descent is probably the least efficient in terms of number of
iterations and requires separability of the regularization term, which does not
apply in general to the PWC denoising functionals in this paper. However,
the update on each iteration is very simple and this may yet turn out to be
competitive with other solvers applied where separability can be shown to hold.

(c) Quantitative recovery performance: the unit step

We now turn to the quantitative performance of each method at recovering a
simple, known, unit height step signal u (length N = 35, first 17 samples are zero,
the rest 1) with independent Gaussian noise of standard deviation s. Performance

is measured using the RMSE =
√( 1

N

) ∑N
i=1 |ui − mi|2, and the normalized total

variation NTV = ∑N−1
i=1 |mi+1 − mi|, where m is the final output of each algorithm.

NTV measures the relative ‘smoothness’ of the resulting output with reference
to the unit step input signal, which has unit total variation. Ideal recovery would
occur when RMSE = 0 and NTV = 1. We vary the spread of the noise to probe the
performance of each method as PWC noise removal becomes more challenging.
Algorithm parameters were fixed according to the optimum values chosen for the
qualitative analysis above. Results are averaged over 20 realizations of the noise.

In terms of RMSE, figure 4a shows that all methods generally get worse as the
noise spread increases. Bearing in mind that the noisy input signal has RMSE
equal to s by definition, in fact at moderate to high noise spread, convex mean
shift, weighted convex clustering shrinkage, K -means and the bilateral filter do
not achieve significant noise reduction; but the rest of the methods do (because
the RMSE is less than s at all values of s). Total variation regularization has
the best RMSE for moderate to high noise spreads, but at the lowest spread, it
is outperformed by the bilateral filter, mean shift total variation regularization,
and both robust and non-robust jump penalization.

Taking into consideration NTV, figure 4b shows total variation regularization
‘oversmoothing’ the results at low noise spread, and ‘undersmoothing’ at high
noise spread. By contrast, the novel robust jump penalization and soft mean shift
total variation regularization methods produce outputs that are more consistent
with the smoothness of the hidden step signal at both low and high noise spreads.
The other methods all consistently underestimate the smoothness of the hidden
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Figure 4. Quantitative performance of PWC denoising methods at recovering a unit step signal
(length N = 35, first 17 samples are zero, the rest 1) corrupted by additive Gaussian noise of
standard deviation s. (a) RMSE (see text) of output signal with respect to increasing noise spread
(note that perfect recovery would require RMSE = 0). (b) Logarithm of normalized total variation
(see text) with increasing noise spread (N.B. perfect recovery would have log10 NTV = 0, positive
indicates ‘undersmoothing’, and negative ‘oversmoothing’). (Online version in colour.)

step, a situation that gets worse with increasing spread (with the exception of
the K -means algorithm that overestimates smoothness at the very lowest noise
spreads, because it has collapsed down to one single level).

Summarizing, these quantitative results point to the overall usefulness of total
variation regularization and the novel robust jump penalization method presented
here, when the noise is Gaussian, independent and stationary. However, by
contrast to the qualitative analyses presented above, these results are averaged
over the whole signal. In practice, it might be important to preserve and hence
detect jumps of a certain height or location. In which case, as shown in the
previous section, one might favour robust jump penalization over total variation
regularization (because it tends to produce a PWC signal with a few, large jumps).
Similarly, if we knew the noise spread, we could optimize the method parameters
to improve performance.

(d) Example application to real signals

Here, we analyse a real signal that we suspect may be PWC: the DNA copy-
number ratios arising from a genomic hybridization study (Snijders et al. 2001).
We use this to illustrate some of the issues that arise with the choice of method,
solver and parameter values in a practical setting. We suppose that the noise
is independent and stationary, but that there are a few outliers. Further, we
suppose we are interested in detecting a few, large jumps between different
copy-number regimes. We, therefore, choose a method that tends to produce
a handful of jumps within a few solver iterations, without any constraint on the
number and value of levels: the robust jump penalization method that is a good
performer on independent noise with or without outliers (see the results of the
preceding sections). This will find a compact 0-degree spline, as opposed to level
set, representation.

Results are shown in figure 5. As expected, different choices of the
regularization parameter return PWC signals at different levels of detail, with
a few knots breaking the genome sequence into different groups, see figure 5c.
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Figure 5. Analysis of DNA copy-number data obtained from a microarray genomic hybridization
experiment (Snijders et al. 2001), using the novel robust jump penalization method described
in the text. (a) Iteration paths traced out by the solver algorithm with increasing iterations.
(b) Functional value H [m] with increasing iteration number, for two different values of the
regularization parameter g. The filled circles represent the numerical minimum of this quantity
over the first 50 iterations of the solver algorithm (blue line, g = 0.5; green line, g = 5.0). (c) PWC
outputs obtained at the minimum of the functional for the two different regularization parameter
values shown in (b) (blue line, m, g = 0.5; green line, m, g = 5.0), Overlaid on input signal x (shown
in grey). (Online version in colour.)

In accordance with the robust nature of the median used in this method, the
apparent ‘spikes’ at genome orders approximately 130 and 740 are ignored at
both regularization values. The sample distance reduction principle (in reverse)
is evident from the iteration paths in figure 5a.

We observe in figure 5b that the functional H [m] is non-convex, so the choice of
solver stopping criteria is open. Here, we make up to 50 iterations and select the
output m where the functional attains the smallest value over all the previous
iterations. At the larger regularization parameter value, the curvature of the
functional is pronounced, making it easier to argue that the numerical minimum
is meaningful: for the smaller regularization parameter value, it is not so clear
where the minimum lies (despite the existence of a numerical minimum, it is very
close to the functional value at other iterations).

In this paper, we have attempted to be neutral about the choice of parameters:
their selection must depend on the peculiar information that the analyst has at
hand. In selecting the range of the regularization parameter for this example, we
are partly informed by what are considered ‘reasonable’ results by the standards
of DNA copy-number analysts (Snijders et al. 2001). We noted in part I that regul-
arization parameters, such as g, can often be understood as parameters of a Baye-
sian prior and the choice of prior must be problem-specific. In some circumstances,
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though not for the genomic data considered here, the analyst has access to a piece
of signal which can be certified as having no steps. The distribution of this signal
can be used to reason about the distribution of residuals of a PWC fit to a related
signal which does have steps (assuming that the distribution of the noise is the
same in both cases and the noise is additive). Since a good PWC denoising should
leave a distribution of residuals identical to the distribution of the signal known
to be step-free, this can be used to fix parameters by picking those parameters
that make the two distributions as close as possible.

4. Summary, related and future ideas

In this second of two papers, by presenting an extensively generalized
mathematical framework for performing PWC noise removal, several new PWC
denoising methods and associated solver algorithms are proposed that attempt to
combine the advantages of existing methods and solvers in potentially new and
useful ways. Numerical tests on synthetic data compared the recovery accuracy
and efficiency of these existing and novel methods head-to-head. It was found
that under challenging conditions such as drifts in the noise, the new mean
shift total variation denoising method is effective where existing methods show
significant deficiencies. With or without outliers in the noise, the novel robust
jump penalization method was shown to compare favourably to total variation
regularization, but outperforms this method when only a few jumps in the signal
are present or expected. Issues arising from the analysis of microarray genomic
copy-number data using robust jump penalization were explored.

In order to devise these new PWC denoising methods, the first paper (part I)
has presented a generalized approach to understanding and performing noise
removal from PWC signals. While the structure of this study has encouraged
us to make as inclusive an investigation as possible of PWC denoising methods,
there are many other methods that cannot be associated with special cases of
this generalized functional. Below, for completeness, we discuss the conceptual
overlaps and relationships between some of these other methods that get
significant use in practical PWC denoising applications.

(a) Wavelets

Wavelet techniques are ubiquitous, generic methods for signal analysis, and
their use in general noise removal has been comprehensively explored (Mallat &
Hwang 1992; Mallat & Zhong 1992; Wang 1995; Cattani 2004; Mallat 2009).
Connections between wavelet techniques and some of the smoothing methods
described in this paper, in particular total variation regularization (Steidl et al.
2004), have been established. Wavelet methods are powerful for many reasons,
here we just mention a few of the basics: including (a) the existence of an O(N )
algorithm with computational complexity for the forward and reverse wavelet
transforms in the discrete-time setting (Mallat 2009); (b) the statistical theory
of wavelet shrinkage that exploits orthonormality of the wavelet basis to perform
noise removal using very simple, coefficient-by-coefficient (separable) nonlinear
transformations of the wavelet coefficients (Candes 2006); and (c) many signals,
in the wavelet basis are sparse, that is, a large proportion of the coefficients are
effectively zero making the wavelet representation very compact.
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Wavelet methods require the choice of basis, and for PWC denoising, the Haar
basis, itself composed of PWC functions, has been suggested many times in the
wider literature (Cattani 2004; Taylor et al. 2010), although it is not the only
basis that has been proposed. Removing noise typically requires removal of the
small-scale detail in the signal. The result of removing this detail is that the time-
localization of the remaining large scale PWC basis functions is poor, so that
the jumps in the PWC signal cannot be accurately located and tend to become
misaligned to the locations of the jumps in PWC bases instead. Furthermore,
shrinkage causes ‘oscillations’ near jumps that are not aligned with the jumps in
the basis; oscillations that are similar in character to Gibb’s phenomena observed
using linear low-pass filtering. These issues are an unavoidable consequence of the
Heisenberg uncertainty inherent to time–frequency analysis (Mallat 2009).

The PWC denoising methods described in this paper are not based on
time-frequency analysis. Perhaps because of this, historically, wavelet-based
approaches, and the kind of methods discussed in this paper, have developed quite
separately (Candes & Guo 2002). There are, however, some points of contact that
have addressed how to prevent wavelet oscillations near jumps, yet retain some of
the desirable conceptual and computational properties of wavelet methods. The
literature on this topic is very extensive and we restrict ourselves to a few of
the overlapping concepts that are of direct relevance to the PWC methods and
solvers discussed in this paper.

If we are prepared to drop orthogonality, then we lose separability, but this
does not mean that we lose the appealing concept of coefficient shrinkage: in
fact, in the regression spline approach to total variation regularization discussed
above, the use of the absolute function applied as a regularizer over the constant
spline coefficients can be seen as non-separable shrinkage in the spline basis. The
solver is more complex than separable shrinkage (we now have to solve a Lasso
problem), but the jumps (spline knots) are no longer restricted by the Heisenberg
uncertainty and can be placed precisely at the jumps in the PWC signal (Mallat
2009). Alternatively, Candes & Guo (2002) and Chan & Shen (2005) discuss
how the wavelet reconstruction with absolute loss on the wavelet coefficients
can be augmented with the total variation of the wavelet reconstruction to
attempt to minimize the oscillations near discontinuities. The solution can no
longer be obtained using separable shrinkage, but the orthogonality and potential
sparsity of the wavelet transform is retained. A final example is that of iterated
translation invariant wavelet shrinkage (Steidl et al. 2004), which has been shown
to have similar performance to total variation regularization, but the connection
is somewhat less direct.

(b) Hidden Markov models

HMMs play an important role in practical PWC denoising applications
(Godfrey et al. 1980; Chung et al. 1990; Jong-Kae & Djuric 1996; McKinney
et al. 2006). It is important, therefore, to understand the relationships between the
generalized methods proposed in this paper and HMMs. The literature on the very
many variants of HMMs is extensive (Blimes 2006), but we focus here on one of
the most popular HMM variants that has seen repeated use in PWC denoising—
the discrete-state HMM with continuous, Gaussian emission probabilities. This
configuration has deep similarities to the (hard or soft) K -means clustering
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algorithms discussed in this paper. The similarity emerges from the relationship
between K -means clustering and (Gaussian) mixture density modelling.

In this HMM variant, there are K distinct states to the underlying Markov
chain, each associated with a single Gaussian distribution, parameterized by K
means and variances. If the underlying chain is in state si = k ∈ {1, 2, . . . , K }
at index i, then the output sample from the noisy signal xi is drawn from a
Gaussian with mean mk and variance s2

k . The Markov chain is parameterized by
K 2 additional transition density and initial probability variables, the transition
density determining the statistical dependence of si upon si−1 and earlier states
if necessary (Blimes 2006).

The goal of fitting the HMM to the noisy signal is to find these transition and
initial probabilities, and the parameters of the Gaussians associated with each
state. If, however, si is independent of si−1, then this HMM variant collapses to
a Gaussian mixture density model (Roweis & Ghahramani 1999), where the goal
of fitting is to determine the parameters of the Gaussians alone. This is typically
solved using expectation-maximization (EM) method (Hastie et al. 2001). There
are two steps to this method, the E-step: in which the assignment of each index
to each state is determined, and the M-step where the Gaussian parameters are
re-estimated using the assignments. In this paper, the adaptive step-size Euler
integrator applied to the K -means algorithms can be seen as a concatenation
of these two steps, in the special case where the variances of the Gaussians
are fixed. This arises because EM is equivalent to iterative, weighted mean and
variance replacement, the weights determined by the state assignment. For soft
K -means, the weights are the probabilities of assignment to each state given
the means and variances from the previous iteration; for (hard) K -means, most
probable assignments are used instead of probabilities, so the weights are either
zero or one.

EM has been adapted to the HMM case of mixture modelling, where si
depends on si−1. The E-step becomes more complex because calculating the
state assignment probabilities requires ‘tracing’ through all possible states
up until index i. Fortunately, conditional independence of the Markov chain
makes a considerable algebraic simplification of this assignment possible, in the
probabilistic assignment case the resulting method is known as the Baum–Welch
algorithm, the most probable variant of which is Viterbi or sequential K-means
training (Blimes 2006).

The means of the Gaussian associated with each state are analogous to the
levels in the PWC level-set model, and this variant of HMM with continuous
emission probabilities has the PWC property if the number of states because
there will be many indices assigned sequentially to the same level. This explains
why discrete-state HMMs with continuous emission probabilities are useful for
general PWC denoising problems.

(c) Piecewise constant versus piecewise smooth?

The fact that PWC signals are also piecewise smooth implies that methods
for noise removal from PWS signals can, in principle, be applied to the PWC
denoising problem. Here, by PWS, we mean a signal that has a finite isolated
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set of discontinuities (jumps), and everywhere else the function has one or
many continuous derivatives. The PWS noise removal problem has attracted
considerable attention, in particular from those applying wavelet analysis in
the signal and image processing communities (Chaisinthop & Dragotti 2009;
Mallat 2009). For PWS signals, the level-set model is no longer parsimonious
(but see the stack or threshold decomposition representation that is of central
importance to morphological signal processing, Arce 2005). The extension of
the 0-degree spline model to higher degrees requires piecewise (first, second,
etc.) differentiability, where the signal to be recovered is continuous everywhere,
however, the PWC signals we refer to in this paper are discontinuous at
the jump locations. Therefore, the higher degree spline model is not compact
for PWS signals either. Here we discuss a small selection of PWS methods
that are notable for their informative overlap with the algorithms in this
paper.

Since noise removal from signals that are smooth everywhere is a problem for
which the running mean filter is well suited, adapting the running linear filter
to the existence of a few isolated jumps is a natural solution in many contexts.
This requires some technique for (either implicitly or explicitly) detecting the
existence of a jump. Many algorithms that provide jump capability to running
filters (not just the running mean filter) exploit the concept of data-adaptive
weighting, that is, some measure of the distance associated with samples inside
(or outside) the local filtering window is used to provide a measure of whether
a discontinuity exists within the window. This measure then changes the local
weighting to mitigate the edge smoothing effect of filtering over the jump. In this
paper, those techniques that place a kernel over the term xi − xj are using such
data-adaptive weighting.

In this context, it is informative to note that in the limit when b → 0
in the bilateral filter formula, we obtain the iterated, running mean filter of
width W , and with a soft (Gaussian) sequence kernel, we obtain the iterated
running weighted mean filter. Therefore, one iteration of the bilateral filter can
be viewed as a running weighted mean filter, where the weights are chosen
to filter only those samples that are close in value (Elad 2002). Similar ideas
have been proposed independently in many different disciplines. Chung &
Kennedy (1991) describe a weighted running mean filter with a weighting
scheme that is constant but different on the left-hand and right-hand sides
of the window around each sample. The weights are inversely proportional
to a positive power of the magnitude of the difference between the mean
of the left or right sides of the window, and the sample in the middle of
the window. The weights can be computed based on samples outside the filtering
window, and the final output of the filter can be a summation over running
means of differing lengths (Chung & Kennedy 1991). Running filters based
on a variety of linear combinations of rank ordered samples in the window,
such as the trimmed mean filter or the double window modified trimmed
mean filter are conceptually similar and very useful for PWS noise removal
(Gather et al. 2006).

The PWC denoising algorithms in this paper are therefore closely related to
some PWS algorithms, but the PWC denoising problem is distinct. In particular,
we present evidence here that the PWC denoising problem is one for which
information across the whole signal can be efficiently exploited by constructing a
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compact level-set representation, for example, using the full pairwise differences
in sample values in the mean shift or weighted convex clustering shrinkage
algorithms. This approach would not be efficient for PWS signals, because in
between the jumps, a PWS signal is not generally constant, and so does not
necessarily have a compact level-set description.

(d) Continuum approaches and nonlinear partial differential equations

The generalized functional (1.1) is based on a purely discrete-time setting.
Most real signals are continuous in time, but despite continuous time being
computationally inaccessible (it usually is), there are some mathematical
advantages to going to a continuous time model of the signal, even if this has
to be discretized later for computational reasons. The largest single class of
continuous-time PWC denoising methods are those based on nonlinear PDEs, and
have nearly all been developed in the image processing literature (Chan & Shen
2005). In the limit of infinitesimal time increments, the discrete-time, generalized
functional becomes a double integral functional instead. Then, the variational
derivative of the functional with respect to the continuous-time output signal is an
Euler–Lagrange PDE, and it will be nonlinear if it is useful for PWC denoising. So,
it is fairly easy to show that many, if not most, of the methods in this paper have
an equivalent PDE form. Numerical solvers for this PDE would be very similar to
numerical solvers for the descent ODEs derived earlier. Passing to the continuum
also invites application of Sethian’s computational level-set algorithms that, in
the one-dimensional signal case, would correspond to techniques for evolving the
jump locations between the distinct level-sets that comprise the PWC solution,
as opposed to the levels (Chan & Shen 2005).

(e) Future directions

The new methods and solvers presented in this paper represent just a handful
of directions that the generalized functional and solver description in part I sugg-
ests. Clearly, there are a very large number of other possible methods that can be
constructed from the functional components we describe, that are as yet unexplo-
red, that might be of value in PWC denoising. However, determining which of
these methods would have minimizer(s) with the PWC property, and in addition,
admit efficient and reliable solvers, will require additional work. We imagine
one approach: a formal axiomatic system leading to the scale-space equation
has been developed to the design of nonlinear PDEs for image analysis, that
constrains their form to have universally useful properties (Chan & Shen 2005).
It is quite possible that such axioms might be modified for PWC denoising
purposes. The consequences of such axioms could be explored with respect to
the functional components and their interactions with the solvers presented in
this paper, with a view to asking what combinations lead to solutions with the
PWC property.
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